J. Mater. Sci. Technol. ›› 2022, Vol. 119: 37-44.DOI: 10.1016/j.jmst.2021.12.034
• Research Article • Previous Articles Next Articles
Siyao Chenga,c, Cheng Zhangc, Hao Wangc, Jinrui Yeb,*(), Yan Lic, Qiu Zhuanga,c, Wei Dongc, Aming Xiea,*(
)
Received:
2021-11-18
Revised:
2021-12-05
Accepted:
2021-12-05
Published:
2022-08-20
Online:
2022-03-04
Contact:
Jinrui Ye,Aming Xie
About author:
xieaming@njust.edu.cn (A. Xie).Siyao Cheng, Cheng Zhang, Hao Wang, Jinrui Ye, Yan Li, Qiu Zhuang, Wei Dong, Aming Xie. Carbon nanofilm stabilized twisty V2O3 nanorods with enhanced multiple polarization behavior for electromagnetic wave absorption application[J]. J. Mater. Sci. Technol., 2022, 119: 37-44.
Fig. 2. SEM images of V2O5 (a), VO2@PPy (c) and V2O3@C (e); TEM images of V2O5 (b), VO2@PPy (d) and V2O3@C (f-j), elemental mapping of C, N, O, V (k) and overlay for V2O3@C composites (l).
Fig. 3. XRD pattern (a); FI-IR spectroscopy of V2O5, VO2@PPy, and V2O3@C (b); TG curve of VO2@Ppy (c); Raman spectroscopy of VO2@PPy, V2O3@C, and C (d); XRS spectra for V 2p (e), C 1 s (f), and N 1 s (g); EPR spectra of VO2@PPy and V2O3@C (h).
Fig. 4. The 3D-RL plots of VO2@PPy (a), V2O3@C (b), V2O3 (c) and C (d); RL curves of V2O3@C (e) and V2O3 (f); efficient bandwidth comparison (g) of V2O3@C and V2O3; comparison of the EMA performance between our work and the relevant absorbers (h).
Fig. 5. The relative complex permittivity ε′ (a) and ε″ (b), impedance matching |Z| (c) and attenuation constant α (d), the relative complex permeability μ′ and μ″ of V2O3@C (e) and dielectric loss tan δε (f).
[1] |
C.B. Liang, Z.J. Gu, Y.L. Zhang, Z.L. Ma, H. Qiu, J.W. Gu, Nano Micro Lett. 13 (2021) 181.
DOI URL |
[2] |
S. Gao, G.Z. Zhang, Y. Wang, X.P. Han, Y. Huang, P.B. Liu, J. Mater. Sci. Technol. 88 (2021) 56-65.
DOI URL |
[3] |
R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Adv. Mater. 16 (2004) 401-405.
DOI URL |
[4] | P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You, R.C. Che, Adv. Funct. Mater. 31 (2021) 2102812. |
[5] |
S.J. Zhang, B. Cheng, Z.G. Gao, D. Lan, Z.W. Zhao, F.C. Wei, Q.S. Zhu, X.P. Lu, G.L. Wu, J. Alloy. Compd. 893 (2022) 162343.
DOI URL |
[6] |
H. Sun, R.C. Che, X. You, Y.S. Jiang, Z.B. Yang, J. Deng, L.B. Qiu, H.S. Peng, Adv. Mater. 26 (2014) 8120-8125.
DOI URL |
[7] |
Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan, W. She, Y.J. Yang, R.C. Che, Adv. Mater. 28 (2016) 4 86-4 90.
DOI URL |
[8] |
S.Y. Cheng, X.H. Pan, A.M. Xie, J.Y. Shi, Q. Qiu, C. Zhang, W. Dong, X.L. Qi, Chem. Eng. J. 417 (2020) 127980.
DOI URL |
[9] |
T.T. Zheng, Z.R. Jia, Q.Q. Zhan, M.B. Ling, Y.D. Su, B.B. Wang, C.H. Zhang, G.L. Wu, Carbon 186 (2022) 262-272.
DOI URL |
[10] |
J.K. Liu, Z.R. Jia, W.H. Zhou, X.H. Liu, C.H. Zhang, B.H. Xu, G.L. Wu, Chem. Eng. J. 429 (2022) 132253.
DOI URL |
[11] |
C.Y. Liang, Z.J. Wang, Chem. Eng. J. 373 (2019) 598-605.
DOI URL |
[12] |
X.L. Ye, Z.F. Chen, S.F. Ai, B. Hou, J.X. Zhang, Q.B. Zhou, H.Z. Liu, S. Cui, A.C.S. Sustain, Chem. Eng. 7 (2019) 11386-11395.
DOI URL |
[13] |
X.H. Pan, S.Y. Cheng, C. Zhang, Y.Z. Jiao, X.P. Lin, W. Dong, X.L. Qi, Chem. Eng. J. 409 (2021) 128203.
DOI URL |
[14] |
S.Y. Cheng, C. Zhang, J.J. Li, X.H. Pan, X.R. Zhai, Y.Z. Jiao, Y. Li, W. Dong, X.L. Qi, Carbohydr. Polym. 262 (2021) 117951.
DOI URL |
[15] | Z.C. Wu, K. Pei, L.S. Xing, X.F. Yu, W.B. You, R.C. Che, Adv. Funct. Mater. 29 (2019) 1901448. |
[16] |
Y.Z. Jiao, F. Wu, A.M. Xie, L.P. Wu, W. Zhao, X.F. Zhu, X.L. Qi, Chem. Eng. J. 398 (2020) 125591.
DOI URL |
[17] |
S. Lu, L. Xia, J.M. Xu, C.H. Ding, T.T. Li, H. Yang, B. Zhong, T. Zhang, L.N. Huang, L. Xiong, X.X. Huang, G.W. Wen, ACS Appl. Mater. Interfaces 11 (2019) 18626-18636.
DOI URL |
[18] |
Y.Z. Jiao, S.Y. Cheng, F. Wu, J.Y. Shi, A.M. Xie, X.F. Zhu, W. Dong, J. Mater. Sci. Technol. 100 (2022) 206-215.
DOI URL |
[19] |
Y.Z. Jiao, S.Y. Cheng, F. Wu, X.H. Pan, A.M. Xie, X.F. Zhu, W. Dong, Compos. Part B Eng. 211 (2021) 108643.
DOI URL |
[20] |
X.Q. Cui, X.H. Liang, W. Liu, W.H. Gu, G.B. Ji, Y.W. Du, Chem. Eng. J. 381 (2020) 122589.
DOI URL |
[21] | Y. Liu, X.H. Liu, X.Y. E, B.B. Wang, Z.R. Jia, Q.G. Chi, G.L. Wu, J. Mater. Sci. Tech- nol. 103 (2022) 157-164. |
[22] |
C.X. Wang, Z.R. Jia, S.Q. He, J.X. Zhou, S. Zhang, M.L. Tian, B.B. Wang, G.L. Wu, J. Mater. Sci. Technol. 108 (2022) 236-243.
DOI URL |
[23] | J.W. Wang, Z.R. Jia, X.H. Liu, J.L. Dou, B.H. Xu, B.B. Wang, G.L. Wu, Nano Micro Lett. 13 (2021) 175. |
[24] |
J. Qiao, X. Zhang, D.M. Xu, L.X. Kong, L.F. Lv, F. Yang, F.L. Wang, W. Liu, J.R. Liu, Chem. Eng. J. 380 (2020) 122591.
DOI URL |
[25] |
J.T. Yuan, Q.C. Liu, S.K. Li, Y. Lu, S.W. Jin, K.Z. Li, H. Chen, H. Zhang, Synth. Met. 228 (2017) 32-40.
DOI URL |
[26] |
Z. Xiang, Y.M. Song, J. Xiong, Z.B. Pan, X. Wang, L. Liu, R. Liu, H.W. Yang, W. Lu, Carbon 142 (2019) 20-31.
DOI URL |
[27] | B. Quan, W.H. Shi, S.J.H. Ong, X.C. Lu, P.L. Wang, G.B. Ji, Y. Guo, L.R. Zheng, Z.J. Xu, Adv. Funct. Mater. 29 (2019) 1901236. |
[28] |
Y.C. Qing, Y. Li, W. Li, H.Y. Yao, J. Mater. Chem. C 9 (2021) 1205-1214.
DOI URL |
[29] |
Y.Y. Dong, X.J. Zhu, F. Pan, Z. Xiang, X. Zhang, L. Cai, W. Lu, Chem. Eng. J. 426 (2021) 131272.
DOI URL |
[30] |
D. Lan, Z.G. Gao, Z.H. Zhao, G.L. Wu, K.C. Kou, H.J. Wu, Chem. Eng. J. 408 (2021) 127313.
DOI URL |
[31] |
R.W. Shu, Y. Wu, J. Zhang, Z.B. Wan, X.H. Li, Compos. Part B Eng. 193 (2020) 108027.
DOI URL |
[32] |
D.M. Xu, Y.F. Yang, L.F. Lyu, A.C. Ouyang, W. Liu, Z. Wang, L.L. Wu, F. Yang, J.R. Liu, F.L. Wang, Chem. Eng. J. 410 (2021) 128295.
DOI URL |
[33] | M. Qin, L.M. Zhang, X.R. Zhao, H.J. Wu, Adv. Sci. 8 (2021) 2004640. |
[34] |
L.Y. Liang, Q.M. Li, X. Yan, Y.Z. Feng, Y.M. Wang, H.B. Zhang, X.P. Zhou, C.T. Liu, C.Y. Shen, X.L. Xie, ACS Nano 15 (2021) 6622-6632.
DOI URL |
[35] |
X.C. Zhang, X. Zhang, H.R. Yuan, K.Y. Li, Q.Y. Ouyang, C.L. Zhu, S. Zhang, Y.J. Chen, Chem. Eng. J. 383 (2020) 123208.
DOI URL |
[36] |
K. Zhang, F. Wu, Y.Z. Jiao, M.X. Sun, Y.L. Xia, A.M. Xie, J. Mater. Chem. C 7 (2019) 3590-3597.
DOI URL |
[37] | X. Dai, F. Wan, L.L. Zhang, H.M. Cao, Z.Q. Niu, Energy Storage Mater. 17 (2019) 143-150. |
[38] |
S.C. Liu, H. Zhu, B.H. Zhang, G. Li, H.K. Zhu, Y. Ren, H.B. Geng, Y. Yang, Q. Liu, C.C. Li, Adv. Mater. 32 (2020) 2001113.
DOI URL |
[39] | Z.C.Y. Zhang, B.J. Xi, X. Wang, X.J. Ma, W.H. Chen, J.K. Feng, S.L. Xiong, Adv. Funct. Mater. 31 (2021) 2103070. |
[40] | M. Li, S. Magdassi, Y.F. Gao, Y. Long, Small 13 (2017) 1701147. |
[41] | I. Top, R. Binions, M.E.A. Warwick, C.W. Dunnill, M. Holdynski, I. Abrahams, J. Mater. Chem. C 6 (2018) 4 485-4 493. |
[42] | Q. Hao, W. Li, H.Y. Xu, J.W. Wang, Y. Yin, H.Y. Wang, L.B. Ma, F. Ma, X.C. Jiang, O.G. Schmidt, P.K. Chu, Adv. Mater. 30 (2018) 1705421. |
[43] |
S. Chen, X.J. Wang, L.L. Fan, G.M. Liao, Y.L. Chen, W.S. Chu, L. Song, J. Jiang, C.W. Zou, Adv. Funct. Mater. 26 (2016) 3532-3541.
DOI URL |
[44] |
J.S. Schalch, Y.J. Chi, Y.L. He, Y.H. Tang, X.G. Zhao, X. Zhang, Q.Y. Wen, R.D. Averitt, Microw. Opt. Technol. Lett. 62 (2020) 2782-2790.
DOI URL |
[45] |
H.T. Zhang, L. Guo, G. Stone, L. Zhang, Y.X. Zheng, E. Freeman, D.W. Keefer, S. Chaudhuri, H. Paik, J.A. Moyer, M. Barth, D.G. Schlom, J.V. Badding, S. Datta, V. Gopalan, R. Engel-Herbert, Adv. Funct. Mater. 26 (2016) 6612-6618.
DOI URL |
[46] |
C.H. Zhou, C. Wu, D. Liu, M. Yan, Chem. Eur. J. 25 (2019) 2234-2241.
DOI URL |
[47] |
H. Zhang, A.J. Xie, C.P. Wang, H.S. Wang, Y.H. Shen, X.Y. Tian, ChemPhysChem 15 (2014) 366-373.
DOI URL PMID |
[48] |
N. Maruthi, M. Faisal, N. Raghavendra, B.P. Prasanna, K.R. Nandan, K. Yogesh Kumar, S.B.B. Prasad, Mater. Chem. Phys. 259 (2021) 124059.
DOI URL |
[49] |
A.K. Singh, A.N. Yadav, A. Srivastava, K.K. Haldar, M. Tomar, A.V. Alaferdov, S.A. Moshkalev, V. Gupta, K. Singh, Nanotechnology 30 (2019) 505704.
DOI URL |
[50] |
A. Puthiyedath Narayanan, K.N. Narayanan Unni, K. Peethambharan Surendran, Chem. Eng. J. 408 (2021) 127239.
DOI URL |
[51] |
S.Y. Cheng, A.M. Xie, X.H. Pan, K.X. Zhang, C. Zhang, X.P. Lin, W. Dong, J. Mater. Chem. C 9 (2021) 9158-9168.
DOI URL |
[52] |
J.J. Ding, L. Wang, Y.H. Zhao, L.S. Xing, X.F. Yu, G.Y. Chen, J. Zhang, R.C. Che, Small 15 (2019) 1902885.
DOI URL |
[53] |
Y. Chen, P. Lian, J.B. Feng, Y. Liu, L.J. Wang, J.Q. Liu, X.C. Shi, Chem. Eng. J. 429 (2022) 132274.
DOI URL |
[54] |
M.H. Yu, Y. Zeng, Y. Han, X.Y. Cheng, W.X. Zhao, C.L. Liang, Y.X. Tong, H.L. Tang, X.H. Lu, Adv. Funct. Mater. 25 (2015) 3534-3540.
DOI URL |
[55] |
P.B. Liu, S. Gao, Y. Wang, F.T. Zhou, Y. Huang, J.H. Luo, Compos. Part B Eng. 202 (2020) 108406.
DOI URL |
[56] |
W.H. Gu, X.Q. Cui, J. Zheng, J.W. Yu, Y. Zhao, G.B. Ji, J. Mater. Sci. Technol. 67 (2021) 265-272.
DOI URL |
[57] |
J.W. Wang, B.B. Wang, Z. Wang, L. Chen, C.H. Gao, B.H. Xu, Z.R. Jia, G.L. Wu, J. Colloid Interface Sci. 586 (2021) 479-490.
DOI URL |
[58] |
T.Q. Hou, Z.R. Jia, A.L. Feng, Z.H. Zhou, X.H. Liu, H.L. Lv, G.L. Wu, J. Mater. Sci. Technol. 68 (2021) 61-69.
DOI URL |
[59] | Y.Z. Jiao, J.J. Li, A.M. Xie, F. Wu, K. Zhang, W. Dong, X.F. Zhu, Compos. Sci. Tech- nol. 174 (2019) 232-240. |
[60] |
F. Wu, M.X. Sun, C.C. Chen, T. Zhou, Y.L. Xia, A.M. Xie, Y.F. Shang, ACS Sustain. Chem. Eng. 7 (2018) 2100-2106.
DOI URL |
[61] |
Y.Z. Jiao, Z.M. Ye, F. Wu, A.M. Xie, W. Zhao, L.P. Wu, X.F. Zhu, W. Dong, ACS Appl. Nano Mater. 3 (2020) 4553-4561.
DOI URL |
[62] |
C. Xu, F. Wu, L.Q. Duan, Z.M. Xiong, Y.L. Xia, Z.Q. Yang, M.X. Sun, A.M. Xie, ACS Appl. Electron. Mater. 2 (2020) 1505-1513.
DOI URL |
[1] | Yue Liu, Xuehua Liu, Xinyu E, Bingbing Wang, Zirui Jia, Qingguo Chi, Guanglei Wu. Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption [J]. J. Mater. Sci. Technol., 2022, 103(0): 157-164. |
[2] | Jun He, Shengtao Gao, Yuanchun Zhang, Xingzhao Zhang, Hanxu Li. N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 104(0): 98-108. |
[3] | Fenghui Cao, Jia Xu, Minjie Liu, Feng Yan, Qiuyun Ouyang, Xitian Zhang, Xiaoli Zhang, Yujin Chen. Regulation of impedance matching feature and electronic structure of nitrogen-doped carbon nanotubes for high-performance electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 108(0): 1-9. |
[4] | Chenxi Wang, Zirui Jia, Shuangqiao He, Jixi Zhou, Shuo Zhang, Mengli Tian, Bingbing Wang, Guanglei Wu. Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation [J]. J. Mater. Sci. Technol., 2022, 108(0): 236-243. |
[5] | Hua Jian, Qinrui Du, Qiaoqiao Men, Li Guan, Ruosong Li, Bingbing Fan, Xin Zhang, Xiaoqin Guo, Biao Zhao, Rui Zhang. Structure-dependent electromagnetic wave absorbing properties of bowl-like and honeycomb TiO2/CNT composites [J]. J. Mater. Sci. Technol., 2022, 109(0): 105-113. |
[6] | Zhen Yu, Rui Zhou, Mingwei Ma, Runqiu Zhu, Peng Miao, Pei Liu, Jie Kong. ZnO/nitrogen-doped carbon nanocomplex with controlled morphology for highly efficient electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 114(0): 206-214. |
[7] | Weijie Zhang, Xizhong Zhou, Jinzhao Huang, Shouwei Zhang, Xijin Xu. Noble metal-free core-shell CdS/iron phthalocyanine Z-scheme photocatalyst for enhancing photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2022, 115(0): 199-207. |
[8] | Fei Pan, Lei Cai, Yanyan Dong, Xiaojie Zhu, Yuyang Shi, Wei Lu. Mixed-dimensional hierarchical configuration of 2D Ni2P nanosheets anchored on 1D silk-derived carbon fiber for extraordinary electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 101(0): 85-94. |
[9] | Yingzhi Jiao, Siyao Cheng, Fan Wu, Jiaoyan Shi, Aming Xie, Xufei Zhu, Wei Dong. Microporous polythiophene (MPT)-guest complex derived magnetic metal sulfides/carbon nanocomposites for broadband electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 100(0): 206-215. |
[10] | Ting-Ting Liu, Mao-Qing Cao, Yong-Sheng Fang, Yu-Hang Zhu, Mao-Sheng Cao. Green building materials lit up by electromagnetic absorption function: A review [J]. J. Mater. Sci. Technol., 2022, 112(0): 329-344. |
[11] | Chunhua Sun, Zirui Jia, Shuang Xu, Dongqi Hu, Chuanhui Zhang, Guanglei Wu. Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 113(0): 128-137. |
[12] | Zibao Jiao, Wenjun Huyan, Junru Yao, Zhengjun Yao, Jintang Zhou, Peijiang Liu. Heterogeneous ZnO@CF structures and their excellent microwave absorbing properties with thin thickness and low filling [J]. J. Mater. Sci. Technol., 2022, 113(0): 166-174. |
[13] | Fan Wang, Weihua Gu, Jiabin Chen, Qianqian Huang, Mingyang Han, Gehuan Wang, Guangbin Ji. Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption [J]. J. Mater. Sci. Technol., 2022, 105(0): 92-100. |
[14] | Rui Guo, Qi Zheng, Lianjun Wang, Yuchi Fan, Wan Jiang. Porous N-doped Ni@SiO2/graphene network: Three-dimensional hierarchical architecture for strong and broad electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 108-117. |
[15] | Biao Zhao, Yang Li, Qingwen Zeng, Bingbing Fan, Lei Wang, Rui Zhang, Renchao Che. Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption [J]. J. Mater. Sci. Technol., 2022, 107(0): 100-110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||