J. Mater. Sci. Technol. ›› 2022, Vol. 96: 160-166.DOI: 10.1016/j.jmst.2021.03.084
• Letter • Previous Articles Next Articles
Jingjing Pana,b, Jingyang Wanga,*()
Revised:
2021-03-29
Published:
2022-01-10
Online:
2022-01-05
Contact:
Jingyang Wang
About author:
*E-mail address: jywang@imr.ac.cn (J. Wang)Jingjing Pan, Jingyang Wang. Temperature-mediated supramolecular assemblies give rise to hierarchical boron nitride nano-ribbon networks with different micro-topology[J]. J. Mater. Sci. Technol., 2022, 96: 160-166.
Fig. 2. (a) The photos of supramolecular assemblies formed at different cooling conditions; (b) the recovered solution states after the as-formed supramolecular assemblies are heated again. (c-e) SEM images of the as-formed supramolecular gels resulting from varied cooling procedures.
Fig. 3. (a) XRD patterns and (b) Raman spectra of BN networks derived from three supramolecular assemblies that formed under different cooling processes.
Fig. 4. (a-c) SEM images of BN samples derived from supramolecular gels formed under different cooling conditions-rapid cooling, moderate cooling and slow cooling; (d, e) TEM images corresponding to (a); (f, g) TEM results corresponding to (b); (h, i) TEM images corresponding to (c).
Fig. 5. Schematic illustration for the formation of different assembly pattern in supramolecular ribbons that give rise to BN nanoribbons with varied micro-topology.
Fig. 6. (a) Contact angle of BN nanoribbon networks for water; (b) dispersion of BN nanobelts in water (these results correspond to BN networks derived from supramolecular assemblies formed under rapid cooling condition).
[1] |
Z. Zhang, X. Liu, B.I. Yakobson, W. Guo, J. Am. Chem. Soc. 134 (2012) 19326-19329.
DOI URL |
[2] |
S. Ma, C. He, L.Z. Sun, H. Lin, Y. Li, K.W. Zhang, Phys. Chem. Chem. Phys. 17 (2015) 32009-32015.
DOI URL |
[3] |
S. Li, J. Huang, Z. Chen, G. Chen, Y. Lai, J. Mater. Chem. A 5 (2017) 31-55.
DOI URL |
[4] |
M. Liu, S. Wang, L. Jiang, Nat. Rev. Mater. 2 (2017) 17036.
DOI URL |
[5] |
L. Wang, J. Cai, Y. Xie, J. Guo, L. Xu, S. Yu, X. Zheng, J. Ye, J. Zhu, L. Zhang, S. Liang, L. Wang, iScience 16 (2019) 390-398.
DOI URL |
[6] |
J. Wang, C. Cheng, B. Huang, J. Cao, L. Li, Q. Shao, L. Zhang, X. Huang, Nano Lett. 21 (2021) 980-987.
DOI URL |
[7] | Y. Heo, S. Choi, J. Bak, H.-.S. Kim, H.B. Bae, S.Y. Chung,Adv. Energy Mater. 8 (2018) 1802481. |
[8] |
J. Yin, J. Li, Y. Hang, J. Yu, G. Tai, X. Li, Z. Zhang, W. Guo, Small 12 (2016) 2942-2968.
DOI URL |
[9] |
R. Arenal, A. Lopez-Bezanilla, Wiley Interdiscip. Rev.-Comput. Mol. Sci. 5 (2015) 299-309.
DOI URL |
[10] |
D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, ACS Nano 4 (2010) 2979-2993.
DOI URL PMID |
[11] |
H. Li, R.Y. Tay, S.H. Tsang, X. Zhen, E.H.T. Teo, Small 11 (2015) 6491-6499.
DOI URL |
[12] |
Z. Lei, S. Xu, J. Wan, P. Wu, Nanoscale 7 (2015) 18902-18907.
DOI URL |
[13] | A. Dhakshinamoorthy, A. Primo, I. Esteve-Adell, M. Alvaro, H. Garcia, Chem-CatChem 7 (2015) 776-780. |
[14] |
J.T. Grant, C.A. Carrero, F. Goeltl, J. Venegas, P. Mueller, S.P. Burt, S.E. Specht, W.P. McDermott, A. Chieregato, I. Hermans, Science 354 (2016) 1570-1573.
DOI URL PMID |
[15] | Z. Liu, J. Liu, S. Mateti, C. Zhang, Y. Zhang, L. Chen, J. Wang, H. Wang, E.H. Do-even, P.S. Francis, C.J. Barrow, A. Du, Y. Chen, W. Yang, ACS Nano 13 (2019) 1394-1402. |
[16] |
Z.G. Chen, J. Zou, G. Liu, F. Li, Y. Wang, L.Z. Wang, X.L. Yuan, T. Sekiguchi, H. M. Cheng, M. Lu, ACS Nano 2 (2008) 2183-2191.
DOI URL |
[17] |
Z.G. Chen, J. Zou, J. Mater. Chem. 21 (2011) 1191-1195.
DOI URL |
[18] |
X. Xu, Q. Zhang, M. Hao, Y. Hu, Z. Lin, L. Peng, T. Wang, X. Ren, C. Wang, Z. Zhao, C. Wan, H. Fei, L. Wang, J. Zhu, H. Sun, W. Chen, T. Du, B. Deng, G.J. Cheng, I. Shakir, C. Dames, T.S. Fisher, X. Zhang, H. Li, Y. Huang, X. Duan, Science 363 (2019) 723-727.
DOI URL |
[19] |
B. Wang, G. Li, L. Xu, J. Liao, X. Zhang, ACS Nano 14 (2020) 16590-16599.
DOI URL |
[20] |
P. Thang, A.P. Goldstein, J.P. Lewicki, S.O. Kucheyev, C. Wang, T.P. Russell, M.A. Worsley, L. Woo, W. Mickelson, A. Zettl, Nanoscale 7 (2015) 10449-10458.
DOI URL PMID |
[21] |
J. Pan, J. Wang, iScience 24 (2021) 102251.
DOI URL |
[22] |
A. Khanaki, Z. Xu, H. Tian, R. Zheng, Z. Zuo, J.G. Zheng, J. Liu, Sci. Rep. 7 (2017) 4087.
DOI URL |
[23] |
J.H. Kim, T.V. Pham, J.H. Hwang, C.S. Kim, M.J. Kim, Nano Converg. 5 (2018) 17.
DOI URL |
[24] |
W. Luo, Y. Wang, E. Hitz, Y. Lin, B. Yang, L. Hu, Adv. Funct. Mater. 27 (2017) 1701450.
DOI URL |
[25] |
A. Pakdel, C. Zhi, Y. Bando, T. Nakayama, D. Golberg, ACS Nano 5 (2011) 6507-6515.
DOI URL PMID |
[26] |
E. Busseron, Y. Ruff, E. Moulin, N. Giuseppone, Nanoscale 5 (2013) 7098-7140.
DOI URL PMID |
[27] |
B. Roy, P. Bairi, A.K. Nandi, RSC Adv. 4 (2014) 1708-1734.
DOI URL |
[28] |
J. Lin, L. Xu, Y. Huang, J. Li, W. Wang, C. Feng, Z. Liu, X. Xu, J. Zou, C. Tang, RSC Adv. 6 (2016) 1253-1259.
DOI URL |
[29] |
J. Pan, J. Wang, Nanoscale Adv. 2 (2020) 149-155.
DOI URL |
[30] |
G. Li, M. Zhu, W. Gong, R. Du, A. Eychmüller, T. Li, W. Lv, X. Zhang, Adv. Funct. Mater. 29 (2019) 1900188.
DOI URL |
[31] |
R.V. Gorbachev, I. Riaz, R.R. Nair, R. Jalil, L. Britnell, B.D. Belle, E.W. Hill, K.S. Novoselov, K. Watanabe, T. Taniguchi, A.K. Geim, P. Blake, Small 7 (2011) 465-468.
DOI URL PMID |
[32] |
A.R. Deshmukh, J.W. Jeong, S.J. Lee, G.U. Park, B.S. Kim, ACS Sustain. Chem. Eng. 7 (2019) 17114-17125.
DOI URL |
[33] |
J. Ling, X. Miao, Y. Sun, Y. Feng, L. Zhang, Z. Sun, M. Ji, ACS Nano 13 (2019) 14033-14040.
DOI URL |
[34] |
X. Luo, X. Lu, C. Cong, T. Yu, Q. Xiong, S.Y. Quek, Sci. Rep. 5 (2015) 14565.
DOI URL |
[35] | S. Chintalapati, X. Luo, S.Y. Quek, Raman signatures of surfaces and interface effects in two-dimensional layered materials: theoretical insights[M]// P.H. Tan. Raman spectroscopy of two-dimensional materials, Springer Singapore, Singapore, 2019, pp. 163-184. |
[36] | J. Ren, L. Stagi, P. Innocenzi, J. Mater. Sci. Mater. 56 (2020) 4053-4079. |
[37] |
T. Sainsbury, A. Satti, P. May, Z. Wang, I. McGovern, Y.K. Gun’ko, J. Coleman, J. Am. Chem. Soc. 134 (2012) 18758-18771.
DOI URL PMID |
[38] | Ö. Şen, Z. Çobandede, M. Emanet, Ö.F. Bayrak, M. Çulha, Biochimica et Biophys- ica Acta (BBA) - General Subjects 1861 (2017) 2391-2397. |
[39] |
Y. Guo, K. Ruan, X. Shi, X. Yang, J. Gu, Compos. Sci. Technol. 193 (2020) 108134.
DOI URL |
[40] |
Y. Guo, Z. Lyu, X. Yang, Y. Lu, K. Ruan, Y. Wu, J. Kong, J. Gu, Compos. B. Eng. 164 (2019) 732-739.
DOI URL |
[41] |
J. Joy, E. George, P. Haritha, S. Thomas, S. Anas, J. Polym. Sci. 58 (2020) 3115-3141.
DOI URL |
[1] | Jing Wang, Ning Wang, Mengnan Liu, Chengyue Ge, Baorong Hou, Guichang Liu, Wen Sun, Yiteng Hu, Yanli Ning. Hexagonal boron nitride/poly(vinyl butyral) composite coatings for corrosion protection of copper [J]. J. Mater. Sci. Technol., 2022, 96(0): 103-112. |
[2] | Xinyue Tang, Junchao Wang, Jing Li, Xinglai Zhang, Peiqing La, Xin Jiang, Baodan Liu. In-situ growth of large-area monolithic Fe2O3/TiO2 catalysts on flexible Ti mesh for CO oxidation [J]. J. Mater. Sci. Technol., 2021, 69(0): 119-128. |
[3] | Manigandan Ramadoss, Yuanfu Chen, Yang Hu, Bin Wang, Ramkumar Jeyagopal, Karpuraranjith Marimuthu, Xinqiang Wang, Dongxu Yang. Hierarchically porous nanoarchitecture constructed by ultrathin CoSe2 embedded Fe-CoO nanosheets as robust electrocatalyst for water oxidation [J]. J. Mater. Sci. Technol., 2021, 78(0): 229-237. |
[4] | Ying Lin, Jin Chen, Shian Dong, Guangning Wu, Pingkai Jiang, Xingyi Huang. Wet-resilient graphene aerogel for thermal conductivity enhancement in polymer nanocomposites [J]. J. Mater. Sci. Technol., 2021, 83(0): 219-227. |
[5] | Jing Li, Zhenqiang Feng, Ning Gu, Fang Yang. Superparamagnetic iron oxide nanoparticles assembled magnetic nanobubbles and their application for neural stem cells labeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 124-132. |
[6] | Yonggang Fan, Cong Wang. Growth kinetics of interfacial reaction layer products between cubic boron nitride and Cu-Sn-Ti active filler metal [J]. J. Mater. Sci. Technol., 2021, 92(0): 69-74. |
[7] | Yonggang Fan, Junxiang Fan, Cong Wang. Detailing interfacial reaction layer products between cubic boron nitride and Cu-Sn-Ti active filler metal [J]. J. Mater. Sci. Technol., 2021, 68(0): 35-39. |
[8] | Hua-Wei Zhang, Yi-Xin Lu, Bo Li, Gui-Fang Huang, Fan Zeng, Yuan-Yuan Li, Anlian Pan, Yi-Feng Chai, Wei-Qing Huang. Acid-induced topological morphology modulation of graphitic carbon nitride homojunctions as advanced metal-free catalysts for OER and pollutant degradation [J]. J. Mater. Sci. Technol., 2021, 86(0): 210-218. |
[9] | Yuyu Wei, Ping Lu, Chenxi Zhu, Kunpeng Zhao, Xun Shi, Lidong Chen, Fangfang Xu. Nano-scale compositional oscillation and phase intergrowth in Cu2S0.5Se0.5 and their role in thermal transport [J]. J. Mater. Sci. Technol., 2021, 79(0): 222-229. |
[10] | Ruijie Liu, Dongshi Zhang, Zhuguo Li. Femtosecond laser induced simultaneous functional nanomaterial synthesis, in situ deposition and hierarchical LIPSS nanostructuring for tunable antireflectance and iridescence applications [J]. J. Mater. Sci. Technol., 2021, 89(0): 179-185. |
[11] | Youzuo Hu, Hongyuan Zhao, Ming Tan, Jintao Liu, Xiaohui Shu, Meiling Zhang, Shanshan Liu, Qiwen Ran, Hao Li, Xingquan Liu. Synthesis of α-LiFeO2/Graphene nanocomposite via layer by layer self-assembly strategy for lithium-ion batteries with excellent electrochemical performance [J]. J. Mater. Sci. Technol., 2020, 55(0): 173-181. |
[12] | Tao Liu, Caizhen Zhu, Wei Wu, Kai-Ning Liao, Xianjing Gong, Qijun Sun, Robert K.Y. Li. Facilely prepared layer-by-layer graphene membrane-based pressure sensor with high sensitivity and stability for smart wearable devices [J]. J. Mater. Sci. Technol., 2020, 45(0): 241-247. |
[13] | Xing Zhou, Jian Su, Chenxi Wang, Changqing Fang, Xinyu He, Wanqing Lei, Chaoqun Zhang, Zhigang Huang. Design, preparation and measurement of protein/CNTs hybrids: A concise review [J]. J. Mater. Sci. Technol., 2020, 46(0): 74-87. |
[14] | Kunsik An, Jaehoon Kim, Mohammad Afsar Uddin, Seunghyun Rhee, Hyeok Kim, Kyung-Tae Kang, Han Young Woo, Changhee Lee. Germinant ZnO nanorods as a charge-selective layer in organic solar cells [J]. J. Mater. Sci. Technol., 2020, 55(0): 89-94. |
[15] | Xiaodan Wang, Hengchong Shi, Haoyu Tang, Huan Yu, Qiuyan Yan, Huawei Yang, Xu Zhang, Shifang Luan. Electrostatic assembly functionalization of poly (γ-glutamic acid) for biomedical antibacterial applications [J]. J. Mater. Sci. Technol., 2020, 59(0): 14-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||