J. Mater. Sci. Technol. ›› 2022, Vol. 124: 202-208.DOI: 10.1016/j.jmst.2021.10.059
• Research Article • Previous Articles Next Articles
Kai Wang, Quanpeng Wang, Kaijia Zhang, Guohong Wang(), Hukun Wang(
)
Received:
2021-08-24
Revised:
2021-10-27
Accepted:
2021-10-30
Published:
2022-10-10
Online:
2022-03-30
Contact:
Guohong Wang,Hukun Wang
About author:
wanghukun@163.com (H. Wang)Kai Wang, Quanpeng Wang, Kaijia Zhang, Guohong Wang, Hukun Wang. Selective solar-driven CO2 reduction mediated by 2D/2D Bi2O2SiO3/MXene nanosheets heterojunction[J]. J. Mater. Sci. Technol., 2022, 124: 202-208.
Fig. 3. High-resolution XPS (a) Ti 2p and (b) C 1s spectra of BOSO, TC, and BOSO/TC-2 samples. (c) N2 adsorption-desorption curves and (d) CO2 adsorption curves of BOSO, TC, and BOSO/TC-2 samples.
Fig. 4. (a) UV-vis DRS, (b) PL spectra, (c) TRPL spectra, (d) EIS plots, (e) transient photocurrent and (f) surface photovoltage of as-prepared samples.
Fig. 5. Time-dependence of (a) CH3OH and (b) CO yields by the photoreduction of CO2 over as-prepared samples; (c) Apparent rate of product yields and selectivity of BOSO/TC-2 after 4h irradiation, (d) Variation concentrations of CO2 and gas generation over BOSO/TC-2. (e) Photocatalytic stability of the sample BOSO/TC-2 for 10 runs; (f) Mass spectra of 13CO and isotopic labeling chromatogram (inset) using 13NaHCO3 as a carbon source over BOSO/TC-2 in the photocatalytic reduction of 13CO2. (g) CO2 RR performance comparison of BOSO/TC with the reported photocatalysts.
Fig. 7. Calculated work functions of (a) Bi2O2SiO3 and (b) Ti3C2; (c) Charge difference distribution coupled electronic location function (ELF) and calculated (d) planar averaged electron density difference Δρ(z) of the 2D/2D interlayer.
[1] | Q. Liu, J. Huang, H. Tang, X. Yu, J. Shen, J. Mater, Sci. Technol. 56 (2020) 196-205. |
[2] |
S. Wang, X. Hai, X. Ding, S. Jin, Y. Xiang, P. Wang, B. Jiang, F. Ichihara, M. Os-hikiri, X. Meng, Y. Li, W. Matsuda, J. Ma, S. Seki, X. Wang, H. Huang, Y. Wada, H. Chen, J. Ye, Nat. Commun. 11 (2020) 1149.
DOI URL |
[3] |
L. Wang, Y. Xia, J. Yu, Chem 7 (2021) 1981-1992.
DOI URL |
[4] |
N. Sun, Y. Zhu, M. Li, J. Zhang, J. Qin, Y. Li, C. Wang, Appl. Catal. B Environ. 298 (2021) 120565.
DOI URL |
[5] |
H. Deng, X. Fei, Y. Yang, J. Fan, J. Yu, B. Cheng, L. Zhang, Chem. Eng. J. 409 (2021) 127377.
DOI URL |
[6] |
F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu, J. Yu, Nat. Commun. 11 (2020) 4613.
DOI URL |
[7] |
Y. Li, S. Wang, X. Wang, Y. He, Q. Wang, Y. Li, M. Li, G. Yang, J. Yi, H. Lin, D. Huang, L. Li, H. Chen, J. Ye, J. Am. Chem. Soc. 142 (2020) 19259-19267.
DOI URL |
[8] |
B. Pan, Y. Wu, B. Rhimi, J. Qin, Y. Huang, M. Yuan, C. Wang, J. Energy Chem. 57 (2021) 1-9.
DOI URL |
[9] |
L. Wang, H. Tan, L. Zhang, B. Cheng, J. Yu, Chem. Eng. J. 411 (2021) 128501.
DOI URL |
[10] |
M. Sayed, F. Xu, P. Kuang, J. Low, S. Wang, L Zhang, J. Yu, Nat. Commun. 12 (2021) 4936.
DOI URL |
[11] |
Y. Li, D. Hui, Y. Sun, Y. Wang, Z. Wu, C. Wang, J. Zhao, Nat. Commun. 12 (2021) 123.
DOI URL |
[12] |
L. Wang, B. Zhu, B. Cheng, J. Zhang, L. Zhang, J. Yu, Chin. J. Catal. 42 (2021) 1648-1658.
DOI URL |
[13] | Z. Wang, Y. Chen, L. Zhang, B. Cheng, J. Yu, J. Fan, J. Mater, Sci. Technol. 56 (2020) 143-150. |
[14] |
Y. Xiang, W. Dong, P. Wang, S. Wang, X. Ding, F. Ichihara, Z. Wang, Y. Wada, S. Jin, Y. Weng, H. Chen, J. Ye, Appl. Catal. B Environ. 274 (2020) 119096.
DOI URL |
[15] |
P. Yang, H. Zhuzhang, R. Wang, W. Lin, X. Wang, Angew. Chem. Int. Ed. 58 (2019) 1134-1137.
DOI URL |
[16] |
J. Li, B. Huang, Q. Guo, S. Guo, Z. Peng, J. Liu, Q. Tian, Y. Yang, Q. Xu, Z. Liu, B. Liu, Appl. Catal. B Environ. 284 (2021) 119733.
DOI URL |
[17] |
C. Bie, B. Zhu, F. Xu, L. Zhang, J. Yu, Adv. Mater. 31 (2019) 1902868.
DOI URL |
[18] |
J. Li, W. Pan, Q. Liu, Z. Chen, Z. Chen, X. Feng, H. Chen, J. Am. Chem. Soc. 143 (2021) 6551-6559.
DOI URL |
[19] |
K. Wang, H. Wang, Q. Cheng, C. Gao, G. Wang, X. Wu, J. Colloid Interface Sci. 607 (2022) 1061-1070.
DOI URL |
[20] |
R. Long, Y. Li, Y. Liu, S. Chen, X. Zheng, C. Gao, C. He, N. Chen, Z. Qi, L. Song, J. Jiang, J. Zhu, Y. Xiong, J. Am. Chem. Soc. 139 (2017) 4486-4492.
DOI PMID |
[21] |
J. Wang, T. Xia, L. Wang, X. Zheng, Z. Qi, C. Gao, J. Zhu, Z. Li, H. Xu, Y. Xiong, Angew. Chem. Int. Ed. 57 (2018) 16447-16451.
DOI PMID |
[22] |
Q. Bi, J. Wang, J. Lv, J. Wang, W. Zhang, T. Lu, ACS Catal. 8 (2018) 11815-11821.
DOI URL |
[23] |
A. Li, T. Wang, C. Li, Z. Huang, Z. Luo, J. Gong, Angew. Chem. Int. Ed. 58 (2019) 3804-3808.
DOI PMID |
[24] |
W. Yu, D. Xu, T. Peng, J. Mater. Chem. A 3 (2015) 19936-19947.
DOI URL |
[25] |
K. Wang, X. Feng, Y. Shangguan, X. Wu, H. Chen, Chin. J. Catal. 43 (2022) 246-254.
DOI URL |
[26] |
Y. Huang, K. Wang, T. Guo, J. Li, X. Wu, G. Zhang, Appl. Catal. B Environ. 277 (2020) 119232.
DOI URL |
[27] |
J. Liu, X. Zhang, Q. Zhong, J. Li, H. Wu, B. Zhang, L. Jin, H. Tao, B. Liu, J. Mater. Chem. A 8 (2020) 4083-4090.
DOI URL |
[28] |
R. He, Z. Lou, J. Gui, B. Tang, D. Xu, Appl. Surf. Sci. 504 (2020) 144370.
DOI URL |
[29] |
S. Wang, X. Ding, N. Yang, G. Zhan, X. Zhang, G. Dong, L. Zhang, H. Chen, Appl. Catal. B Environ. 265 (2020) 118585.
DOI URL |
[30] | R. He, R. Chen, J. Luo, S. Zhang, D. Xu, Acta Phys. Chim. Sin. 37 (2021) 2011022. |
[31] | M. Chang, W. Cui, J. Liu, K. Wang, H. Du, L. Qiu, S. Fan, Z. Luo, J. Mater, Sci. Technol. 36 (2020) 97-105. |
[32] |
S. Wang, Z. Xiong, N. Yang, X. Ding, H. Chen, Chin. J. Catal. 41 (2020) 1544-1553.
DOI URL |
[33] | Z. Li, Z. Wu, R. He, L. Wan, S. Zhang, J. Mater, Sci. Technol. 56 (2020) 151-161. |
[34] | Y. Wang, K. Wang, J. Wang, X. Wu, G. Zhang, J. Mater, Sci. Technol. 56 (2020) 236-243. |
[35] |
S. Ding, X. Xiong, X. Liu, Y. Shi, Q. Jiang, J. Hu, Catal. Sci. Technol. 7 (2017) 3791-3801.
DOI URL |
[36] |
X. Li, W. Zhang, J. Li, G. Jiang, Y. Zhou, S. Lee, F. Dong, Appl. Catal. B Environ. 241 (2019) 187-195.
DOI URL |
[37] |
H. Lu, Q. Hao, T. Chen, L. Zhang, D. Chen, C. Ma, W. Yao, Y. Zhu, Appl. Catal. B Environ. 237 (2018) 59-67.
DOI URL |
[38] |
L. Zhang, W. Wang, S. Sun, J. Xu, M. Shang, J. Ren, Appl. Catal. B Environ. 100 (2010) 97-101.
DOI URL |
[39] |
C. Bie, H. Yu, B. Cheng, W. Ho, J. Fan, J. Yu, Adv. Mater. 33 (2021) 2003521.
DOI URL |
[40] |
X. Li, J. Yu, M. Jaroniec, X. Chen, Chem. Rev. 119 (2019) 3962-4179.
DOI URL |
[41] |
F. Xu, K. Meng, B. Zhu, H. Liu, J. Xu, J. Yu, Adv. Funct. Mater. 29 (2019) 1904256.
DOI URL |
[42] |
K. Iizuka, T. Wato, Y. Miseki, K. Saito, A. Kudo, J. Am. Chem. Soc. 133 (2011) 20863-20868.
DOI URL |
[43] |
C. Bie, B. Cheng, J. Fan, W. Ho, J. Yu, EnergyChem 3 (2021) 100051.
DOI URL |
[44] | L. Zhao, Z. Wang, Y. Li, S. Wang, L. Wang, Z. Qi, Q. Ge, X. Liu, J. Zhang, J. Mater, Sci. Technol. 78 (2021) 30-37. |
[45] | P. Kuang, J. Low, B. Cheng, J. Yu, J. Fan, J. Mater, Sci. Technol. 56 (2020) 18-44. |
[46] |
X. Wang, X. Shen, Y. Gao, Z. Wang, R. Yu, L. Chen, J. Am. Chem. Soc. 137 (2015) 2715-2721.
DOI URL |
[47] |
R. Li, L. Zhang, L. Shi, P. Wang, ACS Nano 11 (2017) 3752-3759.
DOI URL |
[48] |
J. Low, L. Zhang, T. Tong, B. Shen, J. Yu, J. Catal. 361 (2018) 255-266.
DOI URL |
[49] |
J. Ran, G. Gao, F. Li, T. Ma, A. Du, S. Qiao, Nat. Commun. 8 (2017) 13907.
DOI URL |
[50] |
Y. Li, Z. Yin, G. Ji, Z. Liang, Y. Xue, Y. Guo, J. Tian, X. Wang, H. Cui, Appl. Catal. B Environ. 246 (2019) 12-20.
DOI URL |
[51] |
Q. Song, B. Shen, J. Yu, S. Cao, ChemNanoMat 7 (2021) 910-915.
DOI URL |
[52] |
Y. Sun, D. Jin, Y. Sun, X. Meng, Y. Gao, Y. Agnese, G. Chen, X. Wang, J. Mater. Chem. A 6 (2018) 9124-9131.
DOI URL |
[53] |
S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, Adv. Funct. Mater. 28 (2018) 1800136.
DOI URL |
[54] |
J. Di, C. Zhu, M. Ji, M. Duan, R. Long, C. Yan, K. Gu, J. Xiong, Y. She, J. Xia, H. Li, Z. Liu, Angew. Chem. Int. Ed. 57 (2018) 14847-14851.
DOI URL |
[55] |
J. Wu, X. Li, W. Shi, P. Ling, Y. Sun, X. Jiao, S. Gao, L. Liang, J. Xu, W. Yan, C. Wang, Y. Xie, Angew. Chem. 130 (2018) 8855-8859.
DOI URL |
[56] | Y. Xia, Z. Tian, T. Heil, A. Meng, B. Cheng, S. Cao, J. Yu, M. Antonietti, Joule 3 (2019) 10-14. |
[57] |
J. Bian, J. Feng, Z. Zhang, Z. Li, Y. Zhang, Y. Liu, S. Ali, Y. Qu, L. Bai, J. Xie, D. Tang, X. Li, F. Bai, J. Tang, L. Jing, Angew. Chem. Int. Ed. 58 (2019) 10873-10878.
DOI PMID |
[58] |
X. Jiao, X. Li, X. Jin, Y. Sun, J. Xu, L. Liang, H. Ju, J. Zhu, Y. Pan, W. Yan, Y. Lin, Y. Xie, J. Am. Chem. Soc. 139 (2017) 18044-18051.
DOI URL |
[59] |
M. Ou, W. Tu, S. Yin, W. Xing, S. Wu, H. Wang, S. Wan, Q. Zhong, R. Xu, Angew. Chem. Int. Ed. 57 (2018) 13570-13574.
DOI URL |
[60] |
L. Liang, X. Li, J. Zhang, P. Ling, Y. Sun, C. Wang, Q. Zhang, Y. Pan, Q. Xu, J. Zhu, Y. Luo, Y. Xie, Nano Energy 69 (2020) 104421.
DOI URL |
[61] |
L. Liang, X. Li, Y. Sun, Y. Tan, X. Jiao, H. Ju, Z. Qi, J. Zhu, Y. Xie, Joule 2 (2018) 1004-1016.
DOI URL |
[62] |
P. Yang, H. Zhuzhang, R. Wang, W. Lin, X. Wang, Angew. Chem. Int. Ed. 58 (2019) 1134-1137.
DOI URL |
[63] |
L. Jiang, K. Wang, X. Wu, G. Zhang, Sol. RRL 5 (2020) 2000326.
DOI URL |
[64] |
Z. Wang, L. Jiang, K. Wang, Y. Li, G. Zhang, J. Hazard. Mater. 410 (2021) 124948.
DOI URL |
[65] |
K. Wang, L. Jiang, X. Wu, G. Zhang, J. Mater. Chem. A 8 (2020) 13241-13247.
DOI URL |
[66] |
K. Wang, L. Jiang, T. Xin, Y. Li, X. Wu, G. Zhang, Chem. Eng. J. 429 (2022) 132229.
DOI URL |
[1] | Yuanyuan Zhang, Li Guo, Yingxian Wang, Tianyu Wang, Taoxia Ma, Zhuangzhuang Zhang, Danjun Wang, Bin Xu, Feng Fu. In-situ anion exchange based Bi2S3/OV-Bi2MoO6 heterostructure for efficient ammonia production: A synchronized approach to strengthen NRR and OER reactions [J]. J. Mater. Sci. Technol., 2022, 110(0): 152-160. |
[2] | Libo Wang, Xingang Fei, Liuyang Zhang, Jiaguo Yu, Bei Cheng, Yuhua Ma. Solar fuel generation over nature-inspired recyclable TiO2/g-C3N4 S-scheme hierarchical thin-film photocatalyst [J]. J. Mater. Sci. Technol., 2022, 112(0): 1-10. |
[3] | Chunmei Li, Jinyong Wang, Dongyang Li, Nasir Ilyas, Zhiqiang Yang, Kexin Chen, Peng Gu, Xiangdong Jiang, Deen Gu, Fucai Liu, Yadong Jiang, Wei Li. An oxide-based heterojunction optoelectronic synaptic device with wideband and rapid response performance [J]. J. Mater. Sci. Technol., 2022, 123(0): 159-167. |
[4] | Shijie Li, Mingjie Cai, Chunchun Wang, Yanping Liu, Neng Li, Peng Zhang, Xin Li. Rationally designed Ta3N5/BiOCl S-scheme heterojunction with oxygen vacancies for elimination of tetracycline antibiotic and Cr(VI): Performance, toxicity evaluation and mechanism insight [J]. J. Mater. Sci. Technol., 2022, 123(0): 177-190. |
[5] | Ning Li, Jingrui Han, Kaili Yao, Mei Han, Zumin Wang, Yongchang Liu, Lihua Liu, Hongyan Liang. Synergistic phosphorized NiFeCo and MXene interaction inspired the formation of high-valence metal sites for efficient oxygen evolution [J]. J. Mater. Sci. Technol., 2022, 106(0): 90-97. |
[6] | Long Sun, Lingling Li, Jiajie Fan, Quanlong Xu, Dekun Ma. Construction of highly active WO3/TpPa-1-COF S-scheme heterojunction toward photocatalytic H2 generation [J]. J. Mater. Sci. Technol., 2022, 123(0): 41-48. |
[7] | Quanlong Xu, S. Wageh, Ahmed A. Al-Ghamdi, Xin Li. Design principle of S-scheme heterojunction photocatalyst [J]. J. Mater. Sci. Technol., 2022, 124(0): 171-173. |
[8] | Zicong Jiang, Bei Cheng, Yong Zhang, S. Wageh, Ahmed A. Al‐Ghamdi, Jiaguo Yu, Linxi Wang. S-scheme ZnO/WO3 heterojunction photocatalyst for efficient H2O2 production [J]. J. Mater. Sci. Technol., 2022, 124(0): 193-201. |
[9] | Xiang He, Min Wang, Fengren Cao, Wei Tian, Liang Li. Hydrophobic long alkyl chain organic cations induced 2D/3D heterojunction for efficient and stable perovskite solar cells [J]. J. Mater. Sci. Technol., 2022, 124(0): 243-251. |
[10] | Yuzhang Du, Xudong Wang, Xingyi Dai, Wenxuan Lu, Yusheng Tang, Jie Kong. Ultraflexible, highly efficient electromagnetic interference shielding, and self-healable triboelectric nanogenerator based on Ti3C2Tx MXene for self-powered wearable electronics [J]. J. Mater. Sci. Technol., 2022, 100(0): 1-11. |
[11] | Fengyi He, Cheng Tang, Yadong Liu, Haitao Li, Aijun Du, Haijiao Zhang. Carbon-coated MoS2 nanosheets@CNTs-Ti3C2 MXene quaternary composite with the superior rate performance for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2022, 100(0): 101-109. |
[12] | Junxian Bai, Weilin Chen, Rongchen Shen, Zhimin Jiang, Peng Zhang, Wei Liu, Xin Li. Regulating interfacial morphology and charge-carrier utilization of Ti3C2 modified all-sulfide CdS/ZnIn2S4 S-scheme heterojunctions for effective photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 112(0): 85-95. |
[13] | Wanying Lei, Tong Zhou, Xin Pang, Shixiang Xue, Quanlong Xu. Low-dimensional MXenes as noble metal-free co-catalyst for solar-to-fuel production: Progress and prospects [J]. J. Mater. Sci. Technol., 2022, 114(0): 143-164. |
[14] | Jie Wen, Zihao Song, Jiabao Ding, Feihong Wang, Hongpeng Li, Jinyong Xu, Chao Zhang. MXene-derived TiO2 nanosheets decorated with Ag nanoparticles for highly sensitive detection of ammonia at room temperature [J]. J. Mater. Sci. Technol., 2022, 114(0): 233-239. |
[15] | Xuejiao Zhou, Junwu Wen, Zhenni Wang, Xiaohua Ma, Hongjing Wu. Broadband high-performance microwave absorption of the single-layer Ti3C2Tx Mxene [J]. J. Mater. Sci. Technol., 2022, 115(0): 148-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||