J. Mater. Sci. Technol. ›› 2022, Vol. 119: 69-74.DOI: 10.1016/j.jmst.2021.11.071
• Research Article • Previous Articles Next Articles
Di Wanga, Bin Hea,*(), Jinrui Guoa, Qixiang Wangb, Chaoqun Shia, Yue Hanb, Hong Fangb, Jie Wangb, Nana Zhanga, Peng Zhanga, Yanan Chena, Changwen Zhanga, Weiming Lüa,b,*(
), Shishen Yana,c
Received:
2021-10-05
Revised:
2021-11-12
Accepted:
2021-11-21
Published:
2022-08-20
Online:
2022-03-03
Contact:
Bin He,Weiming Lü
About author:
weiminglv@hit.edu.cn (W. Lü).Di Wang, Bin He, Jinrui Guo, Qixiang Wang, Chaoqun Shi, Yue Han, Hong Fang, Jie Wang, Nana Zhang, Peng Zhang, Yanan Chen, Changwen Zhang, Weiming Lü, Shishen Yan. High-temperature ferromagnetic metallic phase in LaMnO3/Sr3Al2O6 heterostructure[J]. J. Mater. Sci. Technol., 2022, 119: 69-74.
Fig. 1. (a) XRD patterns of the LMO/SAO heterostructures with tSAO = 0, 20 nm grown on STO (001) substrate. Inset: surface morphology of the sample tSAO = 20 nm. (b) High-resolution XRD results around (002) diffraction peaks of the samples with tSAO = 0-20 nm. The LMO peaks of the samples tSAO = 2, 3 nm are fitted by the formula in ref [15]. and the fitting result of the sample tSAO = 2 nm is shown in the inset. (c) tSAO dependence of the c parameter and the out-of-plane strain (εLMO = 100% × (cfilm - cbulk)/cbulk) of LMO.
(a) Temperature dependence of the normalized magnetic moment, M(T)/M(10 K), of LMO/SAO heterostructures with various tSAO. (b) Field dependence of the magnetization of the samples tSAO = 0, 2, 7, and 20 nm at 10 K. Curie temperature Tc and saturation magnetization Msat as a function of tSAO are shown in (c) and (d) respectively. Region Ⅰ (tSAO < 3 nm) and region Ⅱ (tSAO ≥ 3 nm) are filled with yellow and green, respectively.
Fig. 3. (a) Temperature dependence of the resistivity of LMO/SAO heterostructures with various tSAO under 0 T (solid line) and 3 T (dash line) magnetic fields. The insulator-metal transition temperature TIM as a function of tSAO is shown in (b) and the magnetoresistance (MR) as a function of temperature is shown in (c). MR = (ρ3T-ρ0T)/ρ0T × 100%, where ρ0 and ρ3T are the resistivities at 0 T and 3 T, respectively. (d) The change of room temperature (300 K) ρ and room temperature MR against tSAO.
Fig. 4. Schematic diagrams of oxygen ions migration and strain effects in LMO/SAO heterostructures. (a) With the insertion of SAO, oxygen ions migrate from LMO to SAO. (b) Left panel: overhead views of the MnO6 octahedron networks with in-plane compressive (top panel) and tensile (bottom panel) strains. θ and d represent in-plane Mn-O-Mn bond angle and Mn-O bond length, respectively (d2 > d1, θ2 > θ1). Right panel: eg orbital occupancy of Mn3+ at compressive (top panel) and tensile (bottom panel) strains. The in-plane contraction (compressive strain) favors the d3z2-r2 occupancy. The in-plane elongation (tensile strain) with enhanced bond length d2 and bond angle θ2 favors the dx2-y2 occupancy.
[1] |
H.J.A. Molegraaf, J. Hoffman, C.A.F. Vaz, S. Gariglio, D. van der Marel, C.H. Ahn, J.-.M. Triscone, Adv. Mater. 21 (2009) 3470-3474.
DOI URL |
[2] |
S.M. Wu, S.A. Cybart, P. Yu, M.D. Rossell, J.X. Zhang, R. Ramesh, R.C. Dynes, Nat. Mater. 9 (2010) 756-761.
DOI PMID |
[3] |
X. Ma, A. Kumar, S. Dussan, H. Zhai, F. Fang, H.B. Zhao, J.F. Scott, R.S. Katiyar, G. Lüpke, Appl. Phys. Lett. 104 (2014) 132905.
DOI URL |
[4] |
A. Ohtomo, H.Y. Hwang, Nature 427 (2004) 423-426.
DOI URL |
[5] | Z.Q. Liu, C.J. Li, W.M. Lü, X.H. Huang, Z. Huang, S.W. Zeng, X.P. Qiu, L.S. Huang, A. Annadi, J.S. Chen, J.M.D. Coey, T. Venkatesan, Ariando, Phys. Rev. X 3 (2013) 021010. |
[6] |
A. Gozar, G. Logvenov, L.F. Kourkoutis, A.T. Bollinger, L.A. Giannuzzi, D.A. Muller, I. Bozovic, Nature 455 (2008) 782-785.
DOI URL |
[7] |
M. Gibert, P. Zubko, R. Scherwitzl, J. Iniguez, J.M. Triscone, Nat. Mater. 11 (2012) 195-198.
DOI PMID |
[8] |
J. Garcia-Barriocanal, F.Y. Bruno, A. Rivera-Calzada, Z. Sefrioui, N.M. Nemes, M. Garcia-Hernandez, J. Rubio-Zuazo, G.R. Castro, M. Varela, S.J. Pennycook, C. Leon, J. Santamaria, Adv. Mater. 22 (2010) 627-632.
DOI |
[9] | J. Garcia-Barriocanal, J.C. Cezar, F.Y. Bruno, P. Thakur, N.B. Brookes, C. Utfeld, A. Rivera-Calzada, S.R. Giblin, J.W. Taylor, J.A. Duffy, S.B. Dugdale, T. Nakamura, K. Kodama, C. Leon, S. Okamoto, J. Santamaria, Nat. Commun. 1 (2010) 1-7. |
[10] |
M. Keunecke, F. Lyzwa, D. Schwarzbach, V. Roddatis, N. Gauquelin, K. Müller-Caspary, J. Verbeeck, S.J. Callori, F. Klose, M. Jungbauer, V. Moshnyaga, Adv. Funct. Mater. 30 (2019) 1808270.
DOI URL |
[11] |
A. Bhattacharya, S.J. May, S.G.E. te Velthuis, M. Warusawithana, X. Zhai, B. Jiang, J.-.M. Zuo, M.R. Fitzsimmons, S.D. Bader, J.N. Eckstein, Phys. Rev. Lett. 100 (2008) 257203.
DOI URL |
[12] |
M. Guo, C. Yang, D. Gao, Q. Li, A. Zhang, J. Feng, H. Yang, R. Tao, Z. Fan, M. Zeng, G. Zhou, X. Lu, J.M. Liu, J. Mater. Sci. Technol. 44 (2020) 42-47.
DOI |
[13] |
D. Ji, S. Cai, T.R. Paudel, H. Sun, C. Zhang, L. Han, Y. Wei, Y. Zang, M. Gu, Y. Zhang, W. Gao, H. Huyan, W. Guo, D. Wu, Z. Gu, E.Y. Tsymbal, P. Wang, Y. Nie, X. Pan, Nature 570 (2019) 87-90.
DOI URL |
[14] |
G. Dong, S. Li, M. Yao, Z. Zhou, Y.Q. Zhang, X. Han, Z. Luo, J. Yao, B. Peng, Z. Hu, H. Huang, T. Jia, J. Li, W. Ren, Z.G. Ye, X. Ding, J. Sun, C.W. Nan, L.Q. Chen, J. Li, M. Liu, Science 366 (2019) 475-479.
DOI URL |
[15] |
J.-.M. Triscone, P. Fivat, M. Andersson, M. Decroux, O. Fischer, Phys. Rev. B 50 (1994) 1229-1236.
PMID |
[16] |
D. Lu, D.J. Baek, S.S. Hong, L.F. Kourkoutis, Y. Hikita, H.Y. Hwang, Nat. Mater. 15 (2016) 1255-1260.
DOI URL |
[17] | M. Xue, S. Ding, Y. Lai, X. Li, L. Zha, Y. Peng, Z. Liang, W. Yang, Y. Men, X. Kong, L. Han, X. Chen, J. Yang, Adv. Mater. Interfaces 7 (2020) 1901296. |
[18] |
C.Z. Hu, Y.S. Zhang, X. Niu, N. Zhong, P.H. Xiang, C.G. Duan, Appl. Phys. Lett. 118 (2021) 072407.
DOI URL |
[19] |
X. Deng, C. Chen, D. Chen, X. Cai, X. Yin, C. Xu, F. Sun, C. Li, Y. Li, H. Xu, M. Ye, G. Tian, Z. Fan, Z. Hou, M. Qin, Y. Chen, Z. Luo, X. Lu, G. Zhou, L. Chen, N. Wang, Y. Zhu, X. Gao, J.-.M. Liu, Matter 4 (2021) 1323-1334.
DOI URL |
[20] |
W. Si, X.X. Xi, Appl. Phys. Lett. 78 (2001) 240.
DOI URL |
[21] | Xing N K. Wang Z. Zhang, Large, Adv. Funct. Mater. 24 (2014) 5393-5401. |
[22] |
A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Phys. Rev. B 51 (1995) 14103.
PMID |
[23] |
S.W. Lee, Y. Liu, J. Heo, R.G. Gordon, Nano Lett 12 (2012) 4775-4783.
DOI URL |
[24] |
Y. Chen, N. Pryds, J.E. Kleibeuker, G. Koster, J. Sun, E. Stamate, B. Shen, G. Rijn- ders, S. Linderoth, Nano Lett 11 (2011) 3774-3778.
DOI URL |
[25] |
S.Y. Lee, J. Kim, A. Park, J. Park, H. Seo, ACS Nano 11 (2017) 6040-6047.
DOI URL |
[26] | H.J. Lee, T. Moon, S.D. Hyun, S. Kang, C.S. Hwang, Adv. Electron. Mater. 7 (2020) 2000876. |
[27] | K. Han, K. Hu, X. Li, K. Huang, Z. Huang, S. Zeng, D. Qi, C. Ye, J. Yang, H. Xu, A. Ariando, J. Yi, W. Lü, S. Yan, X.R. Wang, Sci. Adv. 5 (2019) eaaw7286. |
[28] |
C. Adamo, X. Ke, H.Q. Wang, H.L. Xin, T. Heeg, M.E. Hawley, W. Zander, J. Schu- bert, P. Schiffer, D.A. Muller, L. Maritato, D.G. Schlom, Appl. Phys. Lett. 95 (2009) 112504.
DOI URL |
[29] |
C. Thiele, K. Dörr, O. Bilani, J. Rödel, L. Schultz, Phys. Rev. B 75 (2007) 054408.
DOI URL |
[30] |
S.S. Hong, M. Gu, M. Verma, V. Harbola, B.Y. Wang, D. Lu, A. Vailionis, Y. Hikita, R. Pentcheva, J.M. Rondinelli, H.Y. Hwang, Science 368 (2020) 71-76.
DOI URL |
[31] | J. Zhang, H. Tanaka, T. Kanki, J.-.H. Choi, T. Kawai, Phys. Rev. B 64 (2001) 184404. |
[32] |
L. Yin, C. Wang, Q. Shen, L. Zhang, RSC Adv. 6 (2016) 96093-96102.
DOI URL |
[33] | G.Q. Gong, A. Gupta, G. Xiao, P. Lecoeur, T.R. McGuire, Phys. Rev. B 54 (1996) R3742(R). |
[34] |
R. Dirsyte, J. Schwarzkopf, M. Schmidbauer, G. Wagner, K. Irmscher, S. Bin Anooz, R. Fornari, Thin Solid Films 519 (2011) 6264-6268.
DOI URL |
[35] | Q. Yuan, Phys. Rev. B 70 (2004) 066401. |
[36] |
P.G. Radaelli, G. Iannone, M. Marezio, H.Y. Hwang, S.W. Cheong, J.D. Jorgensen, D.N. Argyriou, Phys. Rev. B 56 (1997) 8265-8276.
DOI URL |
[37] | A. Sadoc, B. Mercey, C. Simon, D. Grebille, W. Prellier, M.B. Lepetit, Phys. Rev. Lett. 104 (2010) 046804. |
[38] |
D. Pesquera, G. Herranz, A. Barla, E. Pellegrin, F. Bondino, E. Magnano, F. Sanchez, J. Fontcuberta, Nat. Commun. 3 (2012) 1189.
DOI PMID |
[39] |
C. Aruta, G. Ghiringhelli, A. Tebano, N.G. Boggio, N.B. Brookes, P.G. Medaglia, G. Balestrino, Phys. Rev. B 73 (2006) 235121.
DOI URL |
[40] | M. Yang, K. Jin, H. Yao, Q. Zhang, Y. Ji, L. Gu, W. Ren, J. Zhao, J. Wang, E.J. Guo, C. Ge, C. Wang, X. Xu, Q. Wu, G. Yang, Adv. Sci. 8 (2021) 2100177. |
[1] | Fuwei Xiang, Xiuhua Chen, Jie Yu, Wenhui Ma, Yuping Li, Ni Yang. Synthesis of three-dimensionally ordered porous perovskite type LaMnO3 for Al-air battery [J]. J. Mater. Sci. Technol., 2018, 34(9): 1532-1537. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||