J. Mater. Sci. Technol. ›› 2022, Vol. 119: 61-68.DOI: 10.1016/j.jmst.2021.12.032
• Research Article • Previous Articles Next Articles
Rui Taoa, Xianlin Qub, Zegao Wanga,*(), Fang Lia, Lei Yanga, Jiheng Lic, Dan Wangd, Kun Zhengb, Mingdong Donge,*(
)
Received:
2021-11-08
Revised:
2021-12-23
Accepted:
2021-12-25
Published:
2022-08-20
Online:
2022-03-03
Contact:
Zegao Wang,Mingdong Dong
About author:
dong@inano.au.dk (M. Dong).Rui Tao, Xianlin Qu, Zegao Wang, Fang Li, Lei Yang, Jiheng Li, Dan Wang, Kun Zheng, Mingdong Dong. Tune the electronic structure of MoS2 homojunction for broadband photodetection[J]. J. Mater. Sci. Technol., 2022, 119: 61-68.
Fig. 1. Preparation and characterization of MoS2. (a) Schematic diagram of CVD-growth MoS2. (b-d) The OM diagrams of the intrinsic samples, 2Å-Nb-MoS2, and 5Å-Nb-MoS2, respectively. The inset shows the size distribution of the MoS2 single domain. (e, f) Photoluminescence and Raman spectra of the intrinsic and Nb-doped MoS2.
Fig. 2. IDPC images of Nb-doped MoS2 monolayer: (a) 2Å-Nb-MoS2 and (b) 5Å-Nb-MoS2. The red and purple arrows point out the brighter atomic images, representing (i) substitutional doping and (ii) interstitial doping, respectively. (c) Schematic diagram of doping results.
Fig. 3. MoS2 device and its electrical properties. (a, b) Schematic diagram and optical microscope of the electrode. (c, d) Output curves of the intrinsic samples and 2Å-Nb-MoS2. (e) Transfer curve of the intrinsic samples, 2Å-Nb-MoS2 and 5Å-Nb-MoS2, respectively, with a bias voltage of 1 V. (f) The threshold voltage, current ON/OFF ratio, and carrier mobility of the intrinsic samples, 2Å-Nb-MoS2, and 5Å-Nb-MoS2, respectively.
Fig. 4. Nb-MoS2/MoS2 homojunction and its photoelectric properties. (a) Schematic diagram of the homojunction composed of MoS2 and 2Å-Nb-MoS2. (b, c) The transfer curves of Nb-MoS2/MoS2 homojunction based phototransistor corresponding of illustrating under 550 nm and 700 nm light, responsivity, with a bias voltage of 8 V. (d) The photoresponse as the function of gate voltage at 550 nm light. (e, f) The contour plots of the device responsivity and detectivity as the function of gate voltage and wavelength.
Fig. 5. Photoelectric performance under gate voltage control. (a) The energy diagram of MoS2/Nb-doped MoS2 homojunction under the gate voltage. (b) The index of the exponent of the response of photocurrent response to laser power density (θ) with gate voltage at different wavelengths: 450 nm (left), and 700 nm (right). (c) Contour maps of external quantum efficiency (EQE) with the change of gate voltage and optical power: 550 nm (left), and 700 nm (right).
Material | Method | Thickness | R (A/W) | D* (Jones) | Bias voltage (V) | Refs. |
---|---|---|---|---|---|---|
Nb-MoS2/MoS2 homojunction | CVD with Nb doping | monolayer | 50.4 (550 nm) | 3.0 × 1012 (550 nm) | 8 | This work |
p-MoS2/MoS2 homojunction | CVD with nitrogen plasma doping | monolayer | 48.5 (532 nm) | ∼109 (532nm) | -10 | [ |
MoS2/BP | CVD/Mechanical exfoliation | monolayer | 0.418 (633 nm) | / | -2 | [ |
MoS2/WS2 | Mechanical exfoliation | multilayer | 1.42 (633 nm) | / | 1 | [ |
MoS2/p-MoS2 | Mechanical exfoliation | multilayer | 5.07 (500 nm) | 3 × 1010 (500 nm) | 1.5 | [ |
MoS2(1-x)Se2x | chemical solution deposition (CSD) | / | 191.5 (650 nm) | ∼1012 (650 nm) | -0.5 | [ |
MoS2/Graphene | precursor solution printing and annealing | 1-3 layers | 0.835 (540 nm) | / | 5 | [ |
MoS2/CuPc | CVD | monolayer | 3000 (500nm) | 2.0 × 1010 (500 nm) | 15 | [ |
MoS2/n-Si | precursor solution-annealing | multilayer | 11.9 (650nm) | 2.1 × 1010 (650 nm) | -2 | [ |
MoS2/p-MoS2 | Mechanical exfoliation | multilayer | 70000 (640 nm) | 3.5 × 1014 (640 nm) | 10 | [ |
MoS2/p-Si | CVD | 4 layers | 0.91 (808 nm) | 1.8 × 1013 (808 nm) | -2 | [ |
MoS2 | Pulsed laser deposition (PLD) | 5-44 nm | 0.0507 (445 nm) | 1.55 × 109 (445 nm) | 10 | [ |
MoS2 | Mechanical exfoliation | multilayer | 0.0001 (980 nm) | ∼108 (980 nm) | 1 | [ |
Table 1. Performance of different MoS2-based photodetectors
Material | Method | Thickness | R (A/W) | D* (Jones) | Bias voltage (V) | Refs. |
---|---|---|---|---|---|---|
Nb-MoS2/MoS2 homojunction | CVD with Nb doping | monolayer | 50.4 (550 nm) | 3.0 × 1012 (550 nm) | 8 | This work |
p-MoS2/MoS2 homojunction | CVD with nitrogen plasma doping | monolayer | 48.5 (532 nm) | ∼109 (532nm) | -10 | [ |
MoS2/BP | CVD/Mechanical exfoliation | monolayer | 0.418 (633 nm) | / | -2 | [ |
MoS2/WS2 | Mechanical exfoliation | multilayer | 1.42 (633 nm) | / | 1 | [ |
MoS2/p-MoS2 | Mechanical exfoliation | multilayer | 5.07 (500 nm) | 3 × 1010 (500 nm) | 1.5 | [ |
MoS2(1-x)Se2x | chemical solution deposition (CSD) | / | 191.5 (650 nm) | ∼1012 (650 nm) | -0.5 | [ |
MoS2/Graphene | precursor solution printing and annealing | 1-3 layers | 0.835 (540 nm) | / | 5 | [ |
MoS2/CuPc | CVD | monolayer | 3000 (500nm) | 2.0 × 1010 (500 nm) | 15 | [ |
MoS2/n-Si | precursor solution-annealing | multilayer | 11.9 (650nm) | 2.1 × 1010 (650 nm) | -2 | [ |
MoS2/p-MoS2 | Mechanical exfoliation | multilayer | 70000 (640 nm) | 3.5 × 1014 (640 nm) | 10 | [ |
MoS2/p-Si | CVD | 4 layers | 0.91 (808 nm) | 1.8 × 1013 (808 nm) | -2 | [ |
MoS2 | Pulsed laser deposition (PLD) | 5-44 nm | 0.0507 (445 nm) | 1.55 × 109 (445 nm) | 10 | [ |
MoS2 | Mechanical exfoliation | multilayer | 0.0001 (980 nm) | ∼108 (980 nm) | 1 | [ |
[1] |
Y. Wang, J.C. Kim, R.J. Wu, J. Martinez, X.J. Song, J.U. Yang, F. Zhao, A. Mkhoyan, H.Y. Jeong, M. Chhowalla, Nature 568 (2019) 70-74.
DOI URL |
[2] |
M.C. Chang, P.H. Ho, M.F. Tseng, F.Y. Lin, C.H. Hou, I.K. Lin, H. Wang, P.P. Huang, C.H. Chiang, Y.C. Yang, I.T. Wang, H.Y. Du, C.Y. Wen, J.J. Shyue, C.W. Chen, K.H. Chen, P.W. Chiu, L.C. Chen, Nat. Commun. 11 (2020) 3682.
DOI URL |
[3] |
B.L. Cao, Z.G. Wang, X.Y. Xiong, L.B. Gao, J.H. Li, M.D. Dong, New J. Chem. 45 (2021) 12033-12040.
DOI URL |
[4] |
S.B. Desai, S.R. Madhvapathy, A.B. Sachid, J.P. Llinas, Q.X. Wang, G.H. Ahn, G. Pitner, M.J. Kim, J. Bokor, C. Hu, H.S.P. Wong, A. Javey, Science 354 (2016) 99-102.
DOI URL |
[5] |
H. Xu, J.T. Zhu, G.F. Zou, W. Liu, X. Li, C.H. Li, G.H. Ryu, W.S. Xu, X.Y. Han, Z.X. Guo, J.H. Warner, J. Wu, H.Y. Liu, Nano-Micro Lett 12 (2020) 26.
DOI URL |
[6] | Q. Zhang, S.L. Zuo, P. Chen, C. F, Pan, InfoMat 3 (2021) 987-1007. |
[7] |
J.Y. Ma, X.Y. Chen, Y.C. Sheng, L. Tong, X.J. Guo, M.X. Zhang, C. Luo, L.Y. Zong, Y. Xia, C.M. Sheng, Y. Wang, S.F. Gou, X.Y. Wang, X. Wu, P. Zhou, D.W. Zhang, C.J. Wu, W.Z. Bao, J. Mater. Sci. Technol. 106 (2022) 243-248.
DOI URL |
[8] | Y. Xie, B. Zhang, S.X. Wang, D. Wang, A.Z. Wang, Z.Y. Wang, H.H. Yu, H.J. Zhang, Y.X. Chen, M.W. Zhao, B.B. Huang, L.M. Mei, J.Y. Wang, Adv. Mater. 29 (2017) 1605972. |
[9] | X.W. Guan, X.C. Yu, D. Periyanagounder, M.R. Benzigar, J.K. Huang, C.H. Lin, J.Y. Kim, S. Singh, L. Hu, G. Liu, D. Li, J.H. He, F. Yan, Q.J. Wang, T. Wu, Adv. Optical Mater. 9 (2021) 2001708. |
[10] |
G.F. Rao, X.P. Wang, Y. Wang, P.H. Wangyang, C.Y. Yan, J.W. Chu, L.X. Xue, C.H. Gong, J.W. Huang, J. Xiong, Y.R. Li, InfoMat 1 (2019) 272-288.
DOI URL |
[11] |
Y. Zhang, Y.Q. Yu, L.F. Mi, H. Wang, Z.F. Zhu, Q.Y. Wu, Y.G. Zhang, Y. Jiang, Small 12 (2016) 1062-1071.
DOI PMID |
[12] |
J.J. Lu, Z.Y. Guo, W.Z. Wang, J.C. Lu, Y.S. Hu, J.H. Wang, Y.H. Xiao, X.Y. Wang, S.B. Wang, Y.F. Zhou, X. Zeng, Nanotechnology 32 (2021) 015701.
DOI URL |
[13] |
X.L. Qu, Y.C. He, M.H. Qu, T.Y. Ruan, F.H. Chu, Z.L. Zheng, Y.B. Ma, Y.P. Chen, X.N. Ru, X.X. Xu, H. Yan, L.H. Wang, Y.Z. Zhang, X.J. Hao, Z. Hameiri, Z.G. Chen, L.Z. Wang, K. Zheng, Nat. Energy 6 (2021) 194-202.
DOI URL |
[14] |
X.L. Luo, Z.H. Peng, Z.G. Wang, M.D. Dong, ACS Appl. Mater. Interfaces 13 (2021) 59154-59163.
DOI URL |
[15] |
S. Ahmed, X. Ding, P.P. Murmu, N.N. Bao, R. Liu, J. Kennedy, L. Wang, J. Ding, T. Wu, A. Vinu, J.B. Yi, Small 16 (2020) 1903173.
DOI URL |
[16] |
X.L. Lu, M.M. Yan, Z. Yan, W.Y. Chen, X.D. Sui, J.Y. Hao, W.M. Liu, Tribol. Int. 156 (2021) 106844.
DOI URL |
[17] | L. Tang, R.Z. Xu, J.Y. Tan, Y.T. Luo, J.Y. Zou, Z.T. Zhang, R.J. Zhang, Y. Zhao, J.H. Lin, X.L. Zou, B.L. Liu, H.M. Cheng, Adv. Funct. Mater. 31 (2021) 2006941. |
[18] |
P. Zhang, N.Y. Cheng, M.J. Li, B. Zhou, C. Bian, Y. Wei, X.G. Wang, H.N. Jiang, L.H. Bao, Y.F. Lin, Z.G. Hu, Y. Du, Y.J. Gong, ACS Appl. Mater. Interfaces 12 (2020) 18650-18659.
DOI URL |
[19] |
Z.Y. Qin, L. Loh, J. Wang, X.M. Xu, Q. Zhang, B. Haas, C. Alvarez, H. Okuno, J.Z. Yong, T. Schultz, N. Koch, J. Dan, S.J. Pennycook, D.W. Zeng, M. Bosman, G. Eda, ACS Nano 13 (2019) 10768-10775.
DOI URL |
[20] |
I. Lazi ´c, E.G.T. Bosch, S. Lazar, Ultramicroscopy 160 (2016) 265-280.
DOI URL |
[21] |
B.Y. Shen, X. Chen, H.Q. Wang, H. Xiong, E.G.T. Bosch, I. Lazi ´c, D.L. Cai, W.Z. Qian, S.F. Jin, X. Liu, Y. Han, F. Wei, Nature 592 (2021) 541-544.
DOI URL |
[22] | V. Kochat, A. Apte, J.A. Hachtel, H. Kumazoe, A. Krishnamoorthy, S. Susarla, J.C. Idrobo, F. Shimojo, P. Vashishta, R. Kalia, A. Nakano, C.S. Tiwary, P.M. Ajayan, Adv. Mater. 29 (2017) 1703754. |
[23] |
J.D. Zhou, J.H. Lin, X.W. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang, Y. Xie, H.M. Yu, J.C. Lei, D. Wu, F. Liu, Q.C. Fu, Q.S. Zeng, C.H. Hsu, C.L. Yang, L. Lu, T. Yu, Z.X. Shen, H. Lin, B.I. Yakobson, Q.T. Liu, K. Suenaga, G. Liu, Z. Liu, Nature 556 (2018) 355-359.
DOI URL |
[24] |
P.F. Yang, X.L. Zou, Z.P. Zhang, M. Hong, J.P. Shi, S.L. Chen, J.P. Shu, L.Y. Zhao, S.L. Jiang, X.B. Zhou, Y.H. Huan, C.Y. Xie, P. Gao, Q. Chen, Q. Zhang, Z.F. Liu, Y.F. Zhang, Nat. Commun. 9 (2018) 979.
DOI URL |
[25] |
J.U. Yang, A.R. Mohmad, Y. Wang, R. Fullon, X.J. Song, F. Zhao, I. Bozkurt, M. Au- gustin, E.J.G. Santos, H.S. Shin, W. Zhang, D. Voiry, H.Y. Jeong, M. Chhowalla, Nat. Mater. 18 (2019) 1309-1314.
DOI URL |
[26] |
P. Yang, A.G. Yang, L.X. Chen, J. Chen, Y.W. Zhang, H.M. Wang, L.G. Hu, R.J. Zhang, R. Liu, X.P. Qu, Z.J. Qiu, C.X. Cong, Nano Res 12 (2019) 823-827.
DOI URL |
[27] | Z.G. Wang, X.Y. Xiong, J.H. Li, M.D. Dong, Mater, Today Phys 16 (2021) 100290. |
[28] |
B. Chakraborty, A. Bera, D.V.S. Muthu, S. Bhowmick, U.V. Waghmare, A.K. Sood, Phys. Rev. B 85 (2012) 161403.
DOI URL |
[29] |
B.L. Cao, Z.M. Ye, L. Yang, L. Gou, Z.G. Wang, Nanotechnology 32 (2021) 412001.
DOI URL |
[30] |
Y.Y. Hui, X.F. Liu, W.J. Jie, N.Y. Chan, J.H. Hao, Y.T. Hsu, L.J. Li, W. Guo, S.P. Lau, ACS Nano 7 (2013) 7126-7131.
DOI URL |
[31] |
H. Kim, D. Ovchinnikov, D. Deiana, D. Unuchek, A. Kis, Nano Lett 17 (2017) 5056-5063.
DOI URL |
[32] | The periodic table of the elements. http://www.webelements.com/. |
[33] | Z.C. Li, W.N. Shu, Q.Q. Li, W.T. Xu, Z.W. Zhang, J. Li, Y.L. Wang, Y.Y. Liu, J.H. Yang, K.Q. Chen, X.D. Duan, Z.M. Wei, B. Li, Adv. Electron. Mater. 7 (2021) 2001168. |
[34] |
Z.G. Wang, Q. Li, F. Besenbacher, M.D. Dong, Adv. Mater. 28 (2016) 10224-10229.
DOI URL |
[35] |
J.Q. Huang, Z.Y. Liu, T. Yang, Z.D. Zhang, J. Mater. Sci. Technol. 102 (2022) 132-136.
DOI URL |
[36] |
R. Basori, A.K. Raychaudhuri, Nano-Micro Lett 6 (2014) 63-69.
DOI URL |
[37] |
J. Suh, T.L. Tan, W. Zhao, J. Park, D.Y. Lin, T.E. Park, J. Kim, C. Jin, N. Saigal, S. Ghosh, Z.M. Wong, Y. Chen, F. Wang, W. Walukiewicz, G. Eda, J. Wu, Nat. Commun. 9 (2018) 199.
DOI URL |
[38] |
M.G. Li, J.D. Yao, X.X. Wu, S.C. Zhang, B.R. Xing, X.Y. Niu, X.Y. Yan, Y. Yu, Y.L. Liu, Y.W Wang, ACS Appl. Mater. Interfaces 12 (2020) 6276-6282.
DOI URL |
[39] |
M. Wu, Y.H. Xiao, Y. Zeng, Y.L. Zhou, X.B. Zeng, L.N. Zhang, W.G. Liao, InfoMat 3 (2021) 362-396.
DOI URL |
[40] |
J. Suh, T.E. Park, D.Y. Lin, D.Y. Fu, J. Park, H.J. Jung, Y.B. Chen, C. Ko, C. Jang, Y. Sun, R. Sinclair, J. Chang, S. Tongay, J.Q. Wu, Nano Lett 14 (2014) 6976-6982.
DOI URL |
[41] | H.H. Fang, W.D. Hu, Adv. Sci. 4 (2017) 1700323. |
[42] |
T.Y. Wei, X.M. Wang, Q. Yang, Z.H. He, P. Yu, Z. Xie, H.J. Chen, S.W. Li, S.X. Wu, ACS Appl. Mater. Interfaces 13 (2021) 22757-22764.
DOI URL |
[43] |
O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Nat. Nanotechnol. 8 (2013) 497-501.
DOI PMID |
[44] | P. Yu, Q.S. Zeng, C. Zhu, L.J. Zhou, W.N. Zhao, J.C. Tong, Z. Liu, G.W. Yang, Adv. Mater. 33 (2021) 2005607. |
[45] |
Z.Z. Huang, J.K. Liu, T.F. Zhang, Y.H. Jin, J.P. Wang, S.S. Fan, Q.Q. Li, ACS Appl. Mater. Interfaces 13 (2021) 22796-22805.
DOI URL |
[46] |
S. Kunwar, S. Pandit, J.H. Jeong, J. Lee, Nano-Micro Lett 12 (2020) 91.
DOI URL |
[47] |
R.Q. Cheng, F. Wang, L. Yin, Z.X. Wang, Y. Wen, T.A. Shifa, J. He, Nat. Electron. 1 (2018) 356-361.
DOI URL |
[48] |
L. Tao, Z.F. Chen, Z.Y. Li, J.Q. Wang, X.B. Xu, J.B. Xu, InfoMat 3 (2021) 36-60.
DOI URL |
[49] | F. Li, R. Tao, B.L. Cao, L. Yang, Z.G. Wang, Adv. Funct. Mater. 31 (2021) 2104367. |
[50] |
Y.C. Sheng, L.F. Zhang, F. Li, X.Y. Chen, Z.J. Xie, H.Y. Nan, Z.H. Xu, D.W. Zhang, J.H. Chen, Y. Pu, S.Q. Xiao, W.Z. Bao, J. Mater. Sci. Technol. 69 (2021) 15-19.
DOI URL |
[51] |
T.C. Qin, Z.G. Wang, Y.Q. Wang, F. Besenbacher, M. Otyepka, M.D. Dong, Nano-Micro Lett 13 (2021) 183.
DOI URL |
[52] |
N.J. Huo, G. Konstantatos, Nat. Commun. 8 (2017) 572.
DOI URL |
[53] |
F.K. Wang, S.J. Yang, J. Wu, X.Z. Hu, Y. Li, H.Q. Li, X.T. Liu, J.H. Luo, T.Y Zhai, InfoMat 3 (2021) 1251-1271.
DOI URL |
[54] |
Y.X. Deng, Z. Luo, N.J. Conrad, H. Liu, Y.J. Gong, S. Najmaei, P.M. Ajayan, J. Lou, X.F. Xu, P.D. Ye, ACS Nano 8 (2014) 8292-8299.
DOI URL |
[55] |
N.J. Huo, J. Kang, Z.M. Wei, S.S. Li, J.B. Li, S.H. Wei, Adv. Funct. Mater. 24 (2014) 7025-7031.
DOI URL |
[56] |
M.S. Choi, D.S. Qu, D. Lee, X.C. Liu, K. Watanabe, T. Taniguchi, W.J. Yoo, ACS Nano 8 (2014) 9332-9340.
DOI PMID |
[57] |
Q.F. Liu, B. Cook, M.G. Gong, Y.P. Gong, D. Ewing, M. Casper, A. Stramel, J. Wu, ACS Appl. Mater. Interfaces 9 (2017) 12728-12733.
DOI URL |
[58] | Z.H. Xu, L. Tang, S.W. Zhang, J.Z. Li, B.L. Liu, S.C. Zhao, C.J. Yu, G.D. Wei, Mater. Today Phys. 15 (2020) 100273. |
[59] |
S. Qiao, R.D. Cong, J.H. Liu, B.L. Liang, G.S. Fu, W. Yu, K.L. Ren, S.F. Wang, C.F. Pan, J. Mater. Chem. C 6 (2018) 3233-3239.
DOI URL |
[60] | Y.W. Zhang, J. Wang, B. Wang, J.H. Shao, J.N. Deng, C.X. Cong, L.G. Hu, P.F. Tian, R. Liu, S.L. Zhang, Z.J. Qiu, Adv. Optical Mater. 6 (2018) 1800660. |
[1] | Hua-Wei Zhang, Yi-Xin Lu, Bo Li, Gui-Fang Huang, Fan Zeng, Yuan-Yuan Li, Anlian Pan, Yi-Feng Chai, Wei-Qing Huang. Acid-induced topological morphology modulation of graphitic carbon nitride homojunctions as advanced metal-free catalysts for OER and pollutant degradation [J]. J. Mater. Sci. Technol., 2021, 86(0): 210-218. |
[2] | Jinming Hu, Shengyi Yang, Zhenheng Zhang, Hailong Li, Chandrasekar Perumal Veeramalai, Muhammad Sulaman, Muhammad Imran Saleem, Yi Tang, Yurong Jiang, Libin Tang, Bingsuo Zou. Solution-processed, flexible and broadband photodetector based on CsPbBr3/PbSe quantum dot heterostructures [J]. J. Mater. Sci. Technol., 2021, 68(0): 216-226. |
[3] | Haiyang Yu, Zhenzhu Wang, Jiangfeng Ni, Liang Li. Freestanding nanosheets of 1T-2H hybrid MoS2 as electrodes for efficient sodium storage [J]. J. Mater. Sci. Technol., 2021, 67(0): 237-242. |
[4] | Jihui WANG, Yang XIA, E.Wieers, L.M.Stals, X.Zhang, J.P.Celis. Influence of Deposition Conditions on the Crystal Structure of MoS2 Coating [J]. J Mater Sci Technol, 2006, 22(03): 324-328. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||