J. Mater. Sci. Technol. ›› 2022, Vol. 113: 33-39.DOI: 10.1016/j.jmst.2021.11.007
• Research article • Previous Articles Next Articles
Zhichao Loua, Qiuyi Wanga, Xiaodi Zhoub,g, Ufuoma I. Karab, Rajdeep S. Mamtanib, Hualiang Lvb,*(), Meng Zhangb, Zhihong Yangc, Yanjun Lia, Chenxuan Wangd,*(
), Solomon Aderae,*(
), Xiaoguang Wangb,f,*(
)
Received:
2021-09-30
Revised:
2021-11-07
Accepted:
2021-11-08
Published:
2021-12-31
Online:
2022-06-24
Contact:
Hualiang Lv,Chenxuan Wang,Solomon Adera,Xiaoguang Wang
About author:
wang.12206@osu.edu (X. Wang).Zhichao Lou, Qiuyi Wang, Xiaodi Zhou, Ufuoma I. Kara, Rajdeep S. Mamtani, Hualiang Lv, Meng Zhang, Zhihong Yang, Yanjun Li, Chenxuan Wang, Solomon Adera, Xiaoguang Wang. An angle-insensitive electromagnetic absorber enabling a wideband absorption[J]. J. Mater. Sci. Technol., 2022, 113: 33-39.
Fig. 1. EM response capability for the magnetic, spatially symmetric structure: (a-b) schematic illustration of the multiple dispersion method to measure the EM parameters; (c-d) representative transmission electron microscopy (TEM) images of magntic carbonyl iron microspheres; (e-f) EM wave frequency-dependent magnetic loss and dielectric loss of EM absorbers prepared using the multiple dispersion method.
Fig. 2. EM response for the non-symmetrical and spatially symmetrical structures: (a-b) representative field emission scanning electron microscopy (FE-SEM) images of carbonyl iron flakes after ball-milling the carbonyl iron microspheres; (c-d) dielectric loss and magntic loss curves of the carbon iron flake-based EM absorbers preprared using multiple dispersion; (e-f) FE-SEM image and the magnetic loss curve of magnetic cobalt nanospheres.
Fig. 3. Effect of the magnetic loss on the EM absorption performance: (a) schematic illustration of the spatially symmetric (spherical) structure; (b) schematic illustration of the magnetic domains of a magnetic nanosphere; (c-e) two-dimensional (2D) color mapping of the reflection loss curve of three different batches of cobalt nanosphere-based EM absorbers prepared using multiple dispersion methods; (f) the effective absorption region of cobalt nanosphere-based EM absorbers with a thickness of 1.4 mm.
Fig. 4. Analysis of structutral sensitivity of the dielectric structure: (a) representative TEM images of carbon nanospheres prepared via hydrothermal processing; (b) dielectric loss curves of the carbon nanosphere-based EM absorbers prepared using multiple dispersion methods; (c-e) representative FE-SEM images of the hierarchical polygon CuS structure; (f-g) dielectric loss and Cole-Cole curves of CuS prepared using the multiple dispersion method; (h-i) dielectric loss curves of the carbon nanotubes.
Fig. 5. EM absorption performance of EM incident angle-insensitive carbon nanospheres derived from bamboo: (a-b) representative FE-SEM images of the carbon nanospheres (The inset shows the bamboo); (c-e) 2D color mapping of the reflection loss curves of the cobalt nanosphere-based EM absorbers prepared using multiple dispersion methods; (f-h) the effective absorption region of different dispersion batches of the cobalt nanosphere-based EM absorbers with a thickness < 2.0 mm. Inset in (a) shows the bamboo.
[1] |
R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Adv. Mater. 16 (2004) 401-405 105670.
DOI URL |
[2] |
H.L. Lv, Z.H. Yang, H.B. Xu, L.Y. Wang, R.B. Wu, Adv. Funct. Mater. 30 (2020) 1907251.
DOI URL |
[3] |
X.L. Li, X.X. Sheng, Y.Q. Guo, X. Lu, H. Wu, Y. Chen, L. Zhang, J.W. Gu, J. Mater. Sci. Technol. 86 (2021) 171-179.
DOI URL |
[4] | B. Zhao, Y. Li, H.Y. Ji, P.W. Bai, S. Wang, B.B. Fan, X.Q. Guo, R. Zhang,Carbon 176 (2021) 411-420. |
[5] |
C. Zhang, S. Yin, C. Long, B.W. Dong, D.P. He, Q. Cheng, Opt. Express. 29 (2021) 14078.
DOI PMID |
[6] | J.W. Wang, Z.R. Jia, X.H. Liu, J.L. Dou, B.H. Xu, B.B. Wang, G.L. Wu, Nano-Micro Lett 13 (2021) 175. |
[7] | P. Song, B. Liu, C.B. Liang, L.P. Ruan, H. Qiu, Z.L. Ma, Y.Q. Guo, J.W. Gu, Nano-Mi- cro Lett 13 (2021) 91. |
[8] |
T.Q. Hou, Z.R. Jia, B.B. Wang, H.B. Li, X.H. Liu, L. Bi, G.L. Wu, Chem. Eng. J. 414 (2021) 128875.
DOI URL |
[9] | Z.C. Lou, Q.Y. Wang, U.I. Kara, R.S. Mamtani, X.D. Zhou, H.Y. Bian, Z.H. Yang, Y.J. Li, H.L. Lv, S. Adera, X.G. Wang, C.F. Zhang, L.M. Pan, J. Yang, Nano-Micro Lett 14 (2022) 11 127283. |
[10] |
X. Liang, Y. Cheng, H.Q. Zhang, D.M. Tang, B.S. Zhang, G.B. Ji, Y.W. Du, ACS Appl. Mater. Interfaces 7 (2015) 4744.
DOI URL |
[11] | L.X. Gai, G.L. Song, Y.Y. Li, W.S. Niu, L.F. Qin, Q.D. An, Z.Y. Xiao, S.R. Zhai, Carbon 179 (2021) 111-124. |
[12] |
J. Li, D. Zhou, P.J. Wang, C. Du, W.F. Liu, J.Z. Su, L.X. Pang, M.S. Cao, L.B. Kong, Chem. Eng. J. 425 (2021) 131558.
DOI URL |
[13] |
J.J. Zhou, X.Y. Wang, K.Y. Ge, Z.Y. Yang, H.Q. Li, C.F. Guo, J.Y. Wang, Q. Shan, L. Xia, J. Colloid Interf. Sci. 607 (2020) 881-889.
DOI URL |
[14] |
G.L. Wu, Z.R. Jia, X.F. Zhou, G.Z. Nie, H.L. Lv, Compos. Part A-Appl. S. 128 (2020) 105687.
DOI URL |
[15] |
L.J. Yang, H. Lv, M. Li, Y. Zhang, J.C. Liu, Z.H. Yang, Chem. Eng. J. 392 (2020) 123666.
DOI URL |
[16] | B. Zhao, Y. Li, Q.W. Zeng, L. Wang, J.J. Ding, R. Zhang, R.C. Che, Small 40 (2020 2003502). |
[17] |
H. Lv, Z.H. Yang, B. Liu, G.L. Wu, Z.C. Lou. B. Fei, R.B. Wu, Nat. Commun. 12 (2021) 834.
DOI URL |
[18] | H. Sun, R.C. Che, X. You, Y.S. Jiang, Z.B. Yang, J. Deng, L.B. Qiu, H.S. Peng, Adv. Mater. 48 (2014) 8120-8125. |
[19] |
H.L. Lv, Z.H. Yang, S.H.H. Ong, C. Wei, H.B. Liao, S.B. Xi, Y.H. Du, G.B. Ji, Z.C.J. Xu, Funct. Mater. 29 (2019) 1900163.
DOI URL |
[20] |
Y.L. Zhang, K.P. Ruan, J.W. Gu, Small 17 (2021) 2101951.
DOI URL |
[21] |
G.L. Wu, H.X. Zhang, X.X. Luo, L.J. Yang, H.L. Lv, J. Colloid Interf. Sci. 536 (2019) 548-555.
DOI URL |
[22] |
H.L. Lv, H.Q. Zhang, G.J. Ji, Z.C.J. Xu, ACS Appl. Mater. Interfaces 8 (2016) 6529.
DOI URL |
[23] |
B. Zhao, G. Shao, B.B. Fan, W.Y. Zhao, Y.J. Xie, R. Zhang, J. Mater. Chem. A 3 (2015) 10345-10352.
DOI URL |
[24] |
J. Zhao, J.L. Zhang, L. Wang, J.K. Li, T. Feng, J.C. Fan, L.X. Chen, J.W. Gu, Compos. Commun. 22 (2020) 100486.
DOI URL |
[25] |
H. Lv, X.D. Zhou, G.L. Wu, U.I. Kara, X.G. Wang, J. Mater. Chem. A 9 (2021) 19710.
DOI URL |
[26] |
Z.C. Lou, Q.Y. Wang, Y. Zhang, X.D. Zhou, R. Li, J. Liu, Y.J. Li, Compos. Part B-Eng. 214 (2021) 108744.
DOI URL |
[27] |
Z.C. Lou, X. Han, J. Liu, Q.L. Ma, H. Yan, C.L. Yuan, L.T. Yang, H. Han, F.J. Weng, Y.J. Li, Compos. Part B-Eng. 226 (2021) 109335.
DOI URL |
[28] |
C. Zhang, C. Long, S. Yin, R.G. Song, B.H. Zhang, J.W. Zhang, D.P. He, Q. Cheng, Mater. Des. 206 (2021) 109768.
DOI URL |
[29] |
C. Zhang, W.K. Cao, L.T. Wu, J.C. Ke, Y. Jing, T.J. Cui, Q. Cheng, Appl. Phys. Lett. 118 (2021) 133502.
DOI URL |
[30] |
H. Lv, Y.H. Guo, Z.H. Yang, T.C. Guo, H.J. Wu, G. Liu, L.Y. Wang, R.B. Wu, ACS Sustainable Chem. Eng. 6 (2018) 1539-1544.
DOI URL |
[31] |
H.L. Lv, X.H. Liang, Y. Cheng, G.B. Ji, D.M. Tang, B.S. Zhang, H.Q. Zhang, Y.W. Du, ACS Appl. Mater. Interfaces 7 (2015) 9776-9783.
DOI URL |
[32] | H.L. Lv, H.Q. Zhang, J. Zhao, G.B. Ji, Nano Res 6 (2016) 1813-1822. |
[33] |
X.B. Xie, B.L. Wang, Y.K. Wang, C. Ni, X.Q. Sun, W. Du, Chem. Eng. J. 428 (2022) 131160.
DOI URL |
[34] |
M. Zhu, X.X. Yan, H.L. Xu, Y.J. Xu, L. Kong, Ceram. Int. 47 (2021) 17234-17244.
DOI URL |
[35] |
B. Quan, W.H. Gu, J.Q. Sheng, X.F. Lv, Y.Y. Mao, L. Liu, X.G. Huang, Z.J. Tian, G.B. Ji, Nano Res. 14 (2021) 1495-1501.
DOI URL |
[36] | M. Zhu, X.X. Yan, H.L. Xu, Y.J. Xu, L. Kong, Carbon 182 (2021) 806-814. |
[37] |
H. Lv, G.B. Ji, M. Wang, C.M. Shang, H.Q. Zhang, Y.W. Du, RSC Adv. 4 (2014) 57529-57533.
DOI URL |
[38] |
X.L. Li, X.X. Sheng, Y.Q. Guo, X. Lu, H. Wu, Y. Chen, L. Zhang, J.W. Gu, J. Mater. Sci. Technol. 86 (2021) 171-179.
DOI URL |
[39] |
L.J. Yang, T.W. Deng, Z.R. Jia, X.D. Zhou, H. Lv, Y.T. Zhu, J.C. Liu, Z.H. Yang, J. Mater. Sci. Technol. 83 (2021) 239-247.
DOI URL |
[40] |
H. Jian, Q.R. Du, Q.Q. Men, L. Guan. R. S. Li, B.B. Fan, X. Zhang, X.Q. Guo, B. Zhao, R. Zhang, J. Mater. Sci. Technol. 109 (2022) 105-113, doi: 10.1016/j.jmst. 2021.07.060.
DOI |
[41] |
B. Quan, W.H. Shi, S.J.H. Ong, X.C. Lu, P.L.Y. Wang, G.B. Ji, Y.F. Guo, L.R. Zheng, Z. C.J. Xu, Funct. Mater. 29 (2019) 1901236.
DOI URL |
[42] | H.L. Lv, Z.H. Yang, P.L.Y. Wang, G.B. Ji, J.Z. Song, L.R. Zheng, H.B. Zeng, Z.C.J. Xu, Mater. 30 (2018) 1706343. |
[43] |
L. Wang, Z.L. Ma, Y.L. Zhang, L.X. Chen, D.P. Cao, J.W. Gu, SusMat 1 (2021) 413.
DOI URL |
[44] |
H.L. Lv, H.Q. Zhang, B.S. Zhang, G.B. Ji, Y. He, Q. Lin, J. Mater. Chem. C 4 (2016) 5476-5482.
DOI URL |
[1] | P.-C. Zhao, B. Guan, Y.-G. Tong, R.-Z. Wang, X. Li, X.-C. Zhang, S.-T Tu. A quasi-in-situ EBSD study of the thermal stability and grain growth mechanisms of CoCrNi medium entropy alloy with gradient-nanograined structure [J]. J. Mater. Sci. Technol., 2022, 109(0): 54-63. |
[2] | Xue Yan, Cheng Zhang, Yangshuai Li, Youjian Yi, Ziruo Cui, Bingyuan Han. Laser-induced topology optimized amorphous nanostructure and corrosion electrochemistry of supersonically deposited Ni30Cr25Al15Co15Mo5Ti5Y5 HEA coating based on AIMD [J]. J. Mater. Sci. Technol., 2022, 106(0): 257-269. |
[3] | Jiaqi Dong, Chuxuan Yan, Yingzhi Chen, Wenjie Zhou, Yu Peng, Yue Zhang, Lu-Ning Wang, Zheng-Hong Huang. Organic semiconductor nanostructures: optoelectronic properties, modification strategies, and photocatalytic applications [J]. J. Mater. Sci. Technol., 2022, 113(0): 175-198. |
[4] | Jingjing Pan, Jingyang Wang. Temperature-mediated supramolecular assemblies give rise to hierarchical boron nitride nano-ribbon networks with different micro-topology [J]. J. Mater. Sci. Technol., 2022, 96(0): 160-166. |
[5] | Weijie Zhang, Xizhong Zhou, Jinzhao Huang, Shouwei Zhang, Xijin Xu. Noble metal-free core-shell CdS/iron phthalocyanine Z-scheme photocatalyst for enhancing photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2022, 115(0): 199-207. |
[6] | Hua-Jun Chen, Yan-Ling Yang, Xin-Xin Zou, Xiao-Lei Shi, Zhi-Gang Chen. Flexible hollow TiO2@CMS/carbon-fiber van der Waals heterostructures for simulated-solar light photocatalysis and photoelectrocatalysis [J]. J. Mater. Sci. Technol., 2022, 98(0): 143-150. |
[7] | Wanting Sun, Bo Wu, Hui Fu, Xu-Sheng Yang, Xiaoguang Qiao, Mingyi Zheng, Yang He, Jian Lu, San-Qiang Shi. Combining gradient structure and supersaturated solid solution to achieve superior mechanical properties in WE43 magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 223-238. |
[8] | Jiasi Luo, Wanting Sun, Ranxi Duan, Wenqing Yang, K.C. Chan, Fuzeng Ren, Xu-Sheng Yang. Laser surface treatment-introduced gradient nanostructured TiZrHfTaNb refractory high-entropy alloy with significantly enhanced wear resistance [J]. J. Mater. Sci. Technol., 2022, 110(0): 43-56. |
[9] | Hui Fu, Xiaoye Zhou, Bo Wu, Lei Qian, Xu-Sheng Yang. Atomic-scale dissecting the formation mechanism of gradient nanostructured layer on Mg alloy processed by a novel high-speed machining technique [J]. J. Mater. Sci. Technol., 2021, 82(0): 227-238. |
[10] | Lieji Yang, Tianwei Deng, Zirui Jia, Xiaodi Zhou, Hualiang Lv, Yutao Zhu, Juncen Liu, Zhihong Yang. Hierarchical porous hollow graphitized carbon@MoS2 with wideband EM dissipation capability [J]. J. Mater. Sci. Technol., 2021, 83(0): 239-247. |
[11] | Abbas Mohammadi, Nariman A. Enikeev, Maxim Yu. Murashkin, Makoto Arita, Kaveh Edalati. Examination of inverse Hall-Petch relation in nanostructured aluminum alloys by ultra-severe plastic deformation [J]. J. Mater. Sci. Technol., 2021, 91(0): 78-89. |
[12] | Yue Tian, Qingqiang Cui, Linlin Xu, Anxin Jiao, Shuang Li, Xuelin Wang, Ming Chen. Pronounced interfacial interaction in icosahedral Au@C60 core-shell nanostructure for boosting direct plasmonic photocatalysis under alkaline condition [J]. J. Mater. Sci. Technol., 2021, 94(0): 10-21. |
[13] | Pingping Yao, Chenyang Li, Jiali Yu, Shuo Zhang, Meng Zhang, Huichao Liu, Muwei Ji, Guangtao Cong, Tao Zhang, Caizhen Zhu, Jian Xu. High performance flexible energy storage device based on copper foam supported NiMoO4 nanosheets-CNTs-CuO nanowires composites with core-shell holey nanostructure [J]. J. Mater. Sci. Technol., 2021, 85(0): 87-94. |
[14] | Conghui Zhang, Xiangkang Zeng, Jiapeng Cheng, Yaomian Wang. Fatigue life improvement and grain growth of gradient nanostructured industrial zirconium during high cycle fatigue [J]. J. Mater. Sci. Technol., 2021, 87(0): 101-107. |
[15] | Xinyue Tang, Junchao Wang, Jing Li, Xinglai Zhang, Peiqing La, Xin Jiang, Baodan Liu. In-situ growth of large-area monolithic Fe2O3/TiO2 catalysts on flexible Ti mesh for CO oxidation [J]. J. Mater. Sci. Technol., 2021, 69(0): 119-128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||