J. Mater. Sci. Technol. ›› 2022, Vol. 96: 167-178.DOI: 10.1016/j.jmst.2021.03.078
• Research Article • Previous Articles Next Articles
Luxin Lianga,1, Qianli Huanga,b,1, Hong Wua,*(), Hao Hec,*(
), Guanghua Leid, Dapeng Zhaoe, Kun Zhouf
Received:
2021-02-02
Revised:
2021-03-15
Accepted:
2021-03-31
Published:
2022-01-10
Online:
2022-01-05
Contact:
Hong Wu,Hao He
About author:
jimmyhehao@gmail.com (H. He).Luxin Liang, Qianli Huang, Hong Wu, Hao He, Guanghua Lei, Dapeng Zhao, Kun Zhou. Engineering nano-structures with controllable dimensional features on micro-topographical titanium surfaces to modulate the activation degree of M1 macrophages and their osteogenic potential[J]. J. Mater. Sci. Technol., 2022, 96: 167-178.
Fig. 1. SEM images showing the (a) surface and (b) cross-sectional morphology of (a1) MAO-treated Ti (a1) without and with HT for (a2, b1) 8, (a3, b2) 36 and (a4, b3) 72 h; (c) the contact angles (CAs) of various surfaces.
Fig. 3. (a) TEM and its corresponding EDX mapping images of a single nano-plate in the Micro/Nano-440 group as well as (b) the quantiatative EDX results.
Sample name | Length (nm) | Width (nm) | Thickness (nm) |
---|---|---|---|
Micro/Nano-180 | 180±20 | 100±20 | 16±3 |
Micro/Nano-440 | 440±50 | 120±30 | 20±4 |
Micro/Nano-780 | 780±50 | 120±30 | 22±4 |
Table 1 Dimensional features of nano-plates prepared by HT for various durations.
Sample name | Length (nm) | Width (nm) | Thickness (nm) |
---|---|---|---|
Micro/Nano-180 | 180±20 | 100±20 | 16±3 |
Micro/Nano-440 | 440±50 | 120±30 | 20±4 |
Micro/Nano-780 | 780±50 | 120±30 | 22±4 |
Fig. 5. Viability and proliferation of macrophages in response to various surfaces evaluated by (a) calcein-AM staining and (b) CCK-8 assay for 1, 3 and 5 days; (c) SEM images showing the morphology of RAW 264.7 cells cultured on various coatings for 8 and 24 h.
Fig. 6. Immunofluorescent staining images showing the expressions of Arg-1(green, M2 marker) and iNOS (red, M1 marker) as well as the presence of cell nuclei (blue) in macrophages grown on various surfaces. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 7. Gene expressions of RAW 264.7 cells in response to various surfaces analyzed by RT-qPCR. *p < 0.05 and **p < 0.01 compared to Micro group; #p < 0.05 and ##p < 0.01 compared to Micro/Nano-180 group; ζp < 0.05 and ζζp < 0.01 compared to Micro/Nano-440 group.
Fig. 8. Productions of cytokines including TNF-α and IL-10 as well as osteogenic growth factors including BMP-6, BMP-2 and OSM by macrophages in response to various surfaces for 24 h. *p < 0.05 and **p < 0.01 compared to Micro group; #p < 0.05 and ##p < 0.01 compared to Micro/Nano-180 group; ζp < 0.05 and ζζp < 0.01 compared to Micro/Nano-440 group.
Fig. 9. ALP activity, COL synthesis and in vitro Min of SaOS-2 cultured by various CM for 4, 7 and 10 days, respectively. *p < 0.05 and **p < 0.01 compared to Micro group; #p < 0.05 and ##p < 0.01 compared to Micro/Nano-180 group; ζp < 0.05 and ζζp < 0.01 compared to Micro/Nano-440 group.
[1] |
W. Tang, D. Lin, Y. Yu, H. Niu, H. Guo, Y. Yuan, C. Liu, Acta Biomater. 32 (2016) 309-323.
DOI URL PMID |
[2] |
Q. Huang, Z. Ouyang, Y. Tan, H. Wu, Y. Liu, Acta Biomater. 100 (2019) 415-426.
DOI URL |
[3] |
L. Bai, Y. Liu, Z. Du, Z. Weng, W. Yao, X. Zhang, X. Huang, X. Yao, R. Crawford, R. Hang, D. Huang, B. Tang, Y. Xiao, Acta Biomater. 76 (2018) 344-358.
DOI URL |
[4] |
L. Bai, Z. Du, J. Du, W. Yao, J. Zhang, Z. Weng, S. Liu, Y. Zhao, Y. Liu, X. Zhang, X. Huang, X. Yao, R. Crawford, R. Hang, D. Huang, B. Tang, Y. Xiao, Biomaterials 162 (2018) 154-169.
DOI URL |
[5] | D.J. Lin, L.J. Fuh, W.C. Chen, Mater. Sci. Eng. C Mater.Biol. Appl. 107 (2020) 110204. |
[6] |
Z.t. Chen, T. Klein, R. Z., R.C Murray, J. Chang, C. Wu, a.Y. Xiao, Mater. Today 19 (2016) 304-321.
DOI URL |
[7] | R.J. Miron, D.D. Bosshardt, Biomaterials 82 (2016) 1-19. |
[8] |
R. Sridharan, A.R. Cameron, D.J. Kelly, C.J. Kearney, F.J. O’Brien, Mater. Today 18 (6) (2015) 313-325.
DOI URL |
[9] |
Z. Chen, A. Bachhuka, F. Wei, X. Wang, G. Liu, K. Vasilev, Y. Xiao, Nanoscale 9 (46) (2017) 18129-18152.
DOI URL |
[10] | F.O. Martinez, S. Gordon, F100 0Prime Rep. 6 (2014). |
[11] |
C. Yin, Q. Zhao, W. Li, Z. Zhao, J. Wang, T. Deng, P. Zhang, K. Shen, Z. Li, Y. Zhang, Acta Biomater. 102 (2020) 416-426.
DOI URL |
[12] |
B. Li, H. Cao, Y. Zhao, M. Cheng, H. Qin, T. Cheng, Y. Hu, X. Zhang, X. Liu, Sci. Rep. 7 (2017) 42707.
DOI URL |
[13] | T. Hu, H. Xu, C. Wang, H. Qin, Z. An. Sci. Rep. 8 (1) (2018) 3406. |
[14] |
Z. Chen, A. Bachhuka, S. Han, F. Wei, S. Lu, R.M. Visalakshan, K. Vasilev, Y. Xiao, ACS Nano 11 (5) (2017) 4494-4506.
DOI URL |
[15] |
L. Rifas, J. Cell. Biochem. 98 (4) (2006) 706-714.
DOI URL |
[16] |
P. Guihard, Y. Danger, B. Brounais, E. David, R. Brion, J. Delecrin, C.D. Richards, S. Chevalier, F. Redini, D. Heymann, H. Gascan, F. Blanchard, Stem. Cells. 30 (4) (2012) 762-772.
DOI URL PMID |
[17] |
K. Hess, A. Ushmorov, J. Fiedler, R.E. Brenner, T. Wirth, Bone 45 (2) (2009) 367-376.
DOI URL |
[18] |
J. Ding, O. Ghali, P. Lencel, O. Broux, C. Chauveau, J.C. Devedjian, P. Hardouin, D. Magne, Life Sci. 84 (15-16) (2009) 499-504.
DOI URL PMID |
[19] |
M. Feldmann, R.N. Maini, J. Immunol. 185 (2) (2010) 791-794.
DOI URL PMID |
[20] |
W.L. Lu, N. Wang, P. Gao, C.Y. Li, H.S. Zhao, Z.T. Zhang, Cell Prolif. 48 (1) (2015) 95-104.
DOI URL |
[21] |
L.M. Chamberlain, K.S. Brammer, G.W. Johnston, S. Chien, S. Jin, J. Biomater. Nanobiotechnol. 02 (03) (2011) 293-300.
DOI URL |
[22] | E. Lamers, X.F. Walboomers, M. Domanski, L. Prodanov, J. Melis, R. Luttge, L. Winnubst, J.M. Anderson, H.J.G.E. Gardeniers, J.A. Jansen, Biol. Med. 8 (3) (2012) 308-317. |
[23] | X. Li, Q. Huang, X. Hu, D. Wu, N. Li, Y. Liu, Q. Li, H. Wu, Mater. Sci. Eng. C 110 (2020). |
[24] | Q. Huang, X. Liu, T.A. Elkhooly, R. Zhang, X. Yang, Z. Shen, Q. Feng, Mater. Sci. Eng. C Mater.Biol. Appl. 60 (2016) 308-316. |
[25] | X. Li, Q. Huang, L. Liu, W. Zhu, T.A. Elkhooly, Y. Liu, Q. Feng, Q. Li, S. Zhou, Y. Liu, H. Wu, Coll. Surf. B Biointerfaces (171) (2018) 276-284. |
[26] |
Q. Huang, X. Li, T. Liu, H. Wu, X. Liu, Q. Feng, Y. Liu, Appl. Surf. Sci. 447 (2018) 767-776.
DOI URL |
[27] | Q. Huang, X. Liu, T.A. Elkhooly, R. Zhang, Z. Shen, Q. Feng, Coll. Surf. B Bioint- erfaces 134 (2015) 169-177. |
[28] |
Q. Huang, X. Liu, R. Zhang, X. Yang, C. Lan, Q. Feng, Y. Liu, Appl. Surf. Sci. 465 (2019) 575-583.
DOI URL |
[29] |
R. Zhou, Y. Han, J. Cao, M. Li, G. Jin, Y. Du, H. Luo, Y. Yang, L. Zhang, B. Su, ACS Appl. Mater. Interfaces 10 (36) (2018) 30191-30200.
DOI URL |
[30] |
G. Li, H. Cao, W. Zhang, X. Ding, G. Yang, Y. Qiao, X. Liu, X. Jiang, ACS Appl. Mater. Interfaces 8 (6) (2016) 3840-3852.
DOI URL |
[31] |
Q. Huang, T.A. Elkhooly, X. Liu, R. Zhang, X. Yang, Z. Shen, Q. Feng, Coll. Surf. B Biointerfaces 145 (2016) 37-45.
DOI URL |
[32] |
H. Wu, Y. Yin, X. Hu, C. Peng, Y. Liu, Q. Li, W. Huang, Q. Huang, ACS Biomater. Sci. Eng. 5 (10) (2019) 5548-5557.
DOI URL |
[33] |
F.Y. McWhorter, T. Wang, P. Nguyen, T. Chung, W.F. Liu, Proc. Natl. Acad. Sci. USA. 110 (43) (2013) 17253-17258.
DOI URL |
[34] |
M. Mohiuddin, H. Pan, Y. Hung, G. Huang, Nanoscale Res. Lett. 7 (2012) 1-9.
DOI URL |
[35] |
T.U. Luu, S.C. Gott, B.W. Woo, M.P. Rao, W.F. Liu, ACS Appl. Mater. Interfaces 7 (51) (2015) 28665-28672.
DOI URL |
[36] | G. Guo, Q. Xu, C. Zhu, J. Yu, Q. Wang, J. Tang, Z. Huan, H. Shen, J. Chang, X. Zhang, Appl. Mater. Today 22 (2021) 100888. |
[37] |
S. Cheng, D. Zhang, M. Li, X. Liu, Y. Zhang, S. Qian, F. Peng, Bioact. Mater. 6 (1) (2021) 91-105.
DOI URL PMID |
[38] | J.K. Park, Y.J. Kim, J. Yeom, J.H. Jeon, G.C. Yi, J.H. Je, S.K. Hahn, Adv. Mater. 22 (43) (2010) 4857-4861. |
[39] |
P. Palmqvist, E. Persson, H.H. Conaway, U.H. Lerner, J. Immunol. 169 (6) (2002) 3353-3362.
URL PMID |
[40] |
Y. Huang, C. Wu, X. Zhang, J. Chang, K. Dai, Acta Biomater. 66 (2018) 81-92.
DOI URL PMID |
[41] |
C. Troidl, G. Jung, K. Troidl, J. Hoffmann, H. Moellmann, H. Nef, W. Schaper, C.W. Hamm, T. Schmitz-Rixen, Curr. Vasc. Pharmacol. 11 (2013) 5-12.
URL PMID |
[42] |
M. Shi, Z. Chen, S. Farnaghi, T. Friis, X. Mao, Y. Xiao, C. Wu, Acta Biomater. 30 (2016) 334-344.
DOI URL |
[43] |
C.M. Kemmis, A. Vahdati, H.E. Weiss, D.R. Wagner, Biochem. Biophys. Res. Commun. 401 (1) (2010) 20-25.
DOI URL |
[44] |
G.E. Glass, J.K. Chan, A. Freidin, M. Feldmann, N.J. Horwood, J. Nanchahal, Proc. Natl. Acad. Sci. 108 (4) (2011) 1585-1590.
DOI URL |
[45] |
H.Y J.Hashimoto, N.S K.Takaoka, T.T K.Masuhara, K.O S.Miyamoto., Bone 10 (6) (1989) 453-457.
URL PMID |
[46] |
H. Yoshikawa, J. Hashimoto, K. Masuhara, K. Takaoka, K. Ono, Bone 9 (1988) 391-396.
URL PMID |
[47] |
A. Al-Rasheed, H. Scheerens, D.M. Rennick, H.M. Fletcher, D.N. Tatakis, J. Dent. Res. 82 (8) (2003) 632-635.
URL PMID |
[48] | A. Al-Rasheed, H. Scheerens, A.K. Srivastava, D.M. Rennick, D.N. Tatakis, J. Peri- odontal Res. 39 (3) (2004) 194-198. |
[49] | W. Liu, L. Liang, B. Liu, D. Zhao, Y. Tian, Q. Huang, H. Wu, There-sponse of macrophages and their osteogenic potential modulated by mi- cro/nano-structured Ti surfaces, Colloids and Surfaces B: Biointerfaces 205 (2021) 111848 In press. |
[1] | Q. Yan, B. Chen, L. Cao, K.Y. Liu, S. Li, L. Jia, K. Kondoh, J.S. Li. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in-situ formed carbides [J]. J. Mater. Sci. Technol., 2022, 96(0): 85-93. |
[2] | Zhixin Zhang, Jiangkun Fan, Ruifeng Li, Hongchao Kou, Zhiyong Chen, Qingjiang Wang, Hailong Zhang, Jian Wang, Qi Gao, Jinshan Li. Orientation dependent behavior of tensile-creep deformation of hot rolled Ti65 titanium alloy sheet [J]. J. Mater. Sci. Technol., 2021, 75(0): 265-275. |
[3] | Xinkai Ma, Zhuo Chen, Dongling Zhong, S.N. Luo, Lei Xiao, Wenjie Lu, Shanglin Zhang. Effect of rotationally accelerated shot peening on the microstructure and mechanical behavior of a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 27-38. |
[4] | Jingwei Li, Xiaocui Li, Manling Sui. Formation mechanism of hydride precipitation in commercially pure titanium [J]. J. Mater. Sci. Technol., 2021, 81(0): 108-116. |
[5] | Diangeng Cai, Xiaotong Zhao, Lei Yang, Renxian Wang, Gaowu Qin, Da-fu Chen, Erlin Zhang. A novel biomedical titanium alloy with high antibacterial property and low elastic modulus [J]. J. Mater. Sci. Technol., 2021, 81(0): 13-25. |
[6] | Davide Porrelli, Mario Mardirossian, Nicola Crapisi, Marco Urban, Nicola Andrea Ulian, Lorenzo Bevilacqua, Gianluca Turco, Michele Maglione. Polyetheretherketone and titanium surface treatments to modify roughness and wettability - Improvement of bioactivity and antibacterial properties [J]. J. Mater. Sci. Technol., 2021, 95(0): 213-224. |
[7] | Yu Zhang, Shuai Chang, Yuyong Chen, Yuchao Bai, Cuiling Zhao, Xiaopeng Wang, Jun Min Xue, Hao Wang. Low-temperature superplasticity of β-stabilized Ti-43Al-9V-Y alloy sheet with bimodal γ-grain-size distribution [J]. J. Mater. Sci. Technol., 2021, 95(0): 225-236. |
[8] | Ling Ren, Xiaohe Xu, Hui Liu, Ke Yang, Xun Qi. Biocompatibility and Cu ions release kinetics of copper-bearing titanium alloys [J]. J. Mater. Sci. Technol., 2021, 95(0): 237-248. |
[9] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[10] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
[11] | Mingjun Li, Christoph Schlaich, Jianguang Zhang, Ievgen S. Donskyi, Karin Schwibbert, Frank Schreiber, Yi Xia, Jörg Radnik, Tanja Schwerdtle, Rainer Haag. Mussel-inspired multifunctional coating for bacterial infection prevention and osteogenic induction [J]. J. Mater. Sci. Technol., 2021, 68(0): 160-171. |
[12] | Y.M. Ren, X. Lin, H.O. Yang, H. Tan, J. Chen, Z.Y. Jian, J.Q. Li, W.D. Huang. Microstructural features of Ti-6Al-4V manufactured via high power laser directed energy deposition under low-cycle fatigue [J]. J. Mater. Sci. Technol., 2021, 83(0): 18-33. |
[13] | Zhenni Lei, Pengfei Gao, Xianxian Wang, Mei Zhan, Hongwei Li. Analysis of anisotropy mechanism in the mechanical property of titanium alloy tube formed through hot flow forming [J]. J. Mater. Sci. Technol., 2021, 86(0): 77-90. |
[14] | Z.W. Yang, J.M. Lin, J.F. Zhang, Q.W. Qiu, Y. Wang, D.P. Wang, J. Song. An effective approach for bonding of TZM and Nb-Zr system: Microstructure evolution, mechanical properties, and bonding mechanism [J]. J. Mater. Sci. Technol., 2021, 84(0): 16-26. |
[15] | Ya Zhao, Yonghua Sun, Weiwei Lan, Zhong Wang, Yi Zhang, Di Huang, Xiaohong Yao, Ruiqiang Hang. Self-assembled nanosheets on NiTi alloy facilitate endothelial cell function and manipulate macrophage immune response [J]. J. Mater. Sci. Technol., 2021, 78(0): 110-120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||