J. Mater. Sci. Technol. ›› 2022, Vol. 119: 53-60.DOI: 10.1016/j.jmst.2021.11.067
• Research Article • Previous Articles Next Articles
Yang Guoa, Qixin Zhoua, Xiaolin Chena, Yunzhi Fua,*(), Shenyu Lanb,*(
), Mingshan Zhub, Yukou Duc
Received:
2021-10-09
Revised:
2021-11-14
Accepted:
2021-11-27
Published:
2022-08-20
Online:
2022-03-02
Contact:
Yunzhi Fu,Shenyu Lan
About author:
lanshenyu@jnu.edu.cn (S. Lan).Yang Guo, Qixin Zhou, Xiaolin Chen, Yunzhi Fu, Shenyu Lan, Mingshan Zhu, Yukou Du. Near-infrared response Pt-tipped Au nanorods/g-C3N4 realizes photolysis of water to produce hydrogen[J]. J. Mater. Sci. Technol., 2022, 119: 53-60.
Sample code | g-C3N4 (mg) | Au (mg/L) | Pt (mg/L) |
---|---|---|---|
CN | 10 | 0 | 0 |
0.1-Pt-Au/CN | 10 | 2.14 | 0.294 |
0.5-Pt-Au/CN | 10 | 10.70 | 1.470 |
1.0-Pt-Au/CN | 10 | 21.40 | 2.940 |
2.0-Pt-Au/CN | 10 | 42.80 | 5.880 |
Table 1. Different amounts of Au and Pt in Pt-Au/CN catalysts.
Sample code | g-C3N4 (mg) | Au (mg/L) | Pt (mg/L) |
---|---|---|---|
CN | 10 | 0 | 0 |
0.1-Pt-Au/CN | 10 | 2.14 | 0.294 |
0.5-Pt-Au/CN | 10 | 10.70 | 1.470 |
1.0-Pt-Au/CN | 10 | 21.40 | 2.940 |
2.0-Pt-Au/CN | 10 | 42.80 | 5.880 |
Fig. 1. Typical TEM (A) and HRTEM (B) images of 0.5-Pt-Au/CN; Zeta potentials of CN and Pt-Au (C); XRD patterns of the as-prepared CN, 0.1-Pt-Au/CN, 0.5-Pt-Au/CN, 1.0-Pt-Au/CN and 2.0-Pt-Au/CN (D); XPS spectra of 0.5-Pt-Au/CN: Au 4f (E) and Pt 4f (F) regions.
Fig. 3. Photocatalytic decomposition of water to produce H2 by using different samples under NIR light irradiation (A); H2 production with 4 cycles under NIR light irradiation by using 0.5-Pt-Au/CN (B).
Fig. 4. Photocatalytic degradation of TCH by 0.5-Pt-Au/CN respectively with different scavengers under full spectrum light irradiation: superoxide dismutase (SOD, 0.40 g L-1), isopropyl alcohol (1.00 mmol L-1), methanol (5%) (A), kinetic curves of TCH degradation with different photocatalytic conditions (B), EPR spectra of DMPO-·O2- (methanol) (C), and EPR spectra of DMPO-·OH (H2O) (D).
Fig. 5. Transient photocurrent responses of CN and 0.5-Pt-Au/CN with NIR light irradiation on/off (A). PL spectra of pure CN and 0.5-Pt-Au/CN with excitation of 392 nm (B).
Fig. 7. Absorption spectra calculated by FDTD of a single. 21 × 100 nm Au NR (black line) and an Pt-Au that 5 nm radius Pt nanoparticles are deposited on both ends (red line) (A). Spatial distribution of electrical field strength enhancement induced by SPR from FDTD simulation for Au NR x-z plane (B), Pt-tipped Au NR x-z plane (C).
[1] |
K. Bhunia, M. Chandra, S. Khilari, D. Pradhan, ACS Appl. Mater. Interfaces 11 (2019) 478-488.
DOI URL |
[2] |
S.M. Mao, J.W. Shi, G.T. Sun, D.D. Ma, C. He, Z.X. Pu, K.L. Song, Y.H. Cheng, Appl. Catal. B: Environ. 282 (2021) 119550.
DOI URL |
[3] |
S.M. Mao, J.W. Shi, G.T. Sun, Y.j. Zhang, X. Ji, Y.X. Lv, B.R. Wang, Y.R. Xu, Y.H. Cheng, Chem. Eng. J. 404 (2021) 126533.
DOI URL |
[4] |
L. Mao, X.Y. Cai, M.S. Zhu, Rare Metals 40 (2021) 1067-1076.
DOI URL |
[5] |
J. Zhang, M. Zhang, R.Q. Sun, X. Wang, Angew. Chem., Int. Ed. 51 (2012) 10145-10149.
DOI URL |
[6] |
J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114 (2014) 9919-9986.
DOI PMID |
[7] |
X.Y. Shen, H.M. Shao, Y. Liu, Y.C. Zhai, J. Mater. Sci. Technol. 51 (2020) 1-7.
DOI URL |
[8] |
Y.X. Bi, Y.L. Yang, X.L. Shi, L.Feng, X.J.Hou, X.H.Ye, L. Zhang, G.Q. Suo, S.Y. Lu, Z.G. Chen, J. Mater. Sci. Technol. 83 (2021) 102-112.
DOI URL |
[9] |
Y. Chen, M.j. Xu, J.Y. Wen, Y. Wan, Zhao Q.F, X. Cao, Y. Ding, Z.L. Wang, H.X. Li, Z.F. Bian, Nat. Sustain. 4 (2021) 618-626.
DOI URL |
[10] |
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8 (2009) 76-80.
DOI URL |
[11] | W. Zhao, T.T. She, J.Y. Zhang, G.X. Wang, S.J. Zhang, W. Wei, G. Yang, L.L. Zhang, D.H. Xia, Z.P. Cheng, H.B. Huang, D.Y.C. Leung, Mater. Sci. Technol. 85 (2021) 18-29. |
[12] |
P.F. Xia, L.M. Jin, B. Cheng, J.G. Yu, L.Y. Zhang, ACS Sustain. Chem. Eng. 6 (2018) 8945-8953.
DOI URL |
[13] | L.L. Zhang, W.X. Peng, Y.K. Li, R. Qin, D. Yue, C.J. Ge, J.J. Liao, J. Mater. Sci. Tech- nol. 90 (2021) 143-149. |
[14] |
P.F. Xia, S.W. Cao, B.C. Zhu, M.J. Liu, M.S. Shi, J.G. Yu, Y.F. Zhang, Angew. Chem. Int. Ed. 59 (2020) 5218-5225.
DOI URL |
[15] |
Q.Q. Liu, X.D. He, J.J. Peng, X.H. Yu, H. Tang, J. Zhang, Chin. J. Catal. 42 (2021) 1478-1487.
DOI URL |
[16] |
R.L. Yin, B.H. Jing, S.X. He, J.Y. Hu, G. Lua, Z.M. Ao, C.Y. Wang, M.S. Zhu, Water Res 190 (2021) 116720.
DOI URL |
[17] |
M.S. Zhu, M. Fujitsuka, L.X. Zeng, M.h. Liu, T. Majima, Appl. Catal. B-Environ. 256 (2019) 117864.
DOI URL |
[18] | Y. Yang, H.Y. Tan, B. Cheng, J.J. Fan, J.G. Yu, W.k. Ho, Small Methods 5 (2021) 2001402. |
[19] |
L.H. Lin, Z.Y. Yu, X.C. Wang, Angew. Chem. Int. Ed. 58 (2019) 6164-6175.
DOI URL |
[20] |
S. Wang, J. Zhan, K. Chen, A. Ali, L. Zeng, H. Zhao, W. Hu, L. Zhu, X. Xu, ACS Sustain. Chem. Eng. 8 (2020) 8214-8222.
DOI URL |
[21] |
Z.A. Lan, G.G. Zhang, X.C. Wang, Appl. Catal. B: Environ. 192 (2016) 116-125.
DOI URL |
[22] |
J. Fu, C. Bie, B. Cheng, C. Jiang, J. Yu, ACS Sustain. Chem. Eng. 6 (2018) 2767-2779.
DOI URL |
[23] |
X.Y. Cai, Z.T. Zeng, Y.D. Liu, Z.H. Li, X.Q. Gu, Y.L. Zhao, L. Mao, J.Y. Zhang, Appl. Catal. B: Environ. 297 (2021) 120391.
DOI URL |
[24] |
S.H. Zang, G.G. Zhang, Z.A. Lan, D.D. Zheng, X.C. Wang, Appl. Catal. B-Environ. 251 (2019) 102-111.
DOI URL |
[25] |
J. Jiang, J.G. Yu, S.W. Cao, J. Colloid Interface Sci. 461 (2016) 56-63.
DOI URL |
[26] |
F.X. Tong, X.Z. Liang, F.H. Ma, X.L. Bao, Z.Y. Wang, Y.Y. Liu, P. Wang, H.F. Cheng, Y. Dai, B.B. Huang, Z.K. Zheng, ACS Catal. 11 (2021) 3801-3809.
DOI URL |
[27] |
D.M. Ruan, J.W. Xue, M. Fujitsuka, T. Majima, Chem. Commun. 55 (2019) 6014.
DOI URL |
[28] |
J.Y. Hu, Z. Li, C.Y. Zhai, J.F. Wang, L.X. Zeng, M.S. Zhu, Rare Metals 40 (2021) 1727-1737.
DOI URL |
[29] |
H.R. Cai, B. Wang, L.F. Xiong, G. Yang, L.Y. Yuan, J.L. Bi, X.J. Yu, X.J. Zhang, S. Yang, S.C. Yang, Chem. Eng. J. 394 (2020) 124964.
DOI URL |
[30] | Z.Z. Lou, S. Kim, M. Fujitsuka, X.G. Yang, B.J. Li, T. Majima, Adv. Funct. Mater. 28 (2018) 1706969. |
[31] | L.S. Zhang, N. Ding, L.C. Lou, K. Iwasaki, H.J. Wu, Y.H. Luo, D.M. Li, K. Nakata, A. Fujishima, Q.B. Men, Adv. Funct. Mater. 29 (2019) 1806774. |
[32] |
X.Y. Cai, M.S. Zhu, O.A. Elbanna, M. Fujitsuka, S. Kim, L. Mao, J.Y. Zhang, T. Ma- jima, ACS Catal. 8 (2018) 122-131.
DOI URL |
[33] |
G.Y. Chen, M.J. Sun, J. Li, M.S. Zhu, Z.Z. Lou, B.J. Li, Nanoscale 11 (2019) 18874.
DOI URL |
[34] |
Z.K. Zheng, T. Tachikawa, T. Majima, J. Am. Chem. Soc. 136 (2014) 6870-6873.
DOI URL |
[35] |
K.K. Patra, C.S. Gopinath, J. Phys. Chem. C. 122 (2018) 1206-1214.
DOI URL |
[36] |
B.P. Khanal, E.R. Zubarev, Chem. Eur. J. 25 (2019) 1595-1600.
DOI URL |
[37] |
X. Zhu, J. Shi, H. Ma, R. Chen, J. Li, S. Cao, Mater. Sci. Eng. C. 99 (2019) 1236-1245.
DOI URL |
[38] |
Z. Zhang, Z. Wang, S.W. Cao, C. Xue, J. Phys. Chem. C. 117 (2013) 25939-25947.
DOI URL |
[39] |
J.X. Sun, Y.P. Yuan, L.G. Qiu, X. Jiang, A.J. Xie, Y.H. Shen, J.F. Zhu, Dalton Trans 41 (2012) 6756-6763.
DOI PMID |
[40] |
X.P. Sun, S.J. Dong, E.K. Wang, Angew. Chem. Int. Ed. 43 (2004) 6360-6363.
DOI URL |
[41] | J.N. Zheng, S.S. Li, X. Ma, F.Y. Chen, A.J. Wang, J.R. Chen, J.J. Feng, J. Phys. Chem. B. 2 (2014) 8386-8395. |
[42] |
B. Singh, F. Laffir, T. McCormac, E. Dempsey, Sens. Actuat. B Chem. 150 (2010) 80-92.
DOI URL |
[43] |
P. Song, L.P. Mei, A.J. Wang, K.M. Fang, J.J. Feng, Int. J. Hydrogen Energy 41 (2016) 1645-1653.
DOI URL |
[44] |
L.J. Zhang, R. Zheng, S. Li, B.K. Liu, J. Wang de, L.L. Wang, T.F. Xie, ACS Appl. Mater. Interfaces 6 (2014) 13406-13412.
DOI URL |
[45] |
H. Sakamoto, J. Imai, Y. Shiraishi, S. Tanaka, S. Ichikawa, T. Hirai, ACS Catal. 7 (2017) 5194-5201.
DOI URL |
[46] | J.L. Wang, Y. Yu, L. Zhang, Appl. Catal. B-Environ. 136-137 (2013) 112-121. |
[1] | Guojing Wang, Zhiwei Tang, Jing Wang, Shasha Lv, Yunjie Xiang, Feng Li, Chong Liu. Energy band engineering of Bi2O2.33-CdS direct Z-scheme heterojunction for enhanced photocatalytic reduction of CO2 [J]. J. Mater. Sci. Technol., 2022, 111(0): 17-27. |
[2] | Xuewen Wang, Qiuchan Li, Qingzhuo Lin, Rongbin Zhang, Mingyue Ding. CdS-sensitized 3D ordered macroporous g-C3N4 for enhanced visible-light photocatalytic hydrogen generation [J]. J. Mater. Sci. Technol., 2022, 111(0): 204-210. |
[3] | Yabin Jiang, Lei Zeng, Chi Cao, Wensheng Yang, Limin Huang. Accumulation of localized charge on the surface of polymeric carbon nitride boosts the photocatalytic activity [J]. J. Mater. Sci. Technol., 2022, 111(0): 9-16. |
[4] | Shuo Li, Jinyan Xiong, Xueteng Zhu, Weijie Li, Rong Chen, Gang Cheng. Recent advances in synthesis strategies and solar-to-hydrogen evolution of 1T phase MS2 (M = W, Mo) co-catalysts [J]. J. Mater. Sci. Technol., 2022, 101(0): 242-263. |
[5] | Feihu Mu, Benlin Dai, Wei Zhao, Shijian Zhou, Haibao Huang, Gang Yang, Dehua Xia, Yan Kong, Dennis Y.C. Leung. Construction of a novel Ag/Ag3PO4/MIL-68(In)-NH2 plasmonic heterojunction photocatalyst for high-efficiency photocatalysis [J]. J. Mater. Sci. Technol., 2022, 101(0): 37-48. |
[6] | Mian Zahid Hussain, Zhuxian Yang, Ahmed M.E. Khalil, Shahzad Hussain, Saif Ullah Awan, Quanli Jia, Roland A. Fischer, Yanqiu Zhu, Yongde Xia. Metal-organic framework derived multi-functionalized and co-doped TiO2/C nanocomposites for excellent visible-light photocatalysis [J]. J. Mater. Sci. Technol., 2022, 101(0): 49-59. |
[7] | Ying Liang, Guohe Huang, Xiaying Xin, Yao Yao, Yongping Li, Jianan Yin, Xiang Li, Yuwei Wu, Sichen Gao. Black titanium dioxide nanomaterials for photocatalytic removal of pollutants: A review [J]. J. Mater. Sci. Technol., 2022, 112(0): 239-262. |
[8] | Olga Sacco, Paola Franco, Iolanda De Marco, Vincenzo Vaiano, Emanuela Callone, Riccardo Ceccato, Francesco Parrino. Photocatalytic activity of Eu-doped ZnO prepared by supercritical antisolvent precipitation route: When defects become virtues [J]. J. Mater. Sci. Technol., 2022, 112(0): 49-58. |
[9] | Zheao Huang, Qiancheng Zhou, Jieming Wang, Ying Yu. Fermi-level-tuned MOF-derived N-ZnO@NC for photocatalysis: A key role of pyridine-N-Zn bond [J]. J. Mater. Sci. Technol., 2022, 112(0): 68-76. |
[10] | Jiaqi Dong, Chuxuan Yan, Yingzhi Chen, Wenjie Zhou, Yu Peng, Yue Zhang, Lu-Ning Wang, Zheng-Hong Huang. Organic semiconductor nanostructures: optoelectronic properties, modification strategies, and photocatalytic applications [J]. J. Mater. Sci. Technol., 2022, 113(0): 175-198. |
[11] | Wanying Lei, Tong Zhou, Xin Pang, Shixiang Xue, Quanlong Xu. Low-dimensional MXenes as noble metal-free co-catalyst for solar-to-fuel production: Progress and prospects [J]. J. Mater. Sci. Technol., 2022, 114(0): 143-164. |
[12] | Yiqian Lv, Yueqing Zheng, Honglin Zhu, Yinghao Wu. Designing a dual-functional material with barrier anti-corrosion and photocatalytic antifouling properties using g-C3N4 nanosheet with ZnO nanoring [J]. J. Mater. Sci. Technol., 2022, 106(0): 56-69. |
[13] | Daniel González-Muñoz, Almudena Gómez-Avilés, Carmen B. Molina, Jorge Bedia, Carolina Belver, Jose Alemán, Silvia Cabrera. Anchoring of 10-phenylphenothiazine to mesoporous silica materials: A water compatible organic photocatalyst for the degradation of pollutants [J]. J. Mater. Sci. Technol., 2022, 103(0): 134-143. |
[14] | Thi Kim Anh Nguyen, Thanh-Truc Pham, Bolormaa Gendensuren, Eun-Suok Oh, Eun Woo Shin. Defect engineering of water-dispersible g-C3N4 photocatalysts by chemical oxidative etching of bulk g-C3N4 prepared in different calcination atmospheres [J]. J. Mater. Sci. Technol., 2022, 103(0): 232-243. |
[15] | Guiqing Huang, Wanneng Ye, Chunxiao Lv, Denys S. Butenko, Chen Yang, Gaolian Zhang, Ping Lu, Yan Xu, Shuchao Zhang, Hongwei Wang, Yukun Zhu, Dongjiang Yang. Hierarchical red phosphorus incorporated TiO2 hollow sphere heterojunctions toward superior photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2022, 108(0): 18-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||