J. Mater. Sci. Technol. ›› 2022, Vol. 119: 75-86.DOI: 10.1016/j.jmst.2021.12.031
• Research Article • Previous Articles Next Articles
Shan Fua, Yuan Zhanga, Yi Yanga, Xiaomeng Liua, Xinxin Zhangc, Lei Yanga,b, Dake Xua,*(), Fuhui Wanga, Gaowu Qina,b, Erlin Zhanga,b,*(
)
Received:
2021-11-01
Revised:
2021-12-13
Accepted:
2021-12-18
Published:
2022-08-20
Online:
2022-03-03
Contact:
Dake Xu,Erlin Zhang
About author:
zhangel@atm.neu.edu.cn (E. Zhang).Shan Fu, Yuan Zhang, Yi Yang, Xiaomeng Liu, Xinxin Zhang, Lei Yang, Dake Xu, Fuhui Wang, Gaowu Qin, Erlin Zhang. An antibacterial mechanism of titanium alloy based on micro-area potential difference induced reactive oxygen species[J]. J. Mater. Sci. Technol., 2022, 119: 75-86.
Fig. 1. Summary of antibacterial rates and the Cu ion or Ag ion released concentrations of the reported antibacterial alloys: Ti-Cu alloy [[31], [32], [33], [34]], Ti-Ag alloy [26,29,30,35,36], Ti6Al4V-Cu alloy [37,38], Ti-Mo-Cu alloy [39], Ti-Mo-Ag alloy [40], Cobalt alloy [41,42], Ti-Ni-Ag alloy [24], Ti-Nb-Zr-Ag alloy and Nb-Ag alloy [43,44].
Fig. 2. Antibacterial activities of Ti-M samples against various bacteria: (a) 3D morphology of the fluorescently stained S. aureus, E. coli biofilms on the sample surfaces. (b) SEM images of S. aureus and E. coli on different titanium samples at different time. (c, d) Antibacterial effective against S. aureus and E. coli during cultivation. (e) Thickness of the biofilms that developed on the different material surfaces. (*denotes p < 0.05). (f) Antibacterial rate of pure metals and the extracts of Ti-Zr, Ti-Ta and Ti-Au samples against S. aureus.
Fig. 3. Surface physical properties of Ti-M samples: (a) XPS full spectra for four samples. (b-d) XPS high-resolution spectra of Zr 3d, Ta 4f and Au 4f, respectively. (e) XRD patterns of Ti-M samples. (f) Water contact angles of the samples (p>0.05). (g) Surface roughness of the samples (p>0.05).
Fig. 4. Surface characterization of Ti-M alloy. (a) BSE images of Ti-M alloy. (b) Elements mappings of Zr, Ta and Au in the Ti-M alloy. (c) Surface potential images of the Ti-M alloy. (d) SVET results of current density distribution on the surface of Ti-M alloy in the 3.5% NaCl solution. The scan area is 500 μm × 500 μm (X × Y). (e) Tafel curves of Ti-M alloy. (f) Corrosion potential of different samples. (g) Corrosion current density of different samples.
Sample | Position | Elements (at.%) | Phase constitute | |
---|---|---|---|---|
Ti-Zr | Ti | Zr | ||
Point A | 51.91 | 48.09 | α-Ti(Zr) with about 48.09 at% solid solution Zr | |
Area B | 93.55 | 6.45 | α-Ti(Zr) with about 6.45 at% solid solution Zr | |
Area C | 0.63 | 99.37 | Zr(Ti) with about 0.63 at% solid solution Ti | |
Ti-Ta | Ti | Ta | ||
Point D | 72.16 | 27.84 | α-Ti(Ta) with about 27.84 at% solid solution Ta | |
Area E | 1.07 | 98.93 | Ta(Ti) with about 1.07 at% solid solution Ti | |
Area F | 99.85 | 0.15 | α-Ti(Ta) with about 0.15 at% solid solution Ta | |
Ti-Au | Ti | Au | ||
Area G | 99.79 | 0.21 | α-Ti(Au) with about 0.21 at% solid solution Au | |
Point H | 73.97 | 26.03 | Eutectoid phase Ti3Au |
Table 1. EDS results and the existing form of element in different Ti-M samples
Sample | Position | Elements (at.%) | Phase constitute | |
---|---|---|---|---|
Ti-Zr | Ti | Zr | ||
Point A | 51.91 | 48.09 | α-Ti(Zr) with about 48.09 at% solid solution Zr | |
Area B | 93.55 | 6.45 | α-Ti(Zr) with about 6.45 at% solid solution Zr | |
Area C | 0.63 | 99.37 | Zr(Ti) with about 0.63 at% solid solution Ti | |
Ti-Ta | Ti | Ta | ||
Point D | 72.16 | 27.84 | α-Ti(Ta) with about 27.84 at% solid solution Ta | |
Area E | 1.07 | 98.93 | Ta(Ti) with about 1.07 at% solid solution Ti | |
Area F | 99.85 | 0.15 | α-Ti(Ta) with about 0.15 at% solid solution Ta | |
Ti-Au | Ti | Au | ||
Area G | 99.79 | 0.21 | α-Ti(Au) with about 0.21 at% solid solution Au | |
Point H | 73.97 | 26.03 | Eutectoid phase Ti3Au |
Fig. 4 (c) shows the surface potential distribution of Ti-M samples. There was no obvious undulation in the potential distribution on the surface of Ti-Zr sample and the calculated micro area potential difference (MAPD) was about 74 mV, indicating that the potential of Zr-rich phase was close to that of titanium matrix. In contrast, obvious undulation in the potential distribution and much high MAPD was detected in Ti-Ta alloy and Ti-Au alloy. The calculated MAPD is approximately 207 mV for Ti-Ta alloy and 272 mV for Ti-Au alloy, respectively. The difference in the MAPD reflects the inhomogeneous composition of the samples and is consistent with the difference between the midpoint of the Ti2+/Ti redox couple (-1.628 V) and the midpoint redox potentials of the alloying metals (Zr4+/Zr, -1.529 V; Ta3+/Ta, -0.6 V; Au3+/Au, 1.498 V). The electrode potential of intermetallic compounds was theoretically in order of: Zr(Ti)< Ta(Ti)<Ti3Au. This was consistent with the result of SKPFM measurement.
Fig. 5. Live/dead and ROS staining images of (a) S. aureus and (b) E. coli, respectively (Scale bar=100 μm). (c) Representative galvanic corrosion current density curves of Ti-Zr(Ti) couple, Ti-Ta(Ti) couple and Ti-Ti3Au couple with live and dead bacteria. (d) The calculated electron transfers between two electrodes in Ti-Zr(Ti) couple, Ti-Ta(Ti) couple and Ti-Ti3Au couple with live and dead bacteria. (e) Electron transfer from metal surface to live bacteria on Ti-Zr(Ti) couple, Ti-Ta(Ti) couple and Ti-Ti3Au couple. (f) pH and (g) ORP changes in the culture medium on different samples.
Cytocompatibility of the samples: (a) ROS expression of MC3T3-E1 osteoblasts cultured on different samples for 4 h and 24 h. (b) cytoskeleton staining of MC3T3-E1 osteoblasts on Ti-M samples and cp-Ti after culturing for 4 h and 24 h. (c) OD value and (d) RGR of MC3T3-E1 osteoblasts by the CCK-8 test after culturing for 1, 3, and 5 days on Ti-M samples. (*denotes p<0.05).
Fig. 7. Schematic of antibacterial mechanism via micro-area potential difference. (a) Properties of material surface. (b) Effect of MAPD on properties of samples and solution after immersing in liquid. (c) Effect of MAPD on bacteria.
[1] | Z. Jing, R. Ni, J. Wang, X. Lin, D. Fan, Q. Wei, T. Zhang, Y. Zheng, H. Cai, Z. Liu, Bioact. Mater. 6 (2021) 4542-4557. |
[2] | P. Makvandi, C.-y. Wang, E.N. Zare, A. Borzacchiello, L.-n. Niu, F.R. Tay, Adv. Funct. Mater. 30 (2020) 1910021. |
[3] |
G. Mabilleau, S. Bourdon, M. Joly-Guillou, R. Filmon, M. Baslé, D. Chappard, Acta Biomater 2 (2006) 121-129.
PMID |
[4] | H.J. Han, S. Kim, D.H. Han, Int. J. Oral Max. Impl. 29 (2014) 303-310. |
[5] |
M.L. Knetsch, L.H. Koole, Polymers 3 (2011) 340-366.
DOI URL |
[6] |
R. Liu, K. Memarzadeh, B. Chang, Y. Zhang, Z. Ma, R.P. Allaker, L. Ren, K. Yang, Sci. Rep. 6 (2016) 1-10.
DOI URL |
[7] |
E. Zhang, F. Li, H. Wang, J. Liu, C. Wang, M. Li, K. Yang, Mater. Sci. Eng. C 33 (2013) 4280-4287.
DOI URL |
[8] |
S. Rajalakshmi, A. Fathima, J.R. Rao, B.U. Nair, RSC Advances 4 (2014) 32004-32012.
DOI URL |
[9] | S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, D. Dash, Nanotech- nology 18 (2007) 225103. |
[10] |
A. Kumar, P.K. Vemula, P.M. Ajayan, G. John, Nat. Mater. 7 (2008) 236.
DOI URL |
[11] |
K. Huo, X. Zhang, H. Wang, L. Zhao, X. Liu, P.K. Chu, Biomaterials 34 (2013) 3467-3478.
DOI URL |
[12] |
K. Li, C. Xia, Y. Qiao, X. Liu, J. Trace Elem. Med. Biol. 55 (2019) 127-135.
DOI URL |
[13] |
H. Qin, H. Cao, Y. Zhao, C. Zhu, T. Cheng, Q. Wang, X. Peng, M. Cheng, J. Wang, G. Jin, Y. Jiang, X. Zhang, X. Liu, P.K. Chu, Biomaterials 35 (2014) 9114-9125.
DOI URL |
[14] |
I. Sondi, B. Salopek-Sondi, J. Colloid Interface Sci. 275 (2004) 177-182.
DOI URL |
[15] | G. Wang, W. Jin, A.M. Qasim, A. Gao, X. Peng, W. Li, H. Feng, P.K. Chu, Bioma- terials 124 (2017) 25-34. |
[16] |
H. Cao, X. Liu, F. Meng, P.K. Chu, Biomaterials 32 (2011) 693-705.
DOI URL |
[17] | J. Ye, B. Li, M. Li, Y. Zheng, S. Wu, Y. Han, Bioact. Mater. 11 (2021) 181-191. |
[18] |
J. Diendorf, K. Loza, C. Sengstock, J. Mater. Chem. B 2 (2014) 1634-1643.
DOI PMID |
[19] |
A. Pietroiusti, L. Campagnolo, B. Fadeel, Small 9 (2013) 1557-1572.
DOI PMID |
[20] | R. Foldbjerg, P. Olesen, M. Hougaard, D.A. Dang, H.J. Hoffmann, H. Autrup, Tox- icol. Lett. 190 (2009) 156-162. |
[21] |
K. Soto, K.M. Garza, L.E. Murr, Acta Biomater 3 (2007) 351-3582.
DOI URL |
[22] |
A. Nair, G. Mun, P. Hande, S. Valiyaveettil, ACS Nano 3 (2009) 279-290.
DOI URL |
[23] | E. Zhang, X. Zhao, J. Hu, R. Wang, S. Fu, G. Qin, Bioact. Mater. 6 (2021) 2569-2612. |
[24] |
Y. Zheng, B. Zhang, B. Wang, Y. Wang, L. Li, Q. Yang, L. Cui, Acta Biomater 7 (2011) 2758-2767.
DOI PMID |
[25] |
Y. Yuan, R. Luo, J. Ren, L. Zhang, Y. Jiang, Z. He, Mater. Lett. 306 (2022) 130875.
DOI URL |
[26] |
M. Chen, E. Zhang, L. Zhang, Mater. Sci. Eng. C 62 (2016) 350-360.
DOI URL |
[27] |
J. Hu, H. Li, X. Wang, L. Yang, M. Chen, R. Wang, G. Qin, D.-F. Chen, E. Zhang, Mater. Sci. Eng. C 115 (2020) 110921.
DOI URL |
[28] |
C. Peng, S. Zhang, Z. Sun, L. Ren, K. Yang, Mater. Sci. Eng. C 93 (2018) 495-504.
DOI URL |
[29] |
M. Chen, L. Yang, L. Zhang, Y. Han, Z. Lu, G. Qin, E. Zhang, Mater. Sci. Eng. C 75 (2017) 906-917.
DOI URL |
[30] |
A. Shi, C. Zhu, S. Fu, R. Wang, G. Qin, D.-F. Chen, E. Zhang, Mater. Sci. Eng. C 109 (2020) 110548.
DOI URL |
[31] |
S.M. Javadhesari, S. Alipour, M. Akbarpour, Colloids Surf. B 189 (2020) 110889.
DOI URL |
[32] |
J. Liu, X. Zhang, H. Wang, F. Li, M. Li, K. Yang, E. Zhang, Biomed. Mater. 9 (2014) 025013.
DOI URL |
[33] | M. Bao, Y. Liu, X. Wang, L. Yang, S. Li, J. Ren, G. Qin, E. Zhang, Bioact. Mater. 3 (2018) 28-38. |
[34] |
X. Wang, H. Dong, J. Liu, G. Qin, D. Chen, E. Zhang, Mater. Sci. Eng. C 100 (2019) 38-47.
DOI URL |
[35] |
Z. Lei, H. Zhang, E. Zhang, J. You, X. Ma, X. Bai, Mater. Sci. Eng. C 92 (2018) 121-131.
DOI URL |
[36] |
M.K. Kang, S.K. Moon, J.S. Kwon, K.M. Kim, K.N. Kim, Mater. Res. Bull. 47 (2012) 2952-2955.
DOI URL |
[37] |
Z. Ma, L. Ren, R. Liu, K. Yang, Y. Zhang, Z. Liao, W. Liu, M. Qi, R. Misra, J. Mater. Sci. Technol. 31 (2015) 723-732.
DOI URL |
[38] |
S. Guo, Y. Lu, S. Wu, L. Liu, M. He, C. Zhao, Y. Gan, J. Lin, J. Luo, X. Xu, Mater. Sci. Eng., C 72 (2017) 631-640.
DOI URL |
[39] | W. Xu, C. Hou, Y. Mao, L. Yang, M. Tamaddon, J. Zhang, X. Qu, C. Liu, B. Su, X. Lu, Bioact. Mater. 5 (2020) 659-666. |
[40] |
Y. Zhang, K. Chu, S. He, B. Wang, W. Zhu, F. Ren, Mater. Sci. Eng. C 106 (2020) 110165.
DOI URL |
[41] |
W. Li, X. Wang, C. Liu, G. Qin, E. Zhang, J. Mater. Sci.-Mater. Med. 30 (2019) 112.
DOI URL |
[42] |
R. Wang, R. Wang, D. Chen, G. Qin, E. Zhang, J. Alloy. Compd. 824 (2020) 153924.
DOI URL |
[43] |
D. Cai, X. Zhao, L. Yang, R. Wang, G. Qin, D.-F. Chen, E. Zhang, J. Mater. Sci. Technol. 81 (2021) 13-25.
DOI URL |
[44] |
T. Wan, K. Chu, J. Fang, C. Zhong, Y. Zhang, X. Ge, Y. Ding, F. Ren, J. Mater. Sci. Technol. 80 (2021) 266-278.
DOI URL |
[45] |
B. Fe rhat, L.E. Buelbuel, Appl. Phys. A: Mater. Sci. Process. 122 (2016) 25.
DOI URL |
[46] |
C. Vasilescu, S.I. Drob, P. Osiceanu, J.M. Calderon, Metall. Mater. Trans. A 48 (2016) 1-11.
DOI URL |
[47] |
E. Zhang, J. Ren, S. Li, L. Yang, G. Qin, Biomed. Mater. 11 (2016) 065001.
DOI URL |
[48] |
J. Liu, F. Li, C. Liu, H. Wang, B. Ren, K. Yang, E. Zhang, Mater. Sci. Eng. C 35 (2014) 392-400.
DOI URL |
[49] |
S. Fu, Y. Zhang, G. Qin, E. Zhang, Mater. Sci. Eng. C 128 (2021) 112266.
DOI URL |
[50] | Y. Lekbach, T. Liu, Y. Li, M. Moradi, W. Dou, D. Xu, J.A. Smith, D.R. Lovley, R.K. Poole, D.J. Kelly, in:Advances in Microbial Physiology, Academic Press, 2021, pp. 317-390. |
[51] | A. Medve ďová, Ľ. Valík, InTech 4 (2012) 71-102. |
[52] | C. Dong, W. Feng, W. Xu, L. Yu, H. Xiang, Y. Chen, J. Zhou, Adv. Sci. 7 (2020) 2001549. |
[53] |
H. Zhu, J. Yin, X. Wang, H. Wang, X. Yang, Adv. Funct. Mater. 23 (2013) 1305-1312.
DOI URL |
[54] | M.J. Flores, R.J. Brandi, A.E. Cassano, M.D. Labas, Chem. Eng. J. 198 (2012) 388-396. |
[55] | M. Song, Y. Cheng, Y. Tian, C. Chu, C. Zhang, Z. Lu, X. Chen, X. Pang, G. Liu, Adv. Funct. Mater. 30 (2020) 2003587. |
[56] |
C. Nathan, A. Ding, Cell 140 (2010) 871-882.
DOI PMID |
[57] |
M.A. Kohanski, D.J. Dwyer, B. Hayete, C.A. Lawrence, J.J. Collins, Cell 130 (2007) 797-810.
PMID |
[58] |
H. Cao, Y. Qiao, X. Liu, T. Lu, T. Cui, F. Meng, P.K. Chu, Acta Biomater 9 (2013) 5100-5110.
DOI URL |
[59] |
G. Wang, H. Feng, L. Hu, W. Jin, Q. Hao, A. Gao, X. Peng, W. Li, K.-Y. Wong, H. Wang, Nat. Commun. 9 (2018) 2055.
DOI URL |
[1] | Mingjun Li, Li Nan, Chunyong Liang, Ziqing Sun, Lei Yang, Ke Yang. Antibacterial behavior and related mechanisms of martensitic Cu-bearing stainless steel evaluated by a mixed infection model of Escherichia coli and Staphylococcus aureus in vitro [J]. J. Mater. Sci. Technol., 2021, 62(0): 139-147. |
[2] | Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity? [J]. J. Mater. Sci. Technol., 2021, 62(0): 44-51. |
[3] | Bowen Zhao, Hailong Li, Zhengkun Li, Shaofan Ge, Xindong Qin, Shiming Zhang, Aimin Wang, Haifeng Zhang, Zhengwang Zhu. Green strategy of scaleably synthesizing copper nanocomposites with remarkable catalytic activity for wastewater treatment [J]. J. Mater. Sci. Technol., 2021, 95(0): 158-166. |
[4] | Dan Liu, Hongying Yang, Jianhui Li, Jiaqi Li, Yizhe Dong, Chuntian Yang, Yuting Jin, Lekbach Yassir, Zhong Li, David Hernandez, Dake Xu, Fuhui Wang, Jessica A. Smith. Electron transfer mediator PCN secreted by aerobic marine Pseudomonas aeruginosa accelerates microbiologically influenced corrosion of TC4 titanium alloy [J]. J. Mater. Sci. Technol., 2021, 79(0): 101-108. |
[5] | Chengzhi Dai, Min Zhou, Weinan Jiang, Ximian Xiao, Jingcheng Zou, Yuxin Qian, Zihao Cong, Zhemin Ji, Longqiang Liu, Jiayang Xie, Zhongqian Qiao, Runhui Liu. Breaking or following the membrane-targeting mechanism: Exploring the antibacterial mechanism of host defense peptide mimicking poly(2-oxazoline)s [J]. J. Mater. Sci. Technol., 2020, 59(0): 220-226. |
[6] | Tingyue Gu, Ru Jia, Tuba Unsal, Dake Xu. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria [J]. J. Mater. Sci. Technol., 2019, 35(4): 631-636. |
[7] | Dunhua Hong, Guangzhong Cao, Junle Qu, Yuanming Deng, Jiaonin Tang. Antibacterial activity of Cu2O and Ag co-modified rice grains-like ZnO nanocomposites [J]. J. Mater. Sci. Technol., 2018, 34(12): 2359-2367. |
[8] | Yingchao Li, Dake Xu, Changfeng Chen, Xiaogang Li, Ru Jia, Dawei Zhang, Wolfgang Sand, Fuhui Wang, Tingyue Gu. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review [J]. J. Mater. Sci. Technol., 2018, 34(10): 1713-1718. |
[9] | Li NAN, Weichao YANG, Yongqian LIU, Hui XU, Ying LI, Manqi LÜ, Ke YANG. Antibacterial Mechanism of Copper-bearing Antibacterial Stainless Steel against E.Coli [J]. J Mater Sci Technol, 2008, 24(02): 197-201. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||