J. Mater. Sci. Technol. ›› 2022, Vol. 96: 179-189.DOI: 10.1016/j.jmst.2020.07.050
• Research Article • Previous Articles Next Articles
Yazi Wanga, Shasha Lvb,*(), Zhengcao Lic,*(
)
Received:
2020-05-19
Revised:
2020-06-30
Accepted:
2020-07-05
Published:
2022-01-10
Online:
2022-01-05
Contact:
Shasha Lv,Zhengcao Li
About author:
zcli@tsinghua.edu.cn (Z. Li).Yazi Wang, Shasha Lv, Zhengcao Li. Review on incorporation of alkali elements and their effects in Cu(In,Ga)Se2 solar cells[J]. J. Mater. Sci. Technol., 2022, 96: 179-189.
Institutions | Year | PDT | Voc (mV) | Jsc (mA/cm2) | FF (%) | Eff. (%) | Ref. |
---|---|---|---|---|---|---|---|
EMPA | 2013 | NaF + KF | 736 | 35.1 | 78.9 | 20.4 | [ |
ZSW | 2014 | KF | 757 | 34.8 | 79.1 | 20.8 | [ |
Solar Frontier | 2014 | KF | 686 | 39.9 | 76.4 | 20.9 | [ |
Solibro | 2014 | KF | 757 | 35.7 | 77.6 | 21.0 | [ |
ZSW | 2014 | RbF | 746 | 36.6 | 79.3 | 21.7 | [ |
Solar Frontier | 2015 | KF | 722 | 39.4 | 78.2 | 22.3 | [ |
ZSW | 2016 | RbF | 741 | 37.8 | 80.6 | 22.6 | [ |
Solar Frontier | 2018 | CsF | 746 | 38.5 | 79.7 | 22.9 | [ |
Solar Frontier | 2019 | CsF | 734 | 39.6 | 80.4 | 23.35 | [ |
Table 1 The record efficiency CIGS solar cells treated by alkali-fluoride post-deposition treatment (PDT) and corresponding photovoltaic parameters in recent years.
Institutions | Year | PDT | Voc (mV) | Jsc (mA/cm2) | FF (%) | Eff. (%) | Ref. |
---|---|---|---|---|---|---|---|
EMPA | 2013 | NaF + KF | 736 | 35.1 | 78.9 | 20.4 | [ |
ZSW | 2014 | KF | 757 | 34.8 | 79.1 | 20.8 | [ |
Solar Frontier | 2014 | KF | 686 | 39.9 | 76.4 | 20.9 | [ |
Solibro | 2014 | KF | 757 | 35.7 | 77.6 | 21.0 | [ |
ZSW | 2014 | RbF | 746 | 36.6 | 79.3 | 21.7 | [ |
Solar Frontier | 2015 | KF | 722 | 39.4 | 78.2 | 22.3 | [ |
ZSW | 2016 | RbF | 741 | 37.8 | 80.6 | 22.6 | [ |
Solar Frontier | 2018 | CsF | 746 | 38.5 | 79.7 | 22.9 | [ |
Solar Frontier | 2019 | CsF | 734 | 39.6 | 80.4 | 23.35 | [ |
Fig. 2. The observed changes of CIGS material properties due to Na incorporation: (A) enhanced carrier density (via Na doping or grain boundary passivation), (B) gallium (Ga) segregation, (C) changes in crystallographic orientation. (Reproduced with permission [69]. Copyright 2012, Institute of Electrical and Electronics (IEEE)).
Fig. 3. The modification of CIGS surface induced by KF PDT leads to an improved heterojunction quality between CIGS and CdS in a shorter CdS deposition time, allowing a significant gain in cell efficiency from 18.7 % to 20.4 %. (Reproduced with permission [109]. Copyright 2015, Institute of Electrical and Electronics (IEEE)).
Fig. 4. Schematic of diffusion pathways of Na and Rb by NaF- and RbF-PDT in CIGS absorbers: (a) diffusion of Rb into Na-free CIGS absorber along grain boundaries as well as grain interiors, (b) diffusion of Rb into Na-doped CIGS absorber; here, Rb tends to diffuse into grain boundaries instead of grain interiors compared to (a), (c) diffusion of Na into Rb-free CIGS absorber along grain boundaries as well as grain interiors, and (d) diffusion of Na into Rb-doped CIGS absorber; here, diffusion of Na into grain boundaries is hindered by Rb and therefore Na tends to diffuse into the grain bulk instead of grain boundaries compared to (c). (Reproduced with permission [120]. Copyright 2018, American Institute of Physics (AIP).).
Fig. 5. Schematic diagrams of Cs diffusion pathways and possible mechanisms in CIGS absorbers evaporated on Na-contained SLG substrates under different situations: (a) without CsF-PDT, (b) and (c) with CsF-PDT. (Reproduced with permission [14]. Copyright 2020, Elsevier B.V.).
Fig. 6. Schematic diagram of the ion-exchange mechanism induced by heavier alkali elements and the possible formation of secondary alkali-In-Se2 (AlkInSe2) compounds and charged defects at GBs. (Reproduced with permission [129]. Copyright 2019, Springer Nature).
Fig. 7. Phase diagrams for (a) Cu - In - Se, (b) Li - In - Se, (c) Na - In - Se, (d) K - In - Se, (e) Rb - In - Se, and (f) Cs - In - Se systems. (Reproduced with permission [21]. Copyright 2017, American Chemical Society (ACS)).
[1] |
I. Khatri, T. Lin, T. Nakada, M. Sugiyama, Phys. Status Solidi RRL 13 (2019),1900415.
DOI URL |
[2] |
M. Theelen, F. Daume, Sol. Energy 133 (2016) 586-627.
DOI URL |
[3] |
T.M. Friedlmeier, P. Jackson, A. Bauer, D. Hariskos, O. Kiowski, R. Menner, R. Wuerz, M. Powalla, Thin Solid Films 633 (2017) 13-17.
DOI URL |
[4] |
A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, A.N. Tiwari, Nat. Mater. 12 (2013) 1107.
DOI URL PMID |
[5] | P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, M. Powalla, Phys. StatusSolidi RRL 8 (2014) 219-222. |
[6] | K. Kushiya, Current status and future prospect of Solar Frontier K. K, Int.Workshop CIGS Solar Cell Technology (2014). |
[7] | D. Herrmann, P. Kratzert, S. Weeke, M. Zimmer, J. Djordjevic-Reiss, R. Hunger, P. Lindberg, E. Wallin, O. Lundberg, L. Stolt, IEEE, 2014, pp. 2775-2777. |
[8] |
P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier, M. Powalla, Phys. Status Solidi RRL 9 (2015) 28-31.
DOI URL |
[9] | P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Phys.Status Solidi RRL 10 (2016) 583-586. |
[10] |
K.F. Tai, R. Kamada, T. Yagioka, T. Kato, H. Sugimoto, Jpn. J. Appl. Phys. 56 (2017), 08MC03.
DOI URL |
[11] |
T. Kato, J.L. Wu, Y. Hirai, H. Sugimoto, V. Bermudez, IEEE J. Photovolt. 9 (2018) 325-330.
DOI URL |
[12] | M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, H. Sugimoto, IEEEJ. Photovolt. 9 (2019) 1863-1867. |
[13] | J. Hedstrom, H. Ohlsen, M. Bodegard, A. Kylner, L. Stolt, D. Hariskos, M. Ruckh, H. Schock, IEEE, 1993, pp.364-371. |
[14] |
T. Lin, I. Khatri, J. Matsuura, K. Shudo, W. Huang, M. Sugiyama, C. Lai, T. Nakada, Nano Energy 68 (2019), 104299.
DOI URL |
[15] | I. Khatri, H. Fukai, H. Yamaguchi, M. Sugiyama, T. Nakada, Sol. Energy Mater.Sol. Cells 155 (2016) 280-287. |
[16] |
T. Kodalle, T. Bertram, R. Schlatmann, C.A. Kaufmann, IEEE J. Photovolt. 9 (2019) 1839-1845.
DOI URL |
[17] |
C.P. Muzzillo, H.M. Tong, T.J. Anderson, J. Alloys Compd. 726 (2017) 538-546.
DOI URL |
[18] |
F. Pianezzi, P. Reinhard, A. Chirilă, B. Bissig, S. Nishiwaki, S. Buecheler, A.N. Tiwari, Phys. Chem. Chem. Phys. 16 (2014) 8843-8851.
DOI URL PMID |
[19] | E. Handick, P. Reinhard, J. Alsmeier, L. Köhler, F. Pianezzi, S. Krause, M. Gorgoi, E. Ikenaga, N. Koch, R.G. Wilks, S. Buecheler, A.N. Tiwari, M. Bar, ACSAppl. Mater. Interfaces 7 (2015) 27414-27420. |
[20] |
A. Laemmle, R. Wuerz, M. Powalla, Thin Solid Films 582 (2015) 27-30.
DOI URL |
[21] |
M. Malitckaya, H. Komsa, V. Havu, M.J. Puska, J. Phys. Chem. C 121 (2017)15516-15528.
DOI URL |
[22] |
S. Ishizuka, N. Taguchi, J. Nishinaga, Y. Kamikawa, S. Tanaka, H. Shibata, J. Phys. Chem. C 122 (2018) 3809-3817.
DOI URL |
[23] |
T. Kodalle, L. Choubrac, L. Arzel, R. Schlatmann, N. Barreau, C.A. Kaufmann, Sol. Energy Mater. Sol. Cells 200 (2019), 109997.
DOI URL |
[24] | C.S. Jiang, B. To, S. Glynn, H. Mahabaduge, T. Barnes, M.M. Aljassim, IEEE,IEEE 43rd Photovoltaic Specialists Conference (PVSC), 2016, 2016, pp.3675-3680. |
[25] |
T.M. Friedlmeier, P. Jackson, A. Bauer, D. Hariskos, O. Kiowski, R. Wuerz, M. Powalla, IEEE J. Photovolt. 5 (2015) 1487-1491.
DOI URL |
[26] |
F. Pianezzi, P. Reinhard, A. Chirilă, S. Nishiwaki, B. Bissig, S. Buecheler, A.N. Tiwari, J. Appl. Phys. 114 (2013), 194508.
DOI URL |
[27] |
P. Reinhard, B. Bissig, F. Pianezzi, E. Avancini, H. Hagendorfer, D. Keller, P. Fuchs, M. Döbeli, C. Vigo, P. Crivelli, S. Nishiwaki, S. Buecheler, A.N. Tiwari, Chem. Mater. 27 (2015) 5755-5764.
DOI URL |
[28] |
A. Laemmle, R. Wuerz, M. Powalla, Phys. Status Solidi RRL 7 (2013) 631-634.
DOI URL |
[29] |
N. Nicoara, Th. Lepetit, L. Arzel, S. Harel, N. Barreau, S. Sadewasser, Sci. Rep. 7 (2017) 1-7.
DOI URL |
[30] |
L.M. Mansfield, R. Noufi, C.P. Muzzillo, C. DeHart, K. Bowers, B. To, J.W. Pankow, R.C. Reedy, K. Ramanathan, IEEE J. Photovolt. 4 (2014) 1650-1654.
DOI URL |
[31] |
J. Raguse, C.P. Muzzillo, J.R. Sites, L.M. Mansfield, IEEE J. Photovolt. 7 (2016)303-306.
DOI URL |
[32] | T. Lepetit, Influence of KF Post Deposition Treatment on the PolycrystallineCu(In,Ga)Se2/CdS Heterojunction Formation for Photovoltaic Application,Ph.D Dissertation, University of Nantes, Nantes, France, 2015,http://dx.doi.org/10.13140/RG.2.1.3451.6242. |
[33] |
I. Khatri, M. Sugiyama, T. Nakada, Prog. Photovolt. Res. Appl. 25 (2017)871-877.
DOI URL |
[34] | G.S. Jeong, E.S. Cha, S.H. Moon, B.T. Ahn, Curr. Photovolt. Res. 3 (2015) 65-70. |
[35] |
Z. Yuan, S. Chen, Y. Xie, J.S. Park, H. Xiang, X. Gong, S. Wei, Adv. Energy Mater. 6 (2016), 1601191.
DOI URL |
[36] |
S.A. Jensen, S. Glynn, A. Kanevce, P. Dippo, J.V. Li, D. Levi, D. Kuciauskas, J. Appl. Phys. 120 (2016), 063106.
DOI URL |
[37] |
C.H. Hsu, W.H. Ho, S.Y. Wei, C.H. Lai, Adv. Energy Mater. 7 (2017), 1602571.
DOI URL |
[38] |
P. Reinhard, B. Bissig, F. Pianezzi, H. Hagendorfer, G. Sozzi, R. Menozzi, C. Gretener, S. Nishiwaki, S. Buecheler, A.N. Tiwari, Nano Lett. 15 (2015)3334-3340.
DOI URL PMID |
[39] |
T. Lepetit, S. Harel, L. Arzel, G. Ouvrard, N. Barreau, IEEE J. Photovolt. 6 (2016) 1316-1320.
DOI URL |
[40] |
D. Shin, J. Kim, T.S. Gershon, R. Mankad, M. Hopstaken, S. Guha, B.T. Ahn, B. Shin, Sol. Energy Mater. Sol. Cells 157 (2016) 695-702.
DOI URL |
[41] |
S. Karki, P.K. Paul, G. Rajan, T. Ashrafee, K. Aryal, P. Pradhan, R.W. Collins, A. Rockett, T.J. Grassman, S.A. Ringel, A.R. Arehart, S. Marsillac, IEEE J. Photovolt. 7 (2016) 665-669.
DOI URL |
[42] | H. Lee, Y. Jang, S. Nam, C. Jung, P. Choi, J. Gwak, J.H. Yun, K. Kim, B. Shin, ACSAppl. Mater. Interfaces 11 (2019) 35653-35660. |
[43] |
S. Puttnins, S. Levcenco, K. Schwarzburg, G. Benndorf, F. Daume, A. Rahm, A. Braun, M. Grundmann, T. Unold, Sol. Energy Mater. Sol. Cells 119 (2013)281-286.
DOI URL |
[44] | D. Rudmann, G. Bilger, M. Kaelin, F.J. Haug, H. Zogg, A.N. Tiwari, Thin SolidFilms 431 (2003) 37-40. |
[45] |
D. Rudmann, A.F. Da Cunha, M. Kaelin, F. Kurdesau, H. Zogg, A.N. Tiwari, G. Bilger, Appl. Phys. Lett. 84 (2004) 1129-1131.
DOI URL |
[46] | D. Rudmann, D. Brémaud, A. Da Cunha, G. Bilger, A. Strohm, M. Kaelin, H. Zogg, A.N. Tiwari, Thin Solid Films 480 (2005) 55-60. |
[47] |
R. Wuerz, A. Eicke, F. Kessler, P. Rogin, O. Yazdaniassl, Thin Solid Films 519 (2011) 7268-7271.
DOI URL |
[48] |
A.N. Tiwari, M. Krejci, F.J. Haug, H. Zogg, Prog. Photovolt. Res. Appl. 7 (1999)393-397.
DOI URL |
[49] | D. Rudmann, F.J. Haug, M. Kaelin, H. Zogg, A.N. Tiwari, G. Bilger, MRS Proc. 668 (2001), H3.8.1. |
[50] | L.M. Welch, S. Ulicna, M. Togay, V. Tsai, A.V. Malkov, T.R. Betts, J.M. Walls, J.W. Bowers, USA, 2019, pp. 1867-1871. |
[51] | J. Haarstrich, H. Metzner, M. Oertel, C. Ronning, T. Rissom, C.A. Kaufmann, T. Unold, H.W. Schock, J. Windeln, W. Mannstadt, E. Rudigiervoigt, Sol. EnergyMater. Sol. Cells 95 (2011) 1028-1030. |
[52] |
Y.M. Shin, D.H. Shin, J.H. Kim, B.T. Ahn, Curr. Appl. Phys. 11 (2011) S59-S64.
DOI URL |
[53] | J.H. Kim, S.T. Kim, L. Larina, B.T. Ahn, K. Kim, J.H. Yun, Sol. Energy Mater. Sol.Cells 179 (2018) 289-296. |
[54] |
S.T. Kim, L. Larina, J.H. Yun, B. Shin, B.T. Ahn, Sustain. Energy Fuels 3 (2019)709-716.
DOI URL |
[55] |
D.W. Niles, K. Ramanathan, J. Granata, F.S. Hasoon, R. Noufi, B.J. Tielsch, J.E. Fulghum, MRS Proc. 485 (1997) 179.
DOI URL |
[56] |
D.J. Schroeder, A.A. Rockett, J. Appl. Phys. 82 (1997) 4982-4985.
DOI URL |
[57] | K. Granath, L. Stolt, M. Bodegard, A. Rockett, D.J. Schroeder, Spain, 1997. |
[58] |
X. Lyu, D. Zhuang, M. Zhao, Q. Gong, L. Zhang, R. Sun, Y. Wei, X. Peng, Y. Wu, G. Ren, Vacuum 151 (2018) 233-236.
DOI URL |
[59] | N. Nicoara, S. Harel, T. Lepetit, L. Arzel, N. Barreau, S. Sadewasser, ACS Appl.Energy Mater. 1 (2018) 2681-2688. |
[60] | E. Palmiotti, S. Soltanmohammad, A. Rockett, G. Rajan, S. Karki, B. Belfore, S. Marsillac, IEEE, 2018, pp. 0163-0166. |
[61] |
T. Kodalle, M.D. Heinemann, D. Greiner, H.A. Yetkin, M. Klupsch, C. Li, P.A. Van Aken, I. Lauermann, R. Schlatmann, C.A. Kaufmann, Solar RRL 2 (2018),1800156.
DOI URL |
[62] |
D. Hauschild, D. Kreikemeyerlorenzo, P.L. Jackson, T.M. Friedlmeier, D. Hariskos, F. Reinert, M. Powalla, C. Heske, L. Weinhardt, ACS Energy Lett. 2 (2017) 2383-2387.
DOI URL |
[63] | N. Nicoara, T. Kunze, P. Jackson, D. Hariskos, R. Duarte, R. Wilks, W. Witte, M. Bär, S. Sadewasser, ACS Appl. Mater. Interfces 9 (2017) 44173-44180. |
[64] |
A. Vilalta-Clemente, M. Raghuwanshi, S. Duguay, C. Castro, E. Cadel, P.L. Pareige, P. Jackson, R. Wuerz, D. Hariskos, W. Witte, Appl. Phys. Lett. 112 (2018), 103105.
DOI URL |
[65] |
P.M.P. Salomé, A. Hultqvist, V. Fjällström, M. Edoff, B.G. Aitken, K. Zhang, K. Fuller, C. Kosik Williams, IEEE J. Photovolt. 4 (2014) 1659-1664.
DOI URL |
[66] |
K. Granath, M. Bodegard, L. Stolt, Sol. Energy Mater. Sol. Cells 60 (2000)279-293.
DOI URL |
[67] |
M. Lammer, U. Klemm, M. Powalla, Thin Solid Films 387 (2001) 33-36.
DOI URL |
[68] | P.M.P. Salomé, H. Rodriguezalvarez, S. Sadewasser, Sol. Energy Mater. Sol.Cells 143 (2015) 9-20. |
[69] | E.S. Mungan, X. Wang, M.A. Alam, Austin, TX, IEEE 38th PhotovoltaicSpecialists Conference (PVSC) PART 2, 3, 2012, pp. 451-456. |
[70] |
R. Kimura, T. Mouri, T. Nakada, S. Niki, Y. Lacroix, T. Matsuzawa, K. Takahashi, A. Kunioka, Jpn. J. Appl. Phys. 38 (1999) L289.
DOI URL |
[71] |
B. Bob, B. Lei, C.H. Chung, W. Yang, W.C. Hsu, H.S. Duan, W. Hou, S. Li, Y. Yang, Adv. Energy Mater. 2 (2012) 504-522.
DOI URL |
[72] | A. Rockett, Thin Solid Films 361 (2000) 330-337. |
[73] |
P. Choi, O. Cojocaru-Mirédin, R. Wuerz, D. Raabe, J. Appl. Phys. 110 (2011),124513.
DOI URL |
[74] |
D.W. Niles, M.M. Aljassim, K. Ramanathan, J. Vac. Sci. Technol. A 17 (1999)291-296.
DOI URL |
[75] |
E. Cadel, N. Barreau, J. Kessler, P. Pareige, Acta Mater. 58 (2010) 2634-2637.
DOI URL |
[76] |
F. Couziniedevy, E. Cadel, N. Barreau, L. Arzel, P. Pareige, Appl. Phys. Lett. 99 (2011), 232108.
DOI URL |
[77] |
D. Abouras, S.S. Schmidt, R. Caballero, T. Unold, H.W. Schock, C. Koch, B. Schaffer, M. Schaffer, P. Choi, O. Cojocaru-Mirédin, Adv. Energy Mater. 2 (2012) 992-998.
DOI URL |
[78] |
I. Dirnstorfer, D.M. Hofmann, D. Meister, B.K. Meyer, W. Riedl, F. Karg, J. Appl. Phys. 85 (1999) 1423-1428.
DOI URL |
[79] |
M. Igalson, A. Kubiaczyk, P. Zabierowski, M. Bodegard, K. Granath, Thin SolidFilms 387 (2001) 225-227.
DOI URL |
[80] |
K. Timmo, M. Altosaar, J. Raudoja, E. Mellikov, T. Varema, M. Danilson, M. Grossberg, Thin Solid Films 515 (2007) 5887-5890.
DOI URL |
[81] |
D. Rudmann, A. Cunha, M. Kaelin, F. Kurdesau, H. Zogg, A.N. Tiwari, G. Bilger, Appl. Phys. Lett. 84 (2004) 1129-1131.
DOI URL |
[82] |
R.V. Forest, E. Eser, B.E. McCandless, J.G. Chen, R.W. Birkmire, J. Appl. Phys. 117 (2015), 115102.
DOI URL |
[83] |
L. Kronik, D. Cahen, H.W. Schock, Adv. Mater. 10 (1998) 31-36.
DOI URL |
[84] |
O. Cojocaru-Mirédin, P. Choi, R. Wuerz, D. Raabe, Ultramicroscopy 111 (2011) 552-556.
DOI URL PMID |
[85] |
J. Ramanujam, U.P. Singh, Energy Environ. Sci. 10 (2017) 1306-1319.
DOI URL |
[86] | D. Braunger, D. Hariskos, G. Bilger, U. Rau, H.W. Schock, Thin Solid Films 361 (2000) 161-166. |
[87] |
T. Maeda, A. Kawabata, T. Wada, Jpn. J. Appl. Phys. 54 (2015), 08KC20.
DOI URL |
[88] |
A. Laemmle, R. Wuerz, T. Schwarz, O. Cojocaru-Mirédin, P. Choi, M. Powalla, J. Appl. Phys. 115 (2014), 154501.
DOI URL |
[89] |
E. Ghorbani, J. Kiss, H. Mirhosseini, G. Roma, M.A. Schmidt, J. Windeln, T.D. Kühne, C. Felser, J. Phys. Chem. C 119 (2015) 25197-25203.
DOI URL |
[90] |
L.E. Oikkonen, M.G. Ganchenkova, A.P. Seitsonen, R.M. Nieminen, J. Appl.Phys. 114 (2013), 083503.
DOI URL |
[91] |
S. Schuler, S. Siebentritt, S. Nishiwaki, N. Rega, J. Beckmann, S. Brehme, M. Lux-Steiner, Phys. Rev. B 69 (2004), 045210.
DOI URL |
[92] |
L.E. Oikkonen, M.G. Ganchenkova, A.P. Seitsonen, R.M. Nieminen, J. Appl. Phys. 113 (2013), 133510.
DOI URL |
[93] |
S. Ishizuka, A. Yamada, M.M. Islam, H. Shibata, P. Fons, T. Sakurai, K. Akimoto, S. Niki, J. Appl. Phys. 106 (2009), 034908.
DOI URL |
[94] |
F. Hergert, S. Jost, R. Hock, M. Purwins, J. Palm, Thin Solid Films 515 (2007)5843-5847.
DOI URL |
[95] |
J. Eid, H. Liang, I. Gereige, S. Lee, J.V. Duren, Prog. Photovolt. Res. Appl. 23 (2015) 269-280.
DOI URL |
[96] |
V. Izquierdo-Roca, R. Caballero, X. Fontané, C.A. Kaufmann, J. Álvarez-García, L. Calvo-Barrio, E. Saucedo, A. Pérez-Rodríguez, J.R. Morante, H.W. Schock, Thin Solid Films 519 (2011) 7300-7303.
DOI URL |
[97] |
P.M.P. Salomé, A. Hultqvist, V. Fjällström, M. Edoff, B. Aitken, K. Vaidyanathan, K. Zhang, K. Fuller, C. Kosik Williams, IEEE J. Photovolt. 3 (2013) 852-858.
DOI URL |
[98] | M. Lammer, R. Kniese, M. Powalla, Thin Solid Films 451 (2004) 175-178. |
[99] | H. Ruckh, D. Schmid, M. Kaiser, R. Schaffler, T. Walter, H.W. Schock, IEEE, 1994, pp. 156-159. |
[100] | M.A. Contreras, M.J. Romero, R. Noufi, Thin Solid Films 511 (2006) 51-54. |
[101] |
D. Rudmann, D. Brémaud, H. Zogg, A.N. Tiwari, J. Appl. Phys. 97 (2005),084903.
DOI URL |
[102] |
A. Urbaniak, M. Igalson, F. Pianezzi, S. Bücheler, A. Chirilă, P. Reinhard, A.N. Tiwari, Sol. Energy Mater. Sol. Cells 128 (2014) 52-56.
DOI URL |
[103] | M.A. Contreras, B. Egaas, P. Dippo, J. Webb, J. Granata, K. Ramanathan, S. Asher, A. Swartzlander, R. Noufi, USA, 1997, pp.359-362. |
[104] | D. Rudmann, Switzerland, 2004. |
[105] | S. Zahediazad, R. Scheer, Phys. Status Solidi C 14 (2017), 1600203. |
[106] | F. Pianezzi, P. Reinhard, A. Chirilă, S. Nishiwaki, B. Bissig, S. Buecheler, A.N. Tiwari, J. Appl. Phys. 114 (19) (2013). |
[107] | A. Laemmle, R. Wuerz, M. Powalla, Phy. Status Solidi RRL 7 (2013) 631. |
[108] | I. Khatri, M. Sugiyama, T. Nakada, Prog. Photovolt. Res. Appl. 25 (2017),871877. |
[109] |
P. Reinhard, F. Pianezzi, B. Bissig, A. Chirilă, A.N. Tiwari, IEEE J. Photovolt. 5 (2015) 656-663.
DOI URL |
[110] |
A. Stokes, M.M. Aljassim, A.G. Norman, D.R. Diercks, B.P. Gorman, Prog. Photovolt. Res. Appl. 25 (2017) 764-772.
DOI URL |
[111] |
B. Ümsür, W. Calvet, A. Steigert, I. Lauermann, M. Gorgoi, K. Prietzel, D. Greiner, C.A. Kaufmann, T. Unold, M. Ch Luxsteiner, Phys. Chem. Chem. Phys. 18 (2016) 14129-14138.
DOI URL |
[112] |
T. Kato, Jpn. J. Appl. Phys. 56 (2017), 04CA02.
DOI URL |
[113] | H. Elanzeery, F. Babbe, M. Melchiorre, A. Zelenina, S. Siebentritt, IEEE J.Photovolt. 7 (2017) 684-689. |
[114] |
E. Handick, P. Reinhard, R.G. Wilks, F. Pianezzi, T. Kunze, D. Kreikemeyerlorenzo, L. Weinhardt, M. Blum, W. Yang, M. Gorgoi, E. Ikenaga, D. Gerlach, S. Ueda, Y. Yamashita, T. Chikyow, C. Heske, S. Buecheler, A.N. Tiwari, M. Bar, ACS Appl. Mater. Interfaces 9 (2017) 3581-3589.
DOI URL |
[115] |
D. Hauschild, D. Kreikemeyerlorenzo, P.L. Jackson, T.M. Friedlmeier, D. Hariskos, F. Reinert, M. Powalla, C. Heske, L. Weinhardt, ACS Energy Lett. 2 (2017) 2383-2387.
DOI URL |
[116] |
P. Schöppe, S. Schönherr, P.L. Jackson, R. Wuerz, W. Wisniewski, M. Ritzer, M. Zapf, A. Johannes, C. Schnohr, C. Ronning, ACS Appl. Mater. Interfaces 10 (2018) 40592-40598.
DOI URL |
[117] |
M. Raghuwanshi, A. Vilalta-Clemente, C. Castro, S. Duguay, E. Cadel, P. Jackson, D. Hariskos, W. Witte, P. Pareige, Nano Energy 60 (2019) 103-110.
DOI URL |
[118] |
P. Schöppe, S. Schönherr, R. Wuerz, W. Wisniewski, G. Martínez-Criado, M. Ritzer, K. Ritter, C. Ronning, C. Schnohr, Nano Energy 42 (2017) 307-313.
DOI URL |
[119] |
C. Persson, A. Zunger, Phys. Rev. Lett. 91 (2003), 266401.
URL PMID |
[120] |
R. Wuerz, W. Hempel, P. Jackson, J. Appl. Phys. 124 (2018), 165305.
DOI URL |
[121] |
T.P. Weiss, S. Nishiwaki, B. Bissig, R. Carron, E. Avancini, J. Löckinger, S. Buecheler, A.N. Tiwari, Adv. Mater. Interfaces 5 (2018), 1701007.
DOI URL |
[122] |
N. Taguchi, S. Tanaka, S. Ishizuka, Appl. Phys. Lett. 113 (2018), 113903.
DOI URL |
[123] |
F.Q. Huang, B. Deng, D. Ellis, J.A. Ibers, J. Solid State Chem. 178 (2005)2128-2132.
DOI URL |
[124] |
S. Ishizuka, H. Shibata, J. Nishinaga, Y. Kamikawa, P. Fons, Appl. Phys. Lett. 113 (2018), 063901.
DOI URL |
[125] | I. Khatri, T. Yashiro, T.Y. Lin, M. Sugiyama, T. Nakada, Phys. Status Solidi RRL(2020), 1900701. |
[126] |
P. Schöppe, S. Schönherr, M. Chugh, H. Mirhosseini, P. Jackson, R. Wuerz, M. Ritzer, A. Johannes, G. Martinezcriado, W. Wisniewski, T. Schwarz, C.T. Plass, M. Hafermann, T.D. Kuhne, C. Schnohr, C. Ronning, Nano Energy 71 (2020),104622.
DOI URL |
[127] |
S. Kim, H. Tampo, H. Shibata, K. Matsubara, S. Niki, Phys. Status Solidi RRL 12 (2018), 1800372.
DOI URL |
[128] | Y. Wang, T. Muryobayashi, K. Nakada, Z. Li, A. Yamada, Sol. Energy Mater. Sol.Cells 201 (2019), 110070. |
[129] |
N. Nicoara, R. Manaligod, P. Jackson, D. Hariskos, W. Witte, G. Sozzi, R. Menozzi, S. Sadewasser, Nat. Commun. 10 (2019) 1-8.
DOI URL |
[130] | R. Carron, S. Nishiwaki, T. Feurer, R. Hertwig, E. Avancini, J. Löckinger, S. Yang, S. Buecheler, A.N. Tiwari, Adv. Energy Mater. 9 (2019), 1900408.189 |
[1] | Tingting Wu, Guoqiang Deng, Chao Zhen. Metal oxide mesocrystals and mesoporous single crystals: synthesis, properties and applications in solar energy conversion [J]. J. Mater. Sci. Technol., 2021, 73(0): 9-22. |
[2] | Xiaofang Ye, Hongkun Cai, Jian Su, Jingtao Yang, Jian Ni, Juan Li, Jianjun Zhang. Preparation of hysteresis-free flexible perovskite solar cells via interfacial modification [J]. J. Mater. Sci. Technol., 2021, 61(0): 213-220. |
[3] | Kwonwoo Oh, Kyungeun Jung, Jaehak Shin, Sunglim Ko, Man-Jong Lee. Novel Intense-pulsed-light synthesis of amorphous SnO2 electron-selective layers for efficient planar MAPbI3 perovskite solar cells [J]. J. Mater. Sci. Technol., 2021, 92(0): 171-177. |
[4] | Jian Han, Xingyu Pu, Hui Zhou, Qi Cao, Shuangjie Wang, Jiabao Yang, Junsong Zhao, Xuanhua Li. Multidentate anchoring through additive engineering for highly efficient Sb2S3 planar thin film solar cells [J]. J. Mater. Sci. Technol., 2021, 89(0): 36-44. |
[5] | Noh Young Wook, Jin In Su, Park Sang Hyun, Jung Jae Woong. Room-temperature synthesis of ZrSnO4 nanoparticles for electron transport layer in efficient planar hetrojunction perovskite solar cells [J]. J. Mater. Sci. Technol., 2020, 42(0): 38-45. |
[6] | Kunsik An, Jaehoon Kim, Mohammad Afsar Uddin, Seunghyun Rhee, Hyeok Kim, Kyung-Tae Kang, Han Young Woo, Changhee Lee. Germinant ZnO nanorods as a charge-selective layer in organic solar cells [J]. J. Mater. Sci. Technol., 2020, 55(0): 89-94. |
[7] | Liquan Yao, Limei Lin, Hui Liu, Fengying Wu, Jianmin Li, Shuiyuan Chen, Zhigao Huang, Guilin Chen. Front and Back contact engineering for high-efficient and low-cost hydrothermal derived Sb2(S, Se)3 solar cells by using FTO/SnO2 and carbon [J]. J. Mater. Sci. Technol., 2020, 58(0): 130-137. |
[8] | Kyungeun Jung, Du Hyeon Kim, Jaemin Kim, Sunglim Ko, Jae Won Choi, Ki Chul Kim, Sang-Geul Lee, Man-Jong Lee. Influence of a UV-ozone treatment on amorphous SnO2 electron selective layers for highly efficient planar MAPbI3 perovskite solar cells [J]. J. Mater. Sci. Technol., 2020, 59(0): 195-202. |
[9] | InSu Jin, Minwoo Park, Jae Woong Jung. Reduced interface energy loss in non-fullerene organic solar cells using room temperature-synthesized SnO2 quantum dots [J]. J. Mater. Sci. Technol., 2020, 52(0): 12-19. |
[10] | Sukanta Bose, Sourav Mandal, Asok K. Barua, Sumita Mukhopadhyay. Properties of boron doped ZnO films prepared by reactive sputtering method: Application to amorphous silicon thin film solar cells [J]. J. Mater. Sci. Technol., 2020, 55(0): 136-143. |
[11] | Johwa Yang, Hyunjin Jo, Soo-Won Choi, Dong-Won Kang, Jung-Dae Kwon. Adoption of wide-bandgap microcrystalline silicon oxide and dual buffers for semitransparent solar cells in building-integrated photovoltaic window system [J]. J. Mater. Sci. Technol., 2019, 35(8): 1563-1569. |
[12] | Qian-Qian Chu, Bin Ding, Jun Peng, Heping Shen, Xiaolei Li, Yan Liu, Cheng-Xin Li, Chang-Jiu Li, Guan-Jun Yang, Thomas P. White, Kylie R. Catchpole. Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering [J]. J. Mater. Sci. Technol., 2019, 35(6): 987-993. |
[13] | Mingyue Li, Na Yuan, Yiwen Tang, Ling Pei, Yongdan Zhu, Jiaxian Liu, Lihua Bai, Meiya Li. Performance optimization of dye-sensitized solar cells by gradient-ascent architecture of SiO2@Au@TiO2 microspheres embedded with Au nanoparticles [J]. J. Mater. Sci. Technol., 2019, 35(4): 604-609. |
[14] | Mengyan Zhang, Tao Ning, Jie Chen, Lijie Sun, Lihua Zhou. Improvement on the interface properties of p-GaAs/n-InP heterojunction for wafer bonded four-junction solar cells [J]. J. Mater. Sci. Technol., 2019, 35(3): 330-333. |
[15] | Anil K.Battu, Nanthakishore Makeswaran, C.V. Raman. Fabrication, characterization and optimization of high conductivity and high quality nanocrystalline molybdenum thin films [J]. J. Mater. Sci. Technol., 2019, 35(11): 2734-2741. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||