J. Mater. Sci. Technol. ›› 2022, Vol. 119: 45-52.DOI: 10.1016/j.jmst.2021.10.025
• Research Article • Previous Articles Next Articles
Cailing Songa, Wen Zhanga, Qianwen Jina, Yan Zhaoa,*(), Yongguang Zhanga,*(
), Xin Wangb,*(
), Zhumabay Bakenovc
Received:
2021-08-02
Revised:
2021-09-18
Accepted:
2021-10-11
Published:
2022-08-20
Online:
2022-01-08
Contact:
Yan Zhao,Yongguang Zhang,Xin Wang
About author:
wangxin@scnu.edu.cn (X. Wang).Cailing Song, Wen Zhang, Qianwen Jin, Yan Zhao, Yongguang Zhang, Xin Wang, Zhumabay Bakenov. Oxidized Nb2C MXene as catalysts for lithium-sulfur batteries: Mitigating the shuttle phenomenon by facilitating catalytic conversion of lithium polysulfides[J]. J. Mater. Sci. Technol., 2022, 119: 45-52.
Fig. 1. SEM images of (a) Nb2C, (b) Nb2O5/C and (c) corresponding elemental mapping of Nb2O5/C. (d) TEM image of Nb2O5/C. (e) HRTEM image and (f) corresponding its FFT, inverse FFT, and lattice spacing images of Nb2O5/C. (g) High-magnification elemental mapping of Nb2O5/C.
Fig. 2. (a) XRD patterns, (b) Raman spectra, (c) Nb 3d, (d) O 1s XPS spectra, (e) nitrogen adsorption/desorption isotherms of the Nb2O5/C and Nb2O5. (f) TGA profiles of the S/Nb2O5/C and S/Nb2O5.
Fig. 3. (a) Schematic illustration of LiPSs conversion on Nb2O5/C. (b) Photographs and UV-vis spectra of Li2S6 solution adsorbed by Nb2O5 and Nb2O5/C. (c) S 2p high-resolution XPS spectra of pristine Li2S6 and Li2S6 adsorbed by Nb2O5/C. (d) The Gibbs free energy profiles of LiPSs on Nb2O5/C and Nb2O5. (e) Binding energies of LiPSs on Nb2O5/C and Nb2O5. Calculated density of states of (f) Nb2O5 and (g) Nb2O5/C.
Fig. 4. (a) CV curves at 6 mV s-1 of Nb2O5/C and Nb2O5 symmetric cells. (b) The first three CV curves of Nb2O5/C symmetric cell at 6 mV s-1. (c) The EIS plots of Nb2O5/C and Nb2O5 symmetric cells. Li2S deposition profiles of (d) Nb2O5/C and (e) Nb2O5. (f) The LSV curves of Li2S oxidization for Nb2O5 and Nb2O5/C.
Fig. 5. (a) CV curves of S/Nb2O5/C electrode at 0.1 mV s-1. (b) The voltage profile of S/Nb2O5/C and (c) cycling performance of S/Nb2O5/C and S/Nb2O5 electrodes at 0.2 C. (d) The rate performances of S/Nb2O5/C and S/Nb2O5 electrodes and (e) voltage profile of S/Nb2O5/C electrodes from 0.2 C to 3.0 C. (f) The EIS plots of S/Nb2O5/C and S/Nb2O5 electrodes. (g) Long cyclic performances of S/Nb2O5/C and S/Nb2O5 electrodes at 1.0 C for 300 cycles. (h) Cycle performance at 0.1 C of S/Nb2O5/C under raised sulfur loading and limited electrolyte.
[1] |
S. Wang, X. Liu, H. Duan, Y. Deng, G. Chen, Chem. Eng. J. 415 (2021) 129001.
DOI URL |
[2] |
H. Pan, X. Huang, C. Wang, D. Liu, D. Wang, R. Zhang, S. Li, C. Lv, L. Zhao, J. Wang, X. Huang, Chem. Eng. J. 410 (2021) 128424.
DOI URL |
[3] |
H. Yuan, X. Chen, G. Zhou, W. Zhang, J. Luo, H. Huang, Y. Gan, C. Liang, Y. Xia, J. Zhang, J. Wang, X. Tao, ACS Energy Lett. 2 (2017) 1711-1719.
DOI URL |
[4] | T. Sun, X. Zhao, B. Li, H. Shu, L. Luo, W. Xia, M. Chen, P. Zeng, X. Yang, P. Gao, Y. Pei, X. Wang, Adv. Funct. Mater. 31 (2021) 2101285. |
[5] |
Y. Liang, W. Kang, C. Zhong, N. Deng, B. Cheng, Chem. Eng. J. 403 (2021) 126449.
DOI URL |
[6] |
F. Ma, X. Wang, J. Wang, Y. Tian, J. Liang, Y. Fan, L. Wang, T. Wang, R. Cao, S. Jiao, J. Han, Y. Huang, Q. Li, Electrochim. Acta 330 (2020) 135310.
DOI URL |
[7] |
D.K. Lee, Y. Chae, H. Yun, C.W. Ahn, J.W. Lee, ACS Nano 14 (2020) 9744-9754.
DOI URL |
[8] |
J. Shen, X. Xu, J. Liu, Z. Liu, F. Li, R. Hu, J. Liu, X. Hou, Y. Feng, Y. Yu, M. Zhu, ACS Nano 13 (2019) 8986-8996.
DOI URL |
[9] |
Y. Zhou, H. Shu, Y. Zhou, T. Sun, M. Hua, Y. Chen, M. Chen, Z. Chen, X. Yang, X. Wang, J. Power Sources 453 (2020) 227896.
DOI URL |
[10] |
W. Lei, X. Wang, Y. Zhang, Z. Luo, P. Xia, Y. Zou, Z. Ma, Y. Pan, S. Lin, J. Alloy. Compd. 853 (2021) 157024.
DOI URL |
[11] |
T. Sun, C. Huang, H. Shu, L. Luo, Q. Liang, M. Chen, J. Su, X. Wang, ACS Appl. Mater. Interfaces 12 (2020) 57975-57986.
DOI URL |
[12] |
S. Li, H. Zhang, W. Chen, Y. Zou, H. Yang, J. Yang, C. Peng, ACS Appl. Mater. Interfaces 12 (2020) 25767-25774.
DOI URL |
[13] |
C. Huang, Y. Zhou, H. Shu, M. Chen, Q. Liang, S. Jiang, X. Li, T. Sun, M. Han, Y. Zhou, J. Jian, X. Wang, Electrochim. Acta 329 (2020) 135135.
DOI URL |
[14] | L. Jiao, C. Zhang, C. Geng, S. Wu, H. Li, W. Lv, Y. Tao, Z. Chen, G. Zhou, J. Li, G. Li, Y. Wan, Q. Yang, Adv. Energy Mater. 9 (2019) 1900219. |
[15] |
H. Zhang, G. Liu, J. Li, H. Cui, Y. Liu, M. Wang, J. Mater. Sci. 56 (2020) 4328-4340.
DOI URL |
[16] |
Y. Huang, S. Chen, Z. Wu, J. Wang, Q. Deng, Z. Zeng, S. Deng, Electrochim. Acta 343 (2020) 136148.
DOI URL |
[17] |
R. Zhang, M. Wu, X. Fan, H. Jiang, T. Zhao, J. Energy Chem. 55 (2021) 136-144.
DOI URL |
[18] | T. Chen, Z. Shang, B. Yuan, N. Wu, M. Abuzar, J. Yang, X. Gu, C. Miao, M. Ling, S. Li, Energy Technol. 8 (2020) 2000302. |
[19] |
T. Zhang, F. Hu, C. Song, S. Li, W. Shao, S. Liu, H. Peng, S. Hu, X. Jian, Chem. Eng. J. 407 (2021) 127141.
DOI URL |
[20] |
H. Zhang, P. Zhang, L. Pan, W. He, Q. Qi, Z. Bao, L. Yang, W. Zhang, M.W. Bar- soum, Z. Sun, Nanoscale 12 (2020) 24196-24205.
DOI URL PMID |
[21] | R. Wang, J. Yang, X. Chen, Y. Zhao, W. Zhao, G. Qian, S. Li, Y. Xiao, H. Chen, Y. Ye, G. Zhou, F. Pan, Adv. Energy Mater. 10 (2020) 1903550. |
[22] |
P. Lu, H. Shi, J. Qin, Z.S. Wu, FlatChem 24 (2020) 100209.
DOI URL |
[23] |
Q. Ma, M. Hu, Y. Yuan, Y. Pan, M. Chen, Y. Zhang, D. Long, J. Colloid Interface Sci. 566 (2020) 11-20.
DOI URL |
[24] |
Y. Tao, Y. Wei, Y. Liu, J. Wang, W. Qiao, L. Ling, D. Long, Energy Environ. Sci. 9 (2016) 3230-3239.
DOI URL |
[25] | H. Li, Z. Ge, Y. Zheng, Y. Xue, G. Bai, J. Wang, K. Zhuo, Y. Wang, ChemComm 55 (2019) 1991-1994. |
[26] | L. Du, H. Duan, Q. Xia, C. Jiang, Y. Yan, S. Wu, Chem. Select 5 (2020) 1186-1192. |
[27] |
C. Peng, P. Wei, X. Chen, Y. Zhang, F. Zhu, Y. Cao, H. Wang, H. Yu, F. Peng, Ceram. Int. 44 (2018) 18886-18893.
DOI URL |
[28] |
W.L. Zhang, J. Tian, H. Zeng, J. Liu, Y. Tian, Chem. Eng. J. 366 (2019) 321-329.
DOI URL |
[29] |
T. Su, R. Peng, Z.D. Hood, M. Naguib, I.N. Ivanov, J.K. Keum, Z. Qin, Z. Guo, Z. Wu, ChemSusChem 11 (2018) 688-699.
DOI URL |
[30] |
D. Zu, H. Song, Y. Wang, Z. Chao, Z. Li, G. Wang, Y. Shen, C. Li, J. Ma, Appl. Catal. B Environ. 277 (2020) 119140.
DOI URL |
[31] |
L. She, F. Zhang, C. Jia, L. Kang, Q. Li, X. He, J. Sun, Z. Lei, Z.H. Liu, J. Colloid Interface Sci. 573 (2020) 1-10.
DOI URL |
[32] |
J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi, J. Rosen, M.W. Barsoum, Appl. Surf. Sci. 362 (2016) 406-417.
DOI URL |
[33] |
P. Guo, K. Sun, X. Shang, D. Liu, Y. Wang, Q. Liu, Y. Fu, D. He, Small 15 (2019) e1902363.
DOI URL |
[34] |
K.D. Nam, A. Ishihara, K. Matsuzawa, S. Mitsushima, K. Ota, Electrochem. Solid State 12 (2009) B158-B160.
DOI URL |
[35] |
J. Zhang, G. Li, Y. Zhang, W. Zhang, X. Wang, Y. Zhao, J. Li, Z. Chen, Nano Energy 64 (2019) 103905.
DOI URL |
[36] | Y. Tian, G. Li, Y. Zhang, D. Luo, X. Wang, Y. Zhao, H. Liu, P. Ji, X. Du, J. Li, Z. Chen, Adv. Mater. 32 (2020) e1904876. |
[37] |
G. Cui, G. Li, D. Luo, Y. Zhang, Y. Zhao, D. Wang, J. Wang, Z. Zhang, X. Wang, Z. Chen, Nano Energy 72 (2020) 104685.
DOI URL |
[38] |
Y. Tian, Y. Zhao, Y. Zhang, L. Ricardez-Sandoval, X. Wang, J. Li, ACS Appl. Mater. Interfaces 11 (2019) 23271-23279.
DOI URL |
[39] | D. Zhang, S. Wang, R. Hu, J. Gu, Y. Cui, B. Li, W. Chen, C. Liu, J. Shang, S. Yang, Adv. Funct. Mater. 30 (2020) 2002471. |
[40] | Y. Zhang, G. Li, J. Wang, G. Cui, X. Wei, L. Shui, K. Kempa, G. Zhou, X. Wang, Z. Chen, Adv. Funct. Mater. 30 (2020) 2001165. |
[41] |
D. Wang, D. Luo, Y. Zhang, Y. Zhao, G. Zhou, L. Shui, Z. Chen, X. Wang, Nano Energy 81 (2021) 105602.
DOI URL |
[42] |
W. Wang, J. Li, Q. Jin, Y. Liu, Y. Zhang, Y. Zhao, X. Wang, A. Nurpeissova, Z. Bakenov, ACS Appl. Energy Mater. 4 (2021) 1687-1695.
DOI URL |
[43] | J. Wang, G. Li, D. Luo, Y. Zhang, Y. Zhao, G. Zhou, L. Shui, X. Wang, Z. Chen, Adv. Energy Mater. 10 (2020) 2002076. |
[44] | C. Xiong, G.Y. Zhu, H.R. Jiang, Q. Chen, T.S. Zhao, Energy Storage Mater. 33 (2020) 147-157. |
[1] | Jingqi Chen, Xianlei Hu, Haitao Gao, Shu Yan, Shoudong Chen, Xianghua Liu. Graphene-wrapped MnCO3/Mn3O4 nanocomposite as an advanced anode material for lithium-ion batteries: Synergistic effect and electrochemical performances [J]. J. Mater. Sci. Technol., 2022, 99(0): 9-17. |
[2] | Daxian Zuo, Cuiping Wang, Jiajia Han, Qinghao Han, Yanan Hu, Junwei Wu, Huajun Qiu, Qian Zhang, Xingjun Liu. One-step synthesis of novel core-shell bimetallic hexacyanoferrate for high performance sodium-storage cathode [J]. J. Mater. Sci. Technol., 2022, 114(0): 180-190. |
[3] | Yun Tian, Zhengyu Wei, Fan Li, Songjie Li, Lixiang Shao, Mengyuan He, Panfei Sun, Yuanyuan Li. Enhanced multiple anchoring and catalytic conversion of polysulfides by SnO2-decorated MoS2 hollow microspheres for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 100(0): 216-223. |
[4] | Di Wu, Wen Ren, Yanna NuLi, Jun Yang, Jiulin Wang. Recent progress on selenium-based cathode materials for rechargeable magnesium batteries: A mini review [J]. J. Mater. Sci. Technol., 2021, 91(0): 168-177. |
[5] | Bo Yu, Fei Ma, Dongjiang Chen, Katam Srinivas, Xiaojuan Zhang, Xinqiang Wang, Bin Wang, Wanli Zhang, Zegao Wang, Weidong He, Yuanfu Chen. MoP QDs@graphene as highly efficient electrocatalyst for polysulfide conversion in Li-S batteries [J]. J. Mater. Sci. Technol., 2021, 90(0): 37-44. |
[6] | Mingxing Liang, Yongcong Huang, Yuda Lin, Guisheng Liang, Cihui Huang, Lan Chen, Jiaxin Li, Qian Feng, Chunfu Lin, Zhigao Huang. Micro-nano structured VNb9O25 anode with superior electronic conductivity for high-rate and long-life lithium storage [J]. J. Mater. Sci. Technol., 2021, 83(0): 66-74. |
[7] | Ji Won Kim, Kwangeun Jung, Taeeun Yim. Dually-functionalized Ni-rich layered oxides for high-capacity lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 86(0): 70-76. |
[8] | Ning Zhang, Ying Li, Yifan Qiao. Boosting the electrochemical performance of LiNi0.6Mn0.2Co0.2O2 through a trace amount of Mg-B co-doping [J]. J. Mater. Sci. Technol., 2021, 89(0): 167-178. |
[9] | Limin Zhu, Zhen Li, Guochun Ding, Lingling Xie, Yongxia Miao, Xiaoyu Cao. Review on the recent development of Li3VO4 as anode materials for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 89(0): 68-87. |
[10] | Zhuosen Wang, Xijun Xu, Shaomin Ji, Zhengbo Liu, Dechao Zhang, Jiadong Shen, Jun Liu. Recent progress of flexible sulfur cathode based on carbon host for lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 56-72. |
[11] | Xiayu Lu, Li Liu, Xuan Xie, Yu Cui, Emeka E. Oguzie, Fuhui Wang. Synergetic effect of graphene and Co(OH)2 as cocatalysts of TiO2 nanotubes for enhanced photogenerated cathodic protection [J]. J. Mater. Sci. Technol., 2020, 37(0): 55-63. |
[12] | Bozhou Chen, Bangchuan Zhao, Jiafeng Zhou, Zhitang Fang, Yanan Huang, Xuebin Zhu, Yuping Sun. Surface modification with oxygen vacancy in Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2019, 35(6): 994-1002. |
[13] | Chongjia Zhu, Zhiqiu Wu, Jian Xie, Zhen Chen, Jian Tu, Gaoshao Cao, Xinbing Zhao. Solvothermal-assisted morphology evolution of nanostructured LiMnPO4 as high-performance lithium-ion batteries cathode [J]. J. Mater. Sci. Technol., 2018, 34(9): 1544-1549. |
[14] | Jun-Rui Wang, Feng Wan, Qiu-Feng Lü, Fei Chen, Qilang Lin. Self-nitrogen-doped porous biochar derived from kapok (Ceiba insignis) fibers: Effect of pyrolysis temperature and high electrochemical performance [J]. J. Mater. Sci. Technol., 2018, 34(10): 1959-1968. |
[15] | Opra Denis P., Gnedenkov Sergey V., Sinebryukhov Sergey L., Voit Elena I., Sokolov AlexanderA., Modin Evgeny B., Podgorbunsky Anatoly B., Sushkov Yury V., Zheleznov Veniamin V.. Characterization and Electrochemical Properties of Nanostructured Zr-Doped Anatase TiO2 Tubes Synthesized by Sol-Gel Template Route [J]. J. Mater. Sci. Technol., 2017, 33(6): 527-534. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||