J. Mater. Sci. Technol. ›› 2022, Vol. 124: 209-216.DOI: 10.1016/j.jmst.2021.12.071
• Research Article • Previous Articles Next Articles
Tingmin Dia, Quanrong Denga, Geming Wanga, Shenggao Wanga,*(), Linxi Wangb,*(
), Yuhua Mac,*(
)
Received:
2021-10-19
Revised:
2021-12-17
Accepted:
2021-12-23
Published:
2022-10-10
Online:
2022-03-21
Contact:
Shenggao Wang,Linxi Wang,Yuhua Ma
About author:
15199141253@163.com (Y. Ma).Tingmin Di, Quanrong Deng, Geming Wang, Shenggao Wang, Linxi Wang, Yuhua Ma. Photodeposition of CoOx and MoS2 on CdS as dual cocatalysts for photocatalytic H2 production[J]. J. Mater. Sci. Technol., 2022, 124: 209-216.
Sample | Pore volume (cm3 g-1) | Average pore size (nm) | SBET (m2 g-1) | ICP-OES (wt.%) | |
---|---|---|---|---|---|
Co | Mo | ||||
C | 0.11 | 15 | 28 | ||
CC | 0.11 | 17 | 25 | 0.50 | |
CM | 0.11 | 13 | 32 | 0.35 | |
CCM | 0.10 | 14 | 28 | 0.14 | 0.59 |
Table 1. Pore volume, pore diameter, SBET, and the corresponding ICP-OES results of the prepared samples.
Sample | Pore volume (cm3 g-1) | Average pore size (nm) | SBET (m2 g-1) | ICP-OES (wt.%) | |
---|---|---|---|---|---|
Co | Mo | ||||
C | 0.11 | 15 | 28 | ||
CC | 0.11 | 17 | 25 | 0.50 | |
CM | 0.11 | 13 | 32 | 0.35 | |
CCM | 0.10 | 14 | 28 | 0.14 | 0.59 |
Fig. 8. The H2 evolution rates over (a) CdS and CdS-CoOx composites with different amounts of CoOx, (b) CdS-CoOx-MoS2 with different amounts of MoS2, (c) comparison of H2 generation rate of samples CdS, CdS-CoOx, CdS-MoS2, and CdS-CoOx-MoS2; and (d) time courses of photocatalytic H2 production over sample CC8M1.
Fig. 9. (a) Proposed photocatalytic H2 production mechanism over CdS-CoOx-MoS2 nanocomposites, (b) charge transfer schematic at the interface of CdS and CoOx.
Sample | τ1 (ns) | A1 (%) | τ2 (ns) | A2 (%) | τ (ns) |
---|---|---|---|---|---|
C | 0.49 | 61.17 | 4.79 | 38.83 | 4.19 |
CC | 1.27 | 54.99 | 6.62 | 45.01 | 4.79 |
CM | 0.91 | 48.82 | 5.41 | 51.18 | 5.60 |
CCM | 1.73 | 50.10 | 8.45 | 49.90 | 7.30 |
Table 2. Fitted parameters of the TRPL decay profiles in Fig. 10.
Sample | τ1 (ns) | A1 (%) | τ2 (ns) | A2 (%) | τ (ns) |
---|---|---|---|---|---|
C | 0.49 | 61.17 | 4.79 | 38.83 | 4.19 |
CC | 1.27 | 54.99 | 6.62 | 45.01 | 4.79 |
CM | 0.91 | 48.82 | 5.41 | 51.18 | 5.60 |
CCM | 1.73 | 50.10 | 8.45 | 49.90 | 7.30 |
[1] |
J. Liu, H. Wu, F. Li, X. Feng, P. Zhang, L. Gao, Adv. Sustain. Syst. 4 (2020) 2000151.
DOI URL |
[2] |
Q. Su, Y. Li, R. Hu, F. Song, S. Liu, C. Guo, S. Zhu, W. Liu, J. Pan, Adv. Sustain. Syst. 4 (2020) 2000130.
DOI URL |
[3] |
X. Zhou, Y. Fang, X. Cai, S. Zhang, S. Yang, H. Wang, X. Zhong, Y. Fang, ACS Appl. Mater. Interfaces 12 (2020) 20579-20588.
DOI URL |
[4] |
Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 48 (2019) 2109-2125.
DOI URL |
[5] |
P.Y. Kuang, J.X. Low, B. Cheng, J.G. Yu, J.J. Fan, J. Mater. Sci. Technol. 56 (2020) 18-44.
DOI URL |
[6] |
X. Yi, H. Li, P. Wang, J. Fan, H. Yu, Appl. Surf. Sci. 512 (2020) 144786.
DOI URL |
[7] |
L. Ma, Y.L. Chen, D.J. Yang, H.X. Li, S.J. Ding, L. Xiong, P.L. Qin, X.B. Chen, Nanoscale 12 (2020) 4383-4392.
DOI URL |
[8] |
W. Yu, S. Zhang, J. Chen, P. Xia, M.H. Richter, L. Chen, W. Xu, J. Jin, S. Chen, T. Peng, J. Mater. Chem. A 6 (2018) 15668-15674.
DOI URL |
[9] |
R. Gao, B. Cheng, J. Fan, J. Yu, W. Ho, Chin. J. Catal. 42 (2021) 15-24.
DOI URL |
[10] |
J. Wei, Y. Chen, H. Zhang, Z. Zhuang, Y. Yu, Chin. J. Catal. 42 (2021) 78-86.
DOI URL |
[11] |
Y.J. Yuan, D. Chen, Z.T. Yu, Z.G. Zou, J. Mater. Chem. A 6 (2018) 11606-11630.
DOI URL |
[12] |
L. Cheng, Q. Xiang, Y. Liao, H. Zhang, Energy Environ. Sci. 11 (2018) 1362-1391.
DOI URL |
[13] |
X. Chen, T. Hu, J. Zhang, C. Yang, K. Dai, C. Pan, J. Alloy. Compd. 863 (2021) 158068.
DOI URL |
[14] |
X. Ning, G. Lu, Nanoscale 12 (2020) 1213-1223.
DOI URL |
[15] |
X. Liu, M. Sayed, C. Bie, B. Cheng, B. Hu, J. Yu, L. Zhang, J. Materiomics 7 (2021) 419-439.
DOI URL |
[16] |
C. Cheng, B. He, J. Fan, B. Cheng, S. Cao, J. Yu, Adv. Mater. 33 (2021) 2100317.
DOI URL |
[17] |
R. Shen, Y. Ding, S. Li, P. Zhang, Q. Xiang, Y.H. Ng, X. Li, Chin. J. Catal. 42 (2021) 25-36.
DOI URL |
[18] |
K. Li, S. Zhang, Y. Li, J. Fan, K. Lv, Chin. J. Catal. 42 (2021) 3-14.
DOI URL |
[19] |
N. Xiao, S. Li, X. Li, L. Ge, Y. Gao, N. Li, Chin. J. Catal. 41 (2020) 642-671.
DOI URL |
[20] |
S. Tang, Y. Xia, J. Fan, B. Cheng, J. Yu, W. Ho, Chin. J. Catal. 42 (2021) 743-752.
DOI URL |
[21] |
R. Shen, J. Xie, Q. Xiang, X. Chen, J. Jiang, X. Li, Chin. J. Catal. 40 (2019) 240-288.
DOI URL |
[22] |
T. Di, L. Zhang, B. Cheng, J. Yu, J. Fan, J. Mater. Sci. Technol. 56 (2020) 170-178.
DOI URL |
[23] |
S. Hong, D.P. Kumar, E.H. Kim, H. Park, M. Gopannagari, D.A. Reddy, T.K. Kim, J. Mater. Chem. A 5 (2017) 20851-20859.
DOI URL |
[24] |
K. Khan, X. Tao, Y. Zhao, B. Zeng, M. Shi, N. Ta, J. Li, X. Jin, R. Li, C. Li, J. Mater. Chem. A 7 (2019) 15607-15614.
DOI URL |
[25] |
A. Meng, J. Zhang, D. Xu, B. Cheng, J. Yu, Appl. Catal. B 198 (2016) 286-294.
DOI URL |
[26] | A. Meng, L. Zhang, B. Cheng, J. Yu, Adv. Mater. 31 (2019) 1807660. |
[27] |
X. Chen, X. Ke, J. Zhang, C. Yang, K. Dai, C. Liang, Ceram. Int. 47 (2021) 13488-13499.
DOI URL |
[28] |
D. Wang, T. Hisatomi, T. Takata, C. Pan, M. Katayama, J. Kubota, K. Domen, Angew. Chem., Int. Ed. 52 (2013) 11252-11256.
DOI URL |
[29] |
L. Mu, Q. Zhang, X. Tao, Y. Zhao, S. Wang, J. Cui, F. Fan, C. Li, Chin. J. Catal. 39 (2018) 1730-1735.
DOI URL |
[30] |
B. Han, Y.H. Hu, Energy Sci. Eng. 4 (2016) 285-304.
DOI URL |
[31] |
Z. Liang, R. Shen, Y.H. Ng, P. Zhang, Q. Xiang, X. Li, J. Mater. Sci. Technol. 56 (2020) 89-121.
DOI URL |
[32] |
Z.W. Zhang, Q.H. Li, X.Q. Qiao, D. Hou, D.S. Li, Chin. J. Catal. 40 (2019) 371-379.
DOI URL |
[33] |
H. Wang, S.B. Naghadeh, C. Li, L. Ying, A.L. Allen, J.Z. Zhang, Sci. China Mater. 61 (2018) 839-850.
DOI URL |
[34] |
Y. Liu, H. Niu, W. Gu, X. Cai, B. Mao, D. Li, W. Shi, Chem. Eng. J. 339 (2018) 117-124.
DOI URL |
[35] |
B. Chai, M. Xu, J. Yan, Z. Ren, Appl. Surf. Sci. 430 (2018) 523-530.
DOI URL |
[36] |
M.H. Xiong, J.T. Yan, B. Chai, G.Z. Fan, G.S. Song, J. Mater. Sci. Technol. 56 (2020) 179-188.
DOI URL |
[37] |
X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, J. Am. Chem. Soc. 130 (2008) 7176-7177.
DOI PMID |
[38] |
L. Yin, X. Hai, K. Chang, F. Ichihara, J. Ye, Small 14 (2018) 1704153.
DOI URL |
[39] |
A. Petala, A. Noe, Z. Frontistis, C. Drivas, S. Kennou, D. Mantzavinos, D.I. Kondarides, J. Hazard. Mater. 372 (2019) 52-60.
DOI URL |
[40] |
S. Li, L. Hou, L. Zhang, L. Chen, Y. Lin, D. Wang, T. Xie, J. Mater. Chem. A 3 (2015) 17820-17826.
DOI URL |
[41] |
S. Fang, S. Li, L. Ge, C. Han, P. Qiu, Y. Gao, Dalton Trans. 46 (2017) 10578-10585.
DOI URL |
[42] |
L. Li, X. She, J. Yi, L. Pan, K. Xia, W. Wei, X. Zhu, Z. Chen, H. Xu, H. Li, Appl. Surf. Sci. 469 (2019) 933-940.
DOI |
[43] |
Y. Liang, Y. Chen, M. Zhao, L. Lin, R. Duan, Y. Jiang, J. Yan, Y. Wang, J. Zeng, Y. Zhang, Catal. Sci. Technol. 9 (2019) 6899-6908.
DOI |
[44] | Y.F. Wang, M.C. Hsieh, J.F. Lee, C.M. Yang, Appl. Catal. B 142 (2013) 626-632. |
[45] |
J. Zhang, Z. Yu, Z. Gao, H. Ge, S. Zhao, C. Chen, S. Chen, X. Tong, M. Wang, Z. Zheng, Y. Qin, Angew. Chem. Int. Ed. 56 (2017) 816-820.
DOI URL |
[46] |
H. Yang, Z. Jin, G. Wang, D. Liu, K. Fan, Dalton Trans. 47 (2018) 6973-6985.
DOI PMID |
[47] |
K. Wenderich, G. Mul, Chem. Rev. 116 (2016) 14587-14619.
PMID |
[48] |
T. Di, B. Zhu, J. Zhang, B. Cheng, J. Yu, Appl. Surf. Sci. 389 (2016) 775-782.
DOI URL |
[49] |
Y. Liu, S. Ding, Y. Shi, X. Liu, Z. Wu, Q. Jiang, T. Zhou, N. Liu, J. Hu, Appl. Catal. B 234 (2018) 109-116.
DOI URL |
[50] |
L. Zhao, J. Jia, Z. Yang, J. Yu, A. Wang, Y. Sang, W. Zhou, H. Liu, Appl. Catal. B 210 (2017) 290-296.
DOI URL |
[51] |
M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rou-querol, K.S.W. Sing, Pure Appl. Chem. 87 (2015) 1051-1069.
DOI URL |
[52] |
K.A. Cychosz, R. Guillet-Nicolas, J. Garcia-Martinez, M. Thommes, Chem. Soc. Rev. 46 (2017) 389-414.
DOI PMID |
[53] |
P. Kuang, Y. Wang, B. Zhu, F. Xia, C.W. Tung, J. Wu, H.M. Chen, J. Yu, Adv. Mater. 33 (2021) 2008599.
DOI URL |
[54] |
J. Peng, J. Shen, X. Yu, H. Tang, Q. Zulfiqar, Chin. Liu, J. Catal. 42 (2021) 87-96.
DOI URL |
[55] |
W. Zhao, J. Liu, Z. Ding, J. Zhang, X. Wang, J. Alloy. Compd. 813 (2020) 152234.
DOI URL |
[56] |
Z. Wang, Y. Chen, L. Zhang, B. Cheng, J. Yu, J. Fan, J. Mater. Sci. Technol. 56 (2020) 143-150.
DOI URL |
[57] |
X. Xiang, B. Zhu, B. Cheng, J. Yu, H. Lv, Small 16 (2020) 2001024.
DOI URL |
[58] |
X. Fu, L. Zhang, L. Liu, H. Li, S. Meng, X. Ye, S. Chen, J. Mater. Chem. A 5 (2017) 15287-15293.
DOI URL |
[59] |
S. Wan, M. Ou, Q. Zhong, S. Zhang, F. Song, Chem. Eng. J. 325 (2017) 690-699.
DOI URL |
[60] |
J. Choi, D.A. Reddy, N.S. Han, S. Jeong, S. Hong, D.P. Kumar, J.K. Song, T.K. Kim, Catal. Sci. Technol. 7 (2017) 641-649.
DOI URL |
[61] |
W. Sun, X. Meng, C. Xu, J. Yang, X. Liang, Y. Dong, C. Dong, Y. Ding, Chin. J. Catal. 41 (2020) 1826-1836.
DOI URL |
[62] |
H. Zhao, Y. Dong, P. Jiang, H. Miao, G. Wang, J. Zhang, J. Mater. Chem. A 3 (2015) 7375-7381.
DOI URL |
[63] |
T. Di, B. Cheng, W. Ho, J. Yu, H. Tang, Appl. Surf. Sci. 470 (2019) 196-204.
DOI URL |
[64] |
B. He, C. Bie, X. Fei, B. Cheng, J. Yu, W. Ho, A.A. Al-Ghamdi, S. Wageh, Appl. Catal. B 288 (2021) 119994.
DOI URL |
[65] |
Z. Zhang, K. Liu, Z. Feng, Y. Bao, B. Dong, Sci. Rep. 6 (2016) 19221.
DOI URL |
[66] |
D. Lang, F. Cheng, Q. Xiang, Catal. Sci. Technol. 6 (2016) 6207-6216.
DOI URL |
[67] | Z. Jiang, Q. Chen, Q. Zheng, R. Shen, P. Zhang, X. Li, Acta Phys. Chim. Sin. 37 (2021) 2010059. |
[68] | Y. Liu, X. Hao, H. Hu, Z. Jin, Acta Phys. Chim. Sin. 37 (2021) 2008030. |
[69] |
W. Xue, W. Chang, X. Hu, J. Fan, E. Liu, Chin. J. Catal. 42 (2021) 152-163.
DOI URL |
[70] | Z. Mei, G. Wang, S. Yan, J. Wang, Acta Phys. Chim. Sin. 37 (2021) 2009097. |
[71] |
A. Meng, L. Zhang, B. Cheng, J. Yu, ACS Appl. Mater. Interfaces 11 (2018) 5581-5589.
DOI URL |
[1] | Jianqi Huang, Zhiyong Liu, Teng Yang, Zhidong Zhang. New selection rule of resonant Raman scattering in MoS2 monolayer under circular polarization [J]. J. Mater. Sci. Technol., 2022, 102(0): 132-136. |
[2] | Lei Cheng, Baihai Li, Hui Yin, Jiajie Fan, Quanjun Xiang. Cu clusters immobilized on Cd-defective cadmium sulfide nano-rods towards photocatalytic CO2 reduction [J]. J. Mater. Sci. Technol., 2022, 118(0): 54-63. |
[3] | Jingyi Ma, Xinyu Chen, Yaochen Sheng, Ling Tong, Xiaojiao Guo, Minxing Zhang, Chen Luo, Lingyi Zong, Yin Xia, Chuming Sheng, Yin Wang, Saifei Gou, Xinyu Wang, Xing Wu, Peng Zhou, David Wei Zhang, Chenjian Wu, Wenzhong Bao. Top gate engineering of field-effect transistors based on wafer-scale two-dimensional semiconductors [J]. J. Mater. Sci. Technol., 2022, 106(0): 243-248. |
[4] | Xudong He, Qinqin Liu, Difa Xu, Lele Wang, Hua Tang. Plasmonic TiN nanobelts assisted broad spectrum photocatalytic H2 generation [J]. J. Mater. Sci. Technol., 2022, 116(0): 1-10. |
[5] | Meng Cai, Peng Feng, Han Yan, Yuting Li, Shijie Song, Wen Li, Hao Li, Xiaoqiang Fan, Minhao Zhu. Hierarchical Ti3C2Tx@MoS2 heterostructures: A first principles calculation and application in corrosion/wear protection [J]. J. Mater. Sci. Technol., 2022, 116(0): 151-160. |
[6] | Weijie Zhang, Xizhong Zhou, Jinzhao Huang, Shouwei Zhang, Xijin Xu. Noble metal-free core-shell CdS/iron phthalocyanine Z-scheme photocatalyst for enhancing photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2022, 115(0): 199-207. |
[7] | Guojing Wang, Zhiwei Tang, Jing Wang, Shasha Lv, Yunjie Xiang, Feng Li, Chong Liu. Energy band engineering of Bi2O2.33-CdS direct Z-scheme heterojunction for enhanced photocatalytic reduction of CO2 [J]. J. Mater. Sci. Technol., 2022, 111(0): 17-27. |
[8] | Xuewen Wang, Qiuchan Li, Qingzhuo Lin, Rongbin Zhang, Mingyue Ding. CdS-sensitized 3D ordered macroporous g-C3N4 for enhanced visible-light photocatalytic hydrogen generation [J]. J. Mater. Sci. Technol., 2022, 111(0): 204-210. |
[9] | Huaze Zhu, Yongqiang Yang, Yuyang Kang, Ping Niu, Xiangdong Kang, Zhiqing Yang, Hengqiang Ye, Gang Liu. Strong interface contact between NaYF4:Yb,Er and CdS promoting photocatalytic hydrogen evolution of NaYF4:Yb,Er/CdS composites [J]. J. Mater. Sci. Technol., 2022, 102(0): 1-7. |
[10] | Yadong Liu, Cheng Tang, Weiwei Sun, Guanjia Zhu, Aijun Du, Haijiao Zhang. In-situ conversion growth of carbon-coated MoS2/N-doped carbon nanotubes as anodes with superior capacity retention for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2022, 102(0): 8-15. |
[11] | Fengyi He, Cheng Tang, Yadong Liu, Haitao Li, Aijun Du, Haijiao Zhang. Carbon-coated MoS2 nanosheets@CNTs-Ti3C2 MXene quaternary composite with the superior rate performance for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2022, 100(0): 101-109. |
[12] | Yun Tian, Zhengyu Wei, Fan Li, Songjie Li, Lixiang Shao, Mengyuan He, Panfei Sun, Yuanyuan Li. Enhanced multiple anchoring and catalytic conversion of polysulfides by SnO2-decorated MoS2 hollow microspheres for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 100(0): 216-223. |
[13] | Ting He, Jiajia Ru, Yutong Feng, Dapeng Bi, Jiansheng Zhang, Feng Gu, Chi Zhang, Jinhu Yang. Templated spherical coassembly strategy to fabricate MoS2/C hollow spheres with physical/chemical polysulfides trapping for lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 98(0): 136-142. |
[14] | Han Li, Hui Li, Ziqiang Wu, Lili Zhu, Changdian Li, Shuai Lin, Xuebin Zhu, Yuping Sun. Realization of high-purity 1T-MoS2 by hydrothermal synthesis through synergistic effect of nitric acid and ethanol for supercapacitors [J]. J. Mater. Sci. Technol., 2022, 123(0): 34-40. |
[15] | Rutuja Mandavkar, Shusen Lin, Rakesh Kulkarni, Sanchaya Pandit, Shalmali Burse, Md Ahasan Habib, Puran Pandey, Sundar Kunwar, Jihoon Lee. Dual-step hybrid SERS scheme through the blending of CV and MoS2 NPs on the AuPt core-shell hybrid NPs [J]. J. Mater. Sci. Technol., 2022, 107(0): 1-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||