J. Mater. Sci. Technol. ›› 2022, Vol. 124: 217-231.DOI: 10.1016/j.jmst.2022.03.005
• Research Article • Previous Articles Next Articles
Yuhe Huanga,b, Junheng Gaoa,c,*(), Vassili Vorontsovd, Dikai Guana, Russell Goodalla, David Dyed, Shuize Wangc, Qiang Zhub, W. Mark Rainfortha, Iain Todda
Received:
2022-01-14
Revised:
2022-02-19
Accepted:
2022-03-01
Published:
2022-10-10
Online:
2022-04-08
Contact:
Junheng Gao
About author:
∗Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China. E-mail address:. junhenggao@ustb.edu.cn (J. Gao)Yuhe Huang, Junheng Gao, Vassili Vorontsov, Dikai Guan, Russell Goodall, David Dye, Shuize Wang, Qiang Zhu, W. Mark Rainforth, Iain Todd. Martensitic twinning transformation mechanism in a metastable IVB element-based body-centered cubic high-entropy alloy with high strength and high work hardening rate[J]. J. Mater. Sci. Technol., 2022, 124: 217-231.
Sample | Space group | Lattice parameter (Å) | Transformation strain on c-axis | ||
---|---|---|---|---|---|
Ta13 | Cmcm | a = 3.193 | b = 5.252 | c = 4.931 | η3=0.014 |
Im-3m | a = 3.442 | ||||
Ta15 | Cmcm | a = 3.217 | b = 5.235 | c = 4.912 | η3=0.007 |
Im-3m | a = 3.451 |
Table 1. Lattice parameters of α" (Cmcm) and β (Im-3 m) phase and α" c-axis transformation strain in 20% strained Ta13 and Ta15.
Sample | Space group | Lattice parameter (Å) | Transformation strain on c-axis | ||
---|---|---|---|---|---|
Ta13 | Cmcm | a = 3.193 | b = 5.252 | c = 4.931 | η3=0.014 |
Im-3m | a = 3.442 | ||||
Ta15 | Cmcm | a = 3.217 | b = 5.235 | c = 4.912 | η3=0.007 |
Im-3m | a = 3.451 |
Fig. 1. Mechanical properties of (TiZrHf)87Ta13 and (TiZrHf)85Ta15. (a) The tensile true and engineering stress-strain curves of Ta13 (red) and Ta15 (blue). Inset shows a comparison of the normalized work hardening rate ((dσT/dεP)/G) as a function of elongation between the present alloys and other high-performance Ti alloys [31, [47], [48], [49], [50]] and TWIP steels [45,46]. (b) work hardening rate curves and (c) work hardening exponent curves of Ta13 (red) and Ta15 (blue) as a function of true strain. Five deformation stages are identified and characterized as stages I-V (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 2. Microstructural evolution of (TiZrHf)87Ta13 and (TiZrHf)85Ta15 with increase of strain. XRD patterns of Ta13 and EBSD phase maps of Ta13 and Ta15 subjected to (a) 0%, (b) 3%, (c) 6% and (d) 9% true strain.
Strain levels (%) | Volume fraction of α" (%) | Average thickness of α" (μm) | ||
---|---|---|---|---|
Ta13 | Ta15 | Ta13 | Ta15 | |
3 | 11.2 | 8.7 | 1.27 | 1.19 |
6 | 31 | 24 | 0.67 | 0.97 |
9 | 43 | 34 | 0.33 | 0.67 |
Table 2. Volume fraction and average thickness of α" measured at different strain levels.
Strain levels (%) | Volume fraction of α" (%) | Average thickness of α" (μm) | ||
---|---|---|---|---|
Ta13 | Ta15 | Ta13 | Ta15 | |
3 | 11.2 | 8.7 | 1.27 | 1.19 |
6 | 31 | 24 | 0.67 | 0.97 |
9 | 43 | 34 | 0.33 | 0.67 |
Fig. 3. OR analysis with misorientation profile of α" martensites acquired from EBSD of different strained Ta13. (a) Euler angle map of α" phase superimposed on image quality (IQ) map of 3% strained Ta13. The insets are α" features used for OR analysis. (b) Stereographic projections of white arrow highlighted martensites (i-ii): top boxed area in (a); (iii-iv): bottom boxed area in (a)). (c) Euler angle map of α" phase superimposed on IQ map of 6% strained Ta13. The inset is α" features used for OR analysis. (d) Stereographic projections of white arrow highlighted martensites from the boxed area in (c). All crystallographic orientation data of highlighted martensites are marked with corresponding Euler angle color, and stereographic projection figures are constructed with directions of three-axis and key poles of interest.
Misorientation angle | Misorientation axis | Twinning system |
---|---|---|
86° | <011> α" | {111}α" type I twinning |
96.4°/70° | <011>α"/<032>α" | < |
47.1° | < | {351}α" type I twinning |
Table 3. Misorientation profile of observed martensitic twins.
Misorientation angle | Misorientation axis | Twinning system |
---|---|---|
86° | <011> α" | {111}α" type I twinning |
96.4°/70° | <011>α"/<032>α" | < |
47.1° | < | {351}α" type I twinning |
Twinning operation | Main lattice correspondence between α" matrix and twinned variant | |||||
---|---|---|---|---|---|---|
α" Matrix | <100> | <001> | < | < | < | <503> |
"{351}"< | <011> | < | < | < | <001> | <315> |
{351}α" type I twinning | < | < | < | < | < | <021> |
Table 4. Lattice correspondence between α" matrix and twinned variant for different crystallographic twinning operations. (The miller indices are rounded into integer for convenience).
Twinning operation | Main lattice correspondence between α" matrix and twinned variant | |||||
---|---|---|---|---|---|---|
α" Matrix | <100> | <001> | < | < | < | <503> |
"{351}"< | <011> | < | < | < | <001> | <315> |
{351}α" type I twinning | < | < | < | < | < | <021> |
Fig. 4. Deformation microstructure of Ta13 at different strains. (a) Martensitic twins at 9% true strain in Ta13 revealed by EBSD. IQ and Euler angle map of α" phase with yellow, blue and red lines representing twinning boundaries of {351}α" type I twinning, {111}α" type I twinning and "{351}"< $\bar{2}11$ >α" type II twinning, respectively. (b) KAM map of the α" phase. (c) Microstructural image of Ti13 at 20% strain (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 5. TEM images of deformation bands in the deformed Ta13 specimen at 6% strain. (a) BFI of the deformation band. (b) SADPs taken from the twinning boundary (marked by red circle in (a)) taken along the [$1\bar{1}2$]α" zone axis. The α" matrix (M) and twinned α" variant (T) diffraction spots are marked with red and green open circles, respectively. (c) DFIs of the twinning, and APB-like stacking faults with g* = 110 in [$\bar{1}10$]α" zone axis.
Fig. 6. TEM images of the re-tilted deformation bands in Fig. 5(a), (a) corresponding SADPs taken along the [100]α"M//[011]α"T zone axis. The α" matrix (M), twinning (T) and secondary twinning (ST) diffraction spots are marked with red, green and orange open circles, respectively. (b, c) DFIs of the primary twinning and secondary twinning. (d) SADPs taken along the [$2\bar{1}1$]α"M//[001]α"T zone axis. The diffraction spots corresponding to α" matrix, α" twinning and parent β grain are marked with red, green and yellow open circles, respectively. (e, f) DFIs of the α" matrix and twinned variant, inset is DFI of the retained parent β grain.
Fig. 7. Atomic-scale characterization of the "{351}"< $\bar{2}11$ >α" type II twinning in deformed Ta13 specimen at 6% strain. (a) HRTEM image of the {351}α" twinning boundary. Inset shows the Fast Fourier transform (FFT) pattern of the twinning interface (red box marked region). (b) Magnified HRTEM image of the twinning boundary (boxed region in a). Insets are Wiener filtered image and schematic atomic configuration of the α" matrix. The atomic columns in the α" matrix and columns shuffled with (001)<010>α" displacement are highlighted by blue and orange dots, respectively (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 8. TEM images of complex deformation bands in 9% strained Ta13. (a) BFI of the complex deformation bands. (b) and (c) are SADPs taken next to the twinning boundary (red circled area in (a)), along the [$\bar{1}01$]α"V1//[$\bar{1}10$]α"V2//[$\bar{1}21$]α"V3&V4 and [$\bar{2}11$]α"V1–3//[001]α"V4 zone axes, respectively. DPs of V1-V4 are highlighted with blue, green, red and orange open circles, respectively. (d–f) DFIs correspond to V1-V4 α" variants, respectively (taken from the spots of V1-V4 in (b)) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 9. Crystallographic orientations of the α" phase represented as stereographic projections used to determine the ORs between α" matrix and twinned variants. (a) FFT and simulated SADPs of the yellow dash boxed area in Fig. 8(a) imaged along the [$\bar{1}01$]α"V1//[$\bar{1}10$]α"V2//[$\bar{1}12$]α"V3 zone axis. (b–d) Simulated DPs of [$\bar{1}01$]α"V1, [$\bar{1}10$]α"V2 and [$\bar{1}12$]α"V3. (e-g) Stereographic projection figures of V1-V3 are constructed respectively from the orientation data acquired from FFT in (a).
Fig. 10. Microstructural evolution of SA "{351}"< $\bar{2}11$ >α" type II twinning to mechanical {351}α" type I twinning in 9% strained Ta13. (a) HRTEM image of the yellow boxed area in Fig. 8(a). Insets are FFTs of red boxed regions. (b) HRTEM image of the same area in (a), acquired from [$\bar{2}11$]α"V1&V3 direction. Insets are FFTs of red boxed regions. (c) Schematic illustration of atomic movements associated with the twinning evolution. Blue and orange dots indicate atoms at the α" matrix and shuffled with (001)< 010>α" (lattice corresponds to { $1\bar{1}0$ }<110>β) displacement, respectively. Images from i-iii (left to right) are projections of "{351}"< $\bar{2}11$ >α" type II twinning along [$1\bar{1}2$]α" and [$\bar{2}11$]α" directions, {351}α" type I twinning along [$\bar{2}11$]α" direction, respectively (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Empty Cell | η1 | SF |
---|---|---|
(351) | [ | 0.3006 |
( | [ | 0.1974 |
( | [ | 0.0033 |
( | [ | -0.1991 |
(351) | [ | 0.4393 |
( | [ | 0.1207 |
( | [ | -0.0073 |
( | [ | -0.4925 |
Table 5. Schmid factor values of each twinning modes for "{351}"< $\bar{2}11$ >α" type II and {351}α" type I twinning systems (the values of activated modes are in bold).
Empty Cell | η1 | SF |
---|---|---|
(351) | [ | 0.3006 |
( | [ | 0.1974 |
( | [ | 0.0033 |
( | [ | -0.1991 |
(351) | [ | 0.4393 |
( | [ | 0.1207 |
( | [ | -0.0073 |
( | [ | -0.4925 |
Fig. 11. TEM analysis of the microstructure in Ta13 with a strain of 20%. (a) BFI of the intersected deformation bands, (b) corresponding SADPs. DPs of four α" martensite variants are marked by red, blue, green and yellow open circles, respectively. The variants are then divided into M and V groups for the {111}α" and {011}α" twinning related variants, respectively. (c-f) DFIs of the four α" martensite variants. Insets in (c) and (e) are the corresponding SADPs of the twinning for M and V groups, respectively; (g, h) Stereographic projection figures constructed from crystallographic orientation taken from SADPs in (b) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 12. Schematic illustrations of (a) microstructural evolution and deformation mechanisms occurring during deformation and (b) schematic sketches illustrating the nucleation of mechanical {351}α" type I twins within "{351}"< $\bar{2}11$ >α" type II twinned α" variants. (c) The dependence of < $\bar{2}11$ >α" type II twinning mode selection on the c/a and b/a ratios. The critical c/a and b/a ratios for activation of three rational < $\bar{2}11$ >α" type II twinning modes are highlighted. The c/a and b/a ratios of Ta13, Ta15 and Ti-20Nb [87] are calculated and represented by red, blue and green squares, respectively (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Possible twinning modes | K1 | η1 | K2 | η2 | s |
---|---|---|---|---|---|
< | { | < | {111} | < | 0.0801 |
< | { | < | {111} | < | 0.1477 |
< | { | < | {111} | < | 0 |
{351}< | {351} | < | { | <110> | 0.3536 |
{131} type I [ | {131} | < | { | <110> | 0.7071 |
*{351} type I Mode 1 | {351} | < | {001} | <110> | 0.5407 |
Table 6. Possible transformable α" twinning modes with twinning elements and their lattice corresponding mechanical twinning modes. (The miller indices are rounded into integer for convenience).
Possible twinning modes | K1 | η1 | K2 | η2 | s |
---|---|---|---|---|---|
< | { | < | {111} | < | 0.0801 |
< | { | < | {111} | < | 0.1477 |
< | { | < | {111} | < | 0 |
{351}< | {351} | < | { | <110> | 0.3536 |
{131} type I [ | {131} | < | { | <110> | 0.7071 |
*{351} type I Mode 1 | {351} | < | {001} | <110> | 0.5407 |
[1] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
[2] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[3] |
Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kon-tis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.G. Nieh, Z. Lu, Nature 563 (2018) 546-550.
DOI URL |
[4] |
W. Lu, J. Li, J. Mater. Sci. Technol 102 (2022) 80-88.
DOI URL |
[5] |
Z. An, S. Mao, Y. Liu, H. Zhou, Y. Zhai, Z. Tian, C. Liu, Z. Zhang, X. Han, J. Mater. Sci. Technol. 92 (2021) 195-207.
DOI URL |
[6] |
O.N. Senkov, D.B. Miracle, K.J. Chaput, J.P. Couzinie, J. Mater. Res. 33 (2018) 3092-3128.
DOI URL |
[7] | C.C. Juan, M.H. Tsai, C.W. Tsai, C.M. Lin, W.R. Wang, C.C. Yang, S.K. Chen, S.J. Lin, J.W. Yeh, Intermetallics 52 (2015) 76-83. |
[8] |
Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang, X.D. Hui, Mater. Lett. 130 (2014) 277-280.
DOI URL |
[9] |
J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, Y. Liu, J. Alloy. Compd. 760 (2018) 15-30.
DOI URL |
[10] |
M. Wu, S. Wang, F. Xiao, G. Zhu, C. Yang, D. Shu, B. Sun, J. Mater. Sci. Technol 110 (2022) 210-215.
DOI URL |
[11] |
Y. Cao, W. Zhang, B. Liu, Y. Liu, M. Du, A. Fu, J. Mater. Sci. Technol. 66 (2021) 10-20.
DOI URL |
[12] |
T. Xiang, Z. Cai, P. Du, K. Li, Z. Zhang, G. Xie, J. Mater. Sci. Technol. 90 (2021) 150-158.
DOI |
[13] |
C. Lee, G. Song, M.C. Gao, R. Feng, P. Chen, J. Brechtl, Y. Chen, K. An, W. Guo, J.D. Poplawsky, S. Li, A.T. Samaei, W. Chen, A. Hu, H. Choo, P.K. Liaw, Acta Mater. 160 (2018) 158-172.
DOI URL |
[14] |
Z. An, S. Mao, Y. Liu, L. Wang, H. Zhou, B. Gan, Z. Zhang, X. Han, J. Mater. Sci. Technol. 79 (2021) 109-117.
DOI URL |
[15] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
[16] |
F. Maresca, W.A. Curtin, Acta Mater. 182 (2020) 235-249.
DOI URL |
[17] |
O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics 19 (2011) 698-706.
DOI URL |
[18] |
O.N. Senkov, S.V. Senkova, C. Woodward, Acta Mater. 68 (2014) 214-228.
DOI URL |
[19] |
Y. Zou, S. Maiti, W. Steurer, R. Spolenak, Acta Mater. 65 (2014) 85-97.
DOI URL |
[20] |
O.N. Senkov, S. Gorsse, D.B. Miracle, Acta Mater. 175 (2019) 394-405.
DOI |
[21] |
D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, C. Oskay, J.E. Wittig, Acta Mater. 68 (2014) 238-253.
DOI URL |
[22] |
S. Turteltaub, A.S.J. Suiker, J. Mech. Phys. Solids 53 (2005) 1747-1788.
DOI URL |
[23] |
M.M. Wang, C.C. Tasan, D. Ponge, A.C. Dippel, D. Raabe, Acta Mater. 85 (2015) 216-228.
DOI URL |
[24] | J. Tran, Ph.D. Thesis. Northwestern University, 2009. |
[25] |
F. Sun, J.Y. Zhang, M. Marteleur, T. Gloriant, P. Vermaut, D. Laillé, P. Castany, C. Curfs, P.J. Jacques, F. Prima, Acta Mater. 61 (2013) 6406-6417.
DOI URL |
[26] | F. Sun, J.Y. Zhang, C. Brozek, M. Marteleur, M. Veron, E. Rauch, T. Gloriant, P. Vermaut, C. Curfs, P.J. Jacques, F. Prima, 2, 2015, pp. S505-S510. |
[27] |
Q.Y. Sun, S.J. Song, R.H. Zhu, H.C. Gu, J. Mater. Sci 37 (2002) 2543-2547.
DOI URL |
[28] |
M. Marteleur, F. Sun, T. Gloriant, P. Vermaut, P.J. Jacques, F. Prima, Scr. Mater. 66 (2012) 749-752.
DOI URL |
[29] |
X. Ma, F. Li, J. Cao, J. Li, Z. Sun, G. Zhu, S. Zhou, Mater. Sci. Eng. A 710 (2018) 1-9.
DOI URL |
[30] |
H. Huang, Y. Wu, J. He, H. Wang, X. Liu, K. An, W. Wu, Z. Lu, Adv. Mater. 29 (2017) 1701678.
DOI URL |
[31] |
L. Lilensten, J.P. Couzinié, J. Bourgon, L. Perrière, G. Dirras, F. Prima, I. Guillot, Mater. Res. Lett. 5 (2017) 110-116.
DOI URL |
[32] |
L. Wang, C. Fu, Y. Wu, R. Li, Y. Wang, X. Hui, Mater. Sci. Eng. A 763 (2019) 138147.
DOI URL |
[33] |
L. Wang, C. Fu, Y. Wu, R. Li, X. Hui, Y. Wang, Scr. Mater. 162 (2019) 112-117.
DOI URL |
[34] |
L. Wang, T. Cao, X. Liu, B. Wang, K. Jin, Y. Liang, L. Wang, F. Wang, Y. Ren, J. Liang, Y. Xue, Scr. Mater. 189 (2020) 129-134.
DOI URL |
[35] |
A. Ramalohary, P. Castany, P. Laheurte, F. Prima, T. Gloriant, Scr. Mater. 88 (2014) 25-28.
DOI URL |
[36] |
H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, S. Miyazaki, Acta Mater. 54 (2006) 2419-2429.
DOI URL |
[37] |
J.T. Benzing, W.A. Poling, D.T. Pierce, J. Bentley, K.O. Findley, D. Raabe, J.E. Wittig, Mater. Sci. Eng. A 711 (2018) 78-92.
DOI URL |
[38] | Z. Li, C.C. Tasan, H. Springer, B. Gault, D. Raabe, Sci. Rep 7 (2017) 1-7. |
[39] |
W. Lu, C.H. Liebscher, G. Dehm, D. Raabe, Z. Li, Adv. Mater. 30 (2018) 1804727.
DOI URL |
[40] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
[41] |
T. Inamura, J.I. Kim, H.Y. Kim, H. Hosoda, K. Wakashima, S. Miyazaki, Philos. Mag. 87 (2007) 3325-3350.
DOI URL |
[42] | T. Inamura, H. Hosoda, H. Kanetaka, H.Y. Kim, S. Miyazaki, Mater. Sci. Forum 654 (2010) 2126-2129. |
[43] |
K. Bhattacharya, Arch. Ration. Mech. Anal. 120 (1992) 201-244.
DOI URL |
[44] |
P. Majumdar, S.B. Singh, M. Chakraborty, Mater. Sci. Eng. A 489 (2008) 419-425.
DOI URL |
[45] |
Y. Ma, W. Song, W. Bleck, Materials 10 (2017) 1129.
DOI URL |
[46] |
O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer, Int. J. Plast. 16 (2000) 1391-1409.
DOI URL |
[47] |
C. Brozek, F. Sun, P. Vermaut, Y. Millet, A. Lenain, D. Embury, P.J. Jacques, F. Prima, Scr. Mater. 114 (2016) 60-64.
DOI URL |
[48] |
X. Ji, S. Emura, X. Min, K. Tsuchiya, Mater. Sci. Eng. A 707 (2017) 701-707.
DOI URL |
[49] |
F. Sun, J.Y. Zhang, M. Marteleur, C. Brozek, E.F. Rauch, M. Veron, P. Vermaut, P.J. Jacques, F. Prima, Scr. Mater. 94 (2015) 17-20.
DOI URL |
[50] |
M. Ahmed, D. Wexler, G. Casillas, O.M. Ivasishin, E.V. Pereloma, Acta Mater. 84 (2015) 124-135.
DOI URL |
[51] |
H. Mecking, U.F. Kocks, Acta Metall. 29 (1981) 1865-1875.
DOI URL |
[52] |
O. Bouaziz, D. Barbier, J.D. Embury, G. Badinier, Philos. Mag. 93 (2013) 247-255.
DOI URL |
[53] |
Y. Yang, P. Castany, Y.L. Hao, T. Gloriant, Acta Mater. 194 (2020) 27-39.
DOI URL |
[54] |
T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, C.T. Liu, Science 362 (2018) 933-937.
DOI PMID |
[55] |
X. Zhang, W. Wang, J. Sun, Mater. Charact. 145 (2018) 724-729.
DOI URL |
[56] |
E. Bertrand, P. Castany, Y. Yang, E. Menou, T. Gloriant, Acta Mater. 105 (2016) 94-103.
DOI URL |
[57] |
H. Tobe, H.Y. Kim, T. Inamura, H. Hosoda, S. Miyazaki, Acta Mater. 64 (2014) 345-355.
DOI URL |
[58] |
A.G. Crocker, J. Nucl. Mater. 16 (1965) 306-326.
DOI URL |
[59] |
Y. Zhang, Z. Li, C. Esling, J. Muller, X. Zhao, L. Zuo, J. Appl. Cryst. 43 (2010) 1426-1430.
DOI URL |
[60] |
M. Niewczas, Acta Mater. 58 (2010) 5848-5857.
DOI URL |
[61] | L.N. Brewer, D.P. Field, C.C. Merriman, in: Electron Backscatter Diffraction in Materials Science, Chapter 18: Mapping and Assessing Plastic Deformation Us- ing EBSD, Springer, 2009, pp. 251-262. |
[62] |
H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, J. Mech. Phys. Solids 47 (1999) 1239-1263.
DOI URL |
[63] |
L.P. Kubin, A. Mortensen, Scr. Mater. 48 (2003) 119-125.
DOI URL |
[64] | M.D. Vaudin, Microsc. Microanal. 11 (2005) 510-511. |
[65] |
S. Lee, C. Park, J. Hong, J.T. Yeom, Sci. Rep. 8 (2018) 11914.
DOI URL |
[66] |
T. Inamura, H. Hosoda, H.Y Kim, S. Miyazaki, Philos. Mag. 90 (2010) 3475-3498.
DOI URL |
[67] |
Y. Nii, T.H. Arima, H.Y. Kim, S. Miyazaki, Phys. Rev. B 82 (2010) 219902.
DOI URL |
[68] |
R.W. Cahn, Acta Metall. 1 (1953) 49-52.
DOI URL |
[69] |
X. Ji, I. Gutierrez-Urrutia, S. Emura, T. Liu, T. Hara, X. Min, D. Ping, K. Tsuchiya, Sci. Technol. Adv. Mater. 20 (2019) 401-411.
DOI URL |
[70] | B.A. Bilby, A.G. Crocker, 288, 1965, pp. 240-255. |
[71] |
E. Bertrand, P. Castany, I. Péron, T. Gloriant, Scr. Mater. 64 (2011) 1110-1113.
DOI URL |
[72] | K. Bhattacharya, Microstructure of Martensite:Why It Forms and How It Gives Rise to the Shape-memory Effect, Oxford University Press, 2003. |
[73] |
S. Weinig, E.S. Machlin, JOM 6 (1954) 1280-1281.
DOI URL |
[74] |
A. Rohatgi, K.S. Vecchio, G.T. Gray, Metall. Mater. Trans. A Phys. Metall. Mater. Sci 32 (2001) 135-145.
DOI URL |
[75] | T. Yoneyama, S. Miyazaki, Shape Memory Alloys For Biomedical Applications, Woodhead Publish, 2009. |
[76] |
M.J. Lai, C.C. Tasan, D. Raabe, Acta Mater. 111 (2016) 173-186.
DOI URL |
[77] |
J. Shi, X. Sun, M. Wang, W. Hui, H. Dong, W. Cao, Scr. Mater. 63 (2010) 815-818.
DOI URL |
[78] |
J. Gao, Y. Huang, D. Guan, A.J. Knowles, L. Ma, D. Dye, W.M. Rainforth, Acta Mater. 152 (2018) 301-314.
DOI URL |
[79] |
K. Lu, L. Lu, S. Suresh, Science 324 (2009) 349-352.
DOI PMID |
[80] |
J. Gao, S. Jiang, H. Zhang, Y. Huang, D. Guan, Y. Xu, S. Guan, L.A. Bendersky, A. V. Davydov, Y. Wu, Nature 590 (2021) 262-267.
DOI URL |
[81] |
S. Mahajan, D.F. Williams, Int. Metall. Rev. 18 (1973) 43-61.
DOI URL |
[82] |
M.J. Lai, T. Li, D. Raabe, Acta Mater. 151 (2018) 67-77.
DOI URL |
[83] |
S. Xu, M. Gong, Y. Jiang, C. Schuman, J.S. Lecomte, J. Wang, Acta Mater. 152 (2018) 58-76.
DOI URL |
[84] |
A.G. Crocker, Philos. Mag. 7 (1962) 1901-1924.
DOI URL |
[85] |
Y. Liang, H. Kato, M. Taya, T. Mori, Scr. Mater. 43 (2000) 535-540.
DOI URL |
[86] |
M. Bönisch, M. Calin, L. Giebeler, A. Helth, A. Gebert, W. Skrotzki, J. Eckert, J. Appl. Crystallogr. 47 (2014) 1374-1379.
DOI URL |
[87] |
H. Tobe, H.Y. Kim, T. Inamura, H. Hosoda, T.H. Nam, S. Miyazaki, J. Alloy. Compd. 577 (2013) S435-S438.
DOI URL |
[1] | Zhenzhuang Li, Zongbin Li, Yunzhuo Lu, Xing Lu, Liang Zuo. Enhanced elastocaloric effect and refrigeration properties in a Si-doped Ni-Mn-In shape memory alloy [J]. J. Mater. Sci. Technol., 2022, 117(0): 167-173. |
[2] | Tianbing He, Tiwen Lu, Daniel Şopu, Xiaoliang Han, Haizhou Lu, Kornelius Nielsch, Jürgen Eckert, Nevaf Ciftci, Volker Uhlenwinkel, Konrad Kosiba, Sergio Scudino. Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy [J]. J. Mater. Sci. Technol., 2022, 114(0): 42-54. |
[3] | Na Yan, Delu Geng, Bingbo Wei. Damping performance and martensitic transformation of rapidly solidified Fe-17%Mn alloy [J]. J. Mater. Sci. Technol., 2022, 117(0): 1-7. |
[4] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Jian Sun, Levente Vitos. Theoretical and experimental study of phase transformation and twinning behavior in metastable high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 99(0): 161-168. |
[5] | Tingting Zhang, Yuanyuan Gong, Bin Wang, Dongyu Cen, Feng Xu. Crystallography of the martensitic transformation between Ni2In-type hexagonal and TiNiSi-type orthorhombic phases [J]. J. Mater. Sci. Technol., 2022, 104(0): 59-66. |
[6] | Bashir S. Shariat, Yingchao Li, Hong Yang, Yunzhi Wang, Yinong Liu. On the Lüders band formation and propagation in NiTi shape memory alloys [J]. J. Mater. Sci. Technol., 2022, 116(0): 22-29. |
[7] | Hongcan Chen, Wei Xu, Qun Luo, Qian Li, Yu Zhang, Jingjing Wang, Kuo-Chih Chou. Thermodynamic prediction of martensitic transformation temperature in Fe-C-X (X=Ni, Mn, Si, Cr) systems with dilatational coefficient model [J]. J. Mater. Sci. Technol., 2022, 112(0): 291-300. |
[8] | Kai Liu, Hai Zeng, Ji Qi, Xiaohua Luo, Xuanwei Zhao, Xianming Zheng, Yuan Yuan, Changcai Chen, Shengcan Ma, Ren Xie, Bing Li, Zhenchen Zhong. Microstructure and giant baro-caloric effect induced by low pressure in Heusler Co51Fe1V33Ga15 alloy undergoing martensitic transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 76-82. |
[9] | Yong Hee Jo, Junha Yang, Won-Mi Choi, Kyung-Yeon Doh, Donghwa Lee, Hyoung Seop Kim, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 222-230. |
[10] | Jinliang Wang, Minghao Huang, Jun Hu, Chenchong Wang, Wei Xu. EBSD investigation of the crystallographic features of deformation-induced martensite in stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 148-155. |
[11] | Ziqi Guan, Jing Bai, Jianglong Gu, Xinzeng Liang, Die Liu, Xinjun Jiang, Runkai Huang, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni-Mn-Ti Heusler alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 103-111. |
[12] | Xiaoyang Yi, Kuishan Sun, Jingjing Liu, Xiaohang Zheng, Xianglong Meng, Zhiyong Gao, Wei Cai. Tailoring the microstructure, martensitic transformation and strain recovery characteristics of Ti-Ta shape memory alloys by changing Hf content [J]. J. Mater. Sci. Technol., 2021, 83(0): 123-130. |
[13] | Yong Li, David San Martín, Jinliang Wang, Chenchong Wang, Wei Xu. A review of the thermal stability of metastable austenite in steels: Martensite formation [J]. J. Mater. Sci. Technol., 2021, 91(0): 200-214. |
[14] | Yan Chen, Boyuan Gou, Xiangdong Ding, Jun Sun, Ekhard K.H. Salje. Real-time monitoring dislocations, martensitic transformations and detwinning in stainless steel: Statistical analysis and machine learning [J]. J. Mater. Sci. Technol., 2021, 92(0): 31-39. |
[15] | Xiangguang Kong, Ying Yang, Shiyu Guo, Ran Li, Bo Feng, Daqiang Jiang, Meng Li, Changfeng Chen, Lishan Cui, Shijie Hao. Grain-size gradient NiTi ribbons with multiple-step shape transition prepared by melt-spinning [J]. J. Mater. Sci. Technol., 2021, 71(0): 163-168. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||