J. Mater. Sci. Technol. ›› 2022, Vol. 103: 165-176.DOI: /10.1016/j.jmst.2021.05.087
• Research Article • Previous Articles Next Articles
Xuefei Miaoa,*(
), Yong Gonga, Fengqi Zhangb, Yurong Youa, Luana Caronc,d, Fengjiao Qiane, Wenhui Guoa, Yujing Zhanga, Yuanyuan Gonga, Feng Xua,*(
), Niels van Dijkb, Ekkes Brückb
Received:2021-04-18
Revised:2021-05-10
Accepted:2021-05-11
Published:2022-03-20
Online:2021-09-15
Contact:
Xuefei Miao,Feng Xu
About author:xufeng@njust.edu.cn (F. Xu).Xuefei Miao, Yong Gong, Fengqi Zhang, Yurong You, Luana Caron, Fengjiao Qian, Wenhui Guo, Yujing Zhang, Yuanyuan Gong, Feng Xu, Niels van Dijk, Ekkes Brück. Enhanced reversibility of the magnetoelastic transition in (Mn,Fe)2(P,Si) alloys via minimizing the transition-induced elastic strain energy[J]. J. Mater. Sci. Technol., 2022, 103: 165-176.
Fig. 1. (a) Temperature-dependent magnetization measured in 1 T for the Mn1.15Fe0.80-xMoxP0.45Si0.55 alloys. (b) Curie temperature as a function of the Mo content derived from the thermomagnetic curves. The dependence of thermal hysteresis on the Mo content is shown in the inset of (b). Isothermal magnetization/demagnetization curves for the x = 0 (c) and 0.04 (d) alloys.
Fig. 2. (a) In situ field-dependent neutron diffraction patterns collected at 257 K from the Mn1.15Fe0.76Mo0.04P0.45Si0.55 alloy. (b) Schematic illustration of the field-induced magnetoelastic transition in the (Mn,Fe)2(P,Si) alloys. (c) Rietveld refinement of the neutron diffraction pattern collected in 2 T at T = 257 K after zero-field cooling from 300 K. Vertical lines indicate the peak positions (from top to bottom) of the PM (Mn,Fe)2(P,Si) phase, the nuclear structure of the FM (Mn,Fe)2(P,Si) phase, the magnetic structure of the FM (Mn,Fe)2(P,Si) phase, and the Fe3Si-type impurity phase, respectively. Note that the diffraction peaks from the magnet are excluded from the diffraction patterns. (d) The volume fraction of the transformed FM phase (fFM) derived from neutron diffraction patterns during the first 2 field cycles at 257 K after zero-field cooling from 300 K. The solid lines in (d) are guided to the eyes.
Fig. 3. (a) Isothermal entropy change in a field change of 1 T measured upon cooling (open symbols) and heating (solid symbols) for the Mn1.15Fe0.80-xMoxP0.45Si0.55 alloys. (b) Reversible adiabatic temperature change in a cyclic field of 1.1 T. (c) Specific heat at different temperatures (Cp-T curves) measured upon cooling and heating. (d) Latent heat derived from the Cp-T curves and the shift of TC in a magnetic field (dTC/dμ0H) derived from the M-T curves as a function of the Mo content.
Fig. 5. (a) Bright-field TEM image and (b-f) the corresponding EDS maps for the Mn1.15Fe0.76Mo0.04P0.45Si0.55 alloy. (g) Composition depth profile along the dashed lines in (a). STEM-HAADF images of the grain boundary area observed from (h) the [001] zone axis of the (Mn,Fe)2(P,Si) phase and (i) the [001] zone axis of the Fe3Si-type phase. Insets in (h) and (i) are the corresponding FFT patterns of the (Mn,Fe)2(P,Si) and Fe3Si-type phases, respectively. High-magnification STEM-HAADF images of (j) the (Mn,Fe)2(P,Si) main phase and (k) the Fe3Si-type grain-boundary phase.
Fig. 6. Contour plots of the temperature-dependent neutron diffraction patterns for the Mn1.15Fe0.80-xMoxP0.45Si0.55 alloys with x = 0 (a) and 0.04 (b). (c) Rietveld refinement of the neutron diffraction pattern collected at T = 4 K in zero magnetic field for the Mn1.15Fe0.76Mo0.04P0.45Si0.55 alloy. Vertical lines indicate the peak positions (from top to bottom) of the nuclear structure of the (Mn,Fe)2(P,Si) phase, the magnetic structure of the (Mn,Fe)2(P,Si) phase, and the Fe3Si-type secondary phase, respectively. Thermal evolution of the lattice parameters a (d) and c (e) for the Mn1.15Fe0.80-xMoxP0.45Si0.55 alloys. Note that the lattice parameters of the x = 0 and 0.04 alloys were derived from temperature-dependent neutron diffraction patterns, while those of the x = 0.01 and 0.02 alloys were derived from temperature-dependent X-ray diffraction patterns. (f) Schematic illustration of the thermally-induced magnetoelastic transition in (Mn,Fe)2(P,Si) alloys.
Fig. 7. Ashby-like plot demonstrating the relationship between the elastic strain energy Ue at TC and the thermal hysteresis ΔThys for the (Mn,Fe)2(P,Si) alloys. The dashed line is a guide to the eyes.
Fig. 8. Calculated ELF contour maps on the Fe-Si and Mn-P layers in (a, b) the FM and (c, d) the PM states of the (Mn,Fe)2(P,Si) alloys. Line profiles of the ELF values (e) between Fe and its nearest neighbors and (f) between Mn and its nearest neighbors. The stoichiometry of MnFeP1/3Si2/3 is assumed in the supercell for simplicity of the calculations.
Fig. 9. Thermal evolution of interatomic distances extracted from neutron diffraction for the Mn1.15Fe0.80P0.45Si0.55 alloy. The errors on the refined distances are smaller than the symbol size.
Fig. 10. (a) The relationship between the TC of the FM-to-PM transition and the c/a ratio of the hexagonal structure at 200 K for the Mn1.15Fe0.80-xMoxP0.45Si0.55 alloys. (b-d) The nearest interatomic distances at 200 K to TC. The errors on the c/a ratio and the interatomic distances are smaller than the symbol size.
| [1] |
A. Kitanovski, Adv. Energy Mater. 10 (2020) 1903741.
DOI URL |
| [2] |
T. Gottschall, K.P. Skokov, M. Fries, A. Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, O. Gutfleisch, Adv. Energy Mater. 9 (2019) 1901322.
DOI URL |
| [3] |
V.K. Pecharsky, K.A. Gschneidner Jr, Phys. Rev. Lett. 78 (1997) 4494-4497.
DOI URL |
| [4] |
N.H. Dung, Z.Q. Ou, L. Caron, L. Zhang, D.T.C. Thanh, G.A. de Wijs, R.A. de Groot, K.H.J. Buschow, E. Brück, Adv. Energy Mater. 1 (2011) 1215-1219.
DOI URL |
| [5] |
F.X. Hu, B.G. Shen, J.R. Sun, Z.H. Cheng, G.H. Rao, X.X. Zhang, Appl. Phys. Lett. 78 (2001) 3675-3677.
DOI URL |
| [6] |
A. Fujita, S. Fujieda, Y. Hasegawa, K. Fukamichi, Phys. Rev. B 67 (2003) 104416.
DOI URL |
| [7] | E.K. Liu, W.H. Wang, L. Feng, W. Zhu, G.J. Li, J. Chen, H.W. Zhang, G.H. Wu, C.B. Jiang, H.B. Xu, F. de Boer, Nat.Commun. 3 (2012) 873. |
| [8] |
Y. Taguchi, H. Sakai, D. Choudhury, Adv. Mater. 29 (2017) 1606144.
DOI URL |
| [9] |
T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Manosa, A. Planes, Nat. Mater. 4 (2005) 450-454.
DOI URL |
| [10] |
J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore, O. Gutfleisch, Nat. Mater. 11 (2012) 620-626.
DOI URL |
| [11] |
T. Gottschall, K.P. Skokov, B. Frincu, O. Gutfleisch, Appl. Phys. Lett. 106 (2015) 021901.
DOI URL |
| [12] |
O. Gutfleisch, T. Gottschall, M. Fries, D. Benke, I. Radulov, K.P. Skokov, H. Wende, M. Gruner, M. Acet, P. Entel, M. Farle, Philos. Trans. R. Soc. A 374 (2016) 20150308.
DOI URL |
| [13] | L.D. Landau, Zh. Eksp. Teor. Fiz. 7 (1937) 19-32. |
| [14] |
A.M.G. Carvalho, A.A. Coelho, S. Gama, F.C.G. Gandra, P.J. von Ranke, N.A. de Oliveira, Eur. Phys. J. B 68 (2009) 67-72.
DOI URL |
| [15] |
N.H. van Dijk, J. Magn. Magn. Mater. 529 (2021) 167871.
DOI URL |
| [16] |
X.F. Miao, H. Sepehri-Amin, K. Hono, Scr. Mater. 138 (2017) 96-99.
DOI URL |
| [17] |
M. Fries, L. Pfeuffer, E. Bruder, T. Gottschall, S. Ener, L.V.B. Diop, T. Gröb, K.P. Skokov, O. Gutfleisch, Acta Mater. 132 (2017) 222-229.
DOI URL |
| [18] |
A. Bartok, M. Kustov, L.F. Cohen, A. Pasko, K. Zehani, L. Bessais, F. Mazaleyrat, M. LoBue, J. Magn. Magn. Mater. 400 (2016) 333-338.
DOI URL |
| [19] |
K. Morrison, J. Moore, K. Sandeman, A. Caplin, L. Cohen, Phys. Rev. B 79 (2009) 134408.
DOI URL |
| [20] |
L. Morellon, Z. Arnold, C. Magen, C. Ritter, O. Prokhnenko, Y. Skorokhod, P.A. Algarabel, M.R. Ibarra, J. Kamarad, Phys. Rev. Lett. 93 (2004) 137201.
PMID |
| [21] |
H. Zhang, B.G. Shen, Z.Y. Xu, X.Q. Zheng, J. Shen, F.X. Hu, J.R. Sun, Y. Long, J. Appl. Phys. 111 (2012) 07A909.
DOI URL |
| [22] |
K. Bhattacharya, S. Conti, G. Zanzotto, J. Zimmer, Nature 428 (2004) 55-59.
DOI URL |
| [23] |
J. Cui, Y.S. Chu, O.O. Famodu, Y. Furuya, J. Hattrick-Simpers, R.D. James, A. Lud-wig, S. Thienhaus, M. Wuttig, Z. Zhang, I. Takeuchi, Nat. Mater. 5 (2006) 286-290.
DOI URL |
| [24] |
Y.H. Qu, D.Y. Cong, S.H. Li, W.Y. Gui, Z.H. Nie, M.H. Zhang, Y. Ren, Y.D. Wang, Acta Mater. 151 (2018) 41-55.
DOI URL |
| [25] |
D.Y. Cong, L. Huang, V. Hardy, D. Bourgault, X.M. Sun, Z.H. Nie, M.G. Wang, Y. Ren, P. Entel, Y.D. Wang, Acta Mater. 146 (2018) 142-151.
DOI URL |
| [26] |
Y.H. Qu, D.Y. Cong, X.M. Sun, Z.H. Nie, W.Y. Gui, R.G. Li, Y. Ren, Y.D. Wang, Acta Mater. 134 (2017) 236-248.
DOI URL |
| [27] |
J. Liu, Y. Gong, Y. You, X. You, B. Huang, X. Miao, G. Xu, F. Xu, E. Brück, Acta Mater. 174 (2019) 450-458.
DOI URL |
| [28] |
C. Chluba, W. Ge, R. Lima de Miranda, J. Strobel, L. Kienle, E. Quandt, M. Wut-tig, Science 348 (2015) 1004-1007.
DOI URL |
| [29] |
Y. Liu, X. Fu, Q. Yu, M. Zhang, J. Liu, Acta Mater. 207 (2021) 116687.
DOI URL |
| [30] |
V. Provenzano, A.J. Shapiro, R.D. Shull, Nature 429 (2004) 853-857.
DOI URL |
| [31] |
H. Sepehri-Amin, A. Taubel, T. Ohkubo, K.P. Skokov, O. Gutfleisch, K. Hono, Acta Mater. 147 (2018) 342-349.
DOI URL |
| [32] |
H. Hou, E. Simsek, T. Ma, N.S. Johnson, S. Qian, C. Cissé, D. Stasak, N. Al Hasan, L. Zhou, Y. Hwang, R. Radermacher, V.I. Levitas, M.J. Kramer, M.A. Zaeem, A.P. Stebner, R.T. Ott, J. Cui, I. Takeuchi, Science 366 (2019) 1116-1121.
DOI URL |
| [33] |
H. Chen, Y.D. Wang, Z. Nie, R. Li, D. Cong, W. Liu, F. Ye, Y. Liu, P. Cao, F. Tian, X. Shen, R. Yu, L. Vitos, M. Zhang, S. Li, X. Zhang, H. Zheng, J.F. Mitchell, Y. Ren, Nat. Mater. 19 (2020) 712-718.
DOI URL |
| [34] |
M. Trassinelli, M. Marangolo, M. Eddrief, V.H. Etgens, V. Gafton, S. Hidki, E. La-caze, E. Lamour, C. Prigent, J.P. Rozet, S. Steydli, Y. Zheng, D. Vernhet, Appl. Phys. Lett. 104 (2014) 081906.
DOI URL |
| [35] |
R. Niemann, S. Hahn, A. Diestel, A. Backen, L. Schultz, K. Nielsch, M.F.X. Wag-ner, S. Fähler, APL Mater. 4 (2016) 064101.
DOI URL |
| [36] |
F.X. Hu, L. Chen, J. Wang, L.F. Bao, J.R. Sun, B.G. Shen, Appl. Phys. Lett. 100 (2012) 072403.
DOI URL |
| [37] |
A. Waske, L. Giebeler, B. Weise, A. Funk, M. Hinterstein, M. Herklotz, K. Skokov, S. Fähler, O. Gutfleisch, J. Eckert, Phys. Status Solidi RRL 9 (2015) 136-140.
DOI URL |
| [38] |
J. Lyubina, R. Schafer, N. Martin, L. Schultz, O. Gutfleisch, Adv. Mater. 22 (2010) 3735.
DOI |
| [39] |
E. Lovell, A.M. Pereira, A.D. Caplin, J. Lyubina, L.F. Cohen, Adv. Energy Mater. 5 (2015) 1401639.
DOI URL |
| [40] |
J.D. Moore, K. Morrison, K.G. Sandeman, M. Katter, L.F. Cohen, Appl. Phys. Lett. 95 (2009) 252504.
DOI URL |
| [41] |
Y. Liu, L.C. Phillips, R. Mattana, M. Bibes, A. Barthelemy, B. Dkhil, Nat. Commun. 7 (2016) 11614.
DOI URL |
| [42] |
X.F. Miao, L. Caron, J. Cedervall, P.C.M. Gubbens, P. Dalmas de Réotier, A. Yaouanc, F. Qian, A.R. Wildes, H. Luetkens, A. Amato, N.H. van Dijk, E. Brück, Phys. Rev. B 94 (2016) 014426.
DOI URL |
| [43] | N.H. Dung, Moment formation and giant magnetocaloric effects in hexago- nal Mn-Fe-P-Si compounds, Ph.D. dissertation, Delft University of Technology, Delft, 2012. |
| [44] |
A.J. Studer, M.E. Hagen, T.J. Noakes, Phys. B 385-386 (2006) 1013-1015.
DOI URL |
| [45] |
J. Rodriguez-Carvajal, Phys. B 192 (1993) 55-69.
DOI URL |
| [46] |
F. Guillou, G. Porcari, H. Yibole, N.H. van Dijk, E. Brück, Adv. Mater. 26 (2014) 2671.
DOI URL |
| [47] |
H. Yibole, F. Guillou, L. Zhang, N.H. van Dijk, E. Brück, J. Phys. D Appl. Phys. 47 (2014) 075002.
DOI URL |
| [48] |
G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169.
DOI PMID |
| [49] |
A.D. Becke, K.E. Edgecombe, J. Chem. Phys. 92 (1990) 5397-5403.
DOI URL |
| [50] |
X.F. Miao, L. Caron, Z. Gercsi, A. Daoud-Aladine, N.H. van Dijk, E. Brück, Appl. Phys. Lett. 107 (2015) 042403.
DOI URL |
| [51] |
L. Caron, Z.Q. Ou, T.T. Nguyen, D.T. Cam Thanh, O. Tegus, E. Brück, J. Magn. Magn. Mater. 321 (2009) 3559-3566.
DOI URL |
| [52] |
K.A. Gschneidner, V.K. Pecharsky, A.O. Tsokol, Rep. Prog. Phys. 68 (2005) 1479-1539.
DOI URL |
| [53] |
K.G. Sandeman, Scr. Mater. 67 (2012) 566-571.
DOI URL |
| [54] |
F. Cugini, G. Porcari, S. Fabbrici, F. Albertini, M. Solzi, Philos. Trans. R. Soc. A 374 (2016) 20150306.
DOI URL |
| [55] |
T. Gottschall, D. Benke, M. Fries, A. Taubel, I.A. Radulov, K.P. Skokov, O. Gut-fleisch, Adv. Funct. Mater. 27 (2017) 1606735.
DOI URL |
| [56] |
X.F. Miao, L. Caron, P. Roy, N.H. Dung, L. Zhang, W.A. Kockelmann, R.A. de Groot, N.H. van Dijk, E. Brück, Phys. Rev. B 89 (2014) 174429.
DOI URL |
| [57] | J.F. Nye, Physical Properties of Crystals: Their Pepresentation By Tensors and Matrices, Oxford University Press, Oxford, UK, 1985. |
| [58] |
P. Roy, E. Torun, R.A. de Groot, Phys. Rev. B 93 (2016) 094110.
DOI URL |
| [59] |
N.H. Dung, L. Zhang, Z.Q. Ou, E. Brück, Scr. Mater. 67 (2012) 975-978.
DOI URL |
| [60] |
F. Guillou, H. Yibole, N.H. van Dijk, L. Zhang, V. Hardy, E. Brück, J. Alloys Compd. 617 (2014) 569-574.
DOI URL |
| [61] |
S.Y. Hu, X.F. Miao, J. Liu, Z.Q. Ou, M.Q. Cong, O. Haschuluu, Y.Y. Gong, F. Qian, Y.R. You, Y.J. Zhang, F. Xu, E. Brück, Intermetallics 114 (2019) 106602.
DOI URL |
| [62] |
M. Maschek, X. You, M.F.J. Boeije, D. Chernyshov, N.H. van Dijk, E. Brück, Phys. Rev. B 98 (2018) 224413.
DOI URL |
| [63] |
N.V. Thang, X.F. Miao, N.H. van Dijk, E. Brück, J. Alloys Compd. 670 (2016) 123-127.
DOI URL |
| [64] |
A. Pasko, A. Bartok, K. Zehani, L. Bessais, F. Mazaleyrat, M. LoBue, AIP Adv. 6 (2016) 056204.
DOI URL |
| [65] |
G. Shirane, R. Nathans, C.W. Chen, Phys. Rev. 134 (1964) A1547-A1553.
DOI URL |
| [66] |
F. Guillou, A.K. Pathak, D. Paudyal, Y. Mudryk, F. Wilhelm, A. Rogalev, V.K. Pecharsky, Nat. Commun. 9 (2018) 2925.
DOI PMID |
| [67] |
J. Lai, B. Huang, X. Miao, N. Van Thang, X. You, M. Maschek, L. van Eijck, D. Zeng, N. van Dijk, E. Brück, J. Alloys Compd. 803 (2019) 671-677.
DOI URL |
| [68] |
Z.Q. Ou, N.H. Dung, L. Zhang, L. Caron, E. Torun, N.H. van Dijk, O. Tegus, E. Brück, J. Alloys Compd. 730 (2018) 392-398.
DOI URL |
| [69] |
H. Wada, K. Nakamura, K. Katagiri, T. Ohnishi, K. Yamashita, A. Matsushita, Jpn. J. Appl. Phys. 53 (2014) 063001.
DOI URL |
| [70] |
D. Liu, M. Yue, J. Zhang, T. McQueen, J. Lynn, X. Wang, Y. Chen, J. Li, R. Cava, X. Liu, Z. Altounian, Q. Huang, Phys. Rev. B 79 (2009) 014435.
DOI URL |
| [71] |
X.F. Miao, N.V. Thang, L. Caron, H. Yibole, R.I. Smith, N.H. van Dijk, E. Brück, Scr. Mater. 124 (2016) 129-132.
DOI URL |
| [72] |
Q. Zhou, Z.G. Zheng, W.H. Wang, L. Lei, A. He, D.C. Zeng, Intermetallics 106 (2019) 94-99.
DOI |
| [73] |
M.F.J. Boeije, P. Roy, F. Guillou, H. Yibole, X.F. Miao, L. Caron, D. Baner-jee, N.H. van Dijk, R.A. de Groot, E. Brück, Chem. Mater. 28 (2016) 4901-4905.
DOI URL |
| [1] | Weibin Cui, Guiquan Yao, Shengyu Sun, Qiang Wang, Sen Yang. Unconventional metamagnetic phase transition in R2In (R=Nd, Pr) with lambda-like specific heat and nonhysteresis [J]. J. Mater. Sci. Technol., 2022, 101(0): 80-84. |
| [2] | Jing Bai, Die Liu, Jianglong Gu, Xinjun Jiang, Xinzeng Liang, Ziqi Guan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Excellent mechanical properties and large magnetocaloric effect of spark plasma sintered Ni-Mn-In-Co alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 46-51. |
| [3] | Meng Sun, Anatoly Balagurov, Ivan Bobrikov, Xianping Wang, Wen Wen, Igor S. Golovin, Qianfeng Fang. High damping in Fe-Ga-La alloys: Phenomenological model for magneto-mechanical hysteresis damping and experiment [J]. J. Mater. Sci. Technol., 2021, 72(0): 69-80. |
| [4] | Pengtao Cheng, Zhenjia Zhou, Jiaxing Chen, Zongbin Li, Bo Yang, Kun Xu, Zhe Li, Jun Li, Zhengming Zhang, Dunhui Wang, Suxin Qian, Youwei Du. Combining magnetocaloric and elastocaloric effects in a Ni45Co5Mn37In13 alloy [J]. J. Mater. Sci. Technol., 2021, 94(0): 47-52. |
| [5] | Quan-xin Shi, Cui-ju Wang, Kun-kun Deng, Kai-bo Nie, Yucheng Wu, Wei-min Gan, Wei Liang. Microstructure and mechanical behavior of Mg-5Zn matrix influenced by particle deformation zone [J]. J. Mater. Sci. Technol., 2021, 60(0): 8-20. |
| [6] | Zhipan Ma, Xiaoshi Dong, Zhenqian Zhang, Lingwei Li. Achievement of promising cryogenic magnetocaloric performances in La1-xPrxFe12B6 compounds [J]. J. Mater. Sci. Technol., 2021, 92(0): 138-142. |
| [7] | Xuanwei Zhao, Xianming Zheng, Xiaohua Luo, Fei Gao, Hai Zeng, Guang Yu, Sajjad Ur Rehman, Changcai Chen, Shengcan Ma, Weijun Ren, Zhenchen Zhong. Large magnetocaloric effect and magnetoresistance in ErNi single crystal [J]. J. Mater. Sci. Technol., 2021, 86(0): 56-63. |
| [8] | Gang Chen, Klaus-Dieter Liss, Chao Chen, Yuehui He, Xuanhui Qu, Peng Cao. Porous FeAl alloys via powder sintering: Phase transformation, microstructure and aqueous corrosion behavior [J]. J. Mater. Sci. Technol., 2021, 86(0): 64-69. |
| [9] | X.X. Zhang, J.F. Zhang, Z.Y. Liu, W.M. Gan, M. Hofmann, H. Andrä, B.L. Xiao, Z.Y. Ma. Microscopic stresses in carbon nanotube reinforced aluminum matrix composites determined by in-situ neutron diffraction [J]. J. Mater. Sci. Technol., 2020, 54(0): 58-68. |
| [10] | Kyungeun Jung, Du Hyeon Kim, Jaemin Kim, Sunglim Ko, Jae Won Choi, Ki Chul Kim, Sang-Geul Lee, Man-Jong Lee. Influence of a UV-ozone treatment on amorphous SnO2 electron selective layers for highly efficient planar MAPbI3 perovskite solar cells [J]. J. Mater. Sci. Technol., 2020, 59(0): 195-202. |
| [11] | Przemysł Kot; aw, BaczmańAndrzej ski, GadalińElż ska; bieta, WrońSebastian ski, WrońMarcin ski, WróMirosł bel; aw, Gizo Bokuchava, ScheffzüChristian k, Krzysztof Wierzbanowski. Evolution of phase stresses in Al/SiCp composite during thermal cycling and compression test studied using diffraction and self-consistent models [J]. J. Mater. Sci. Technol., 2020, 36(0): 176-189. |
| [12] | Jiangguli Peng, Wenbin Liu, Jiangtao Zeng, Liaoying Zheng, Guorong Li, Anthony Rousseau, Alain Gibaud, Abdelhadi Kassiba. Large electromechanical strain at high temperatures of novel <001> textured BiFeGaO3-BaTiO3 based ceramics [J]. J. Mater. Sci. Technol., 2020, 48(0): 92-99. |
| [13] | X.X. Zhang, L.H. Wu, H. Andrä, W.M. Gan, M. Hofmann, D. Wang, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effects of welding speed on the multiscale residual stresses in friction stir welded metal matrix composites [J]. J. Mater. Sci. Technol., 2019, 35(5): 824-832. |
| [14] | Peng Xue, Simon Pauly, Weimin Gan, Songshan Jiang, Hongbo Fan, Zhiliang Ning, Yongjiang Huang, Jianfei Sun. Enhanced tensile plasticity of a CuZr-based bulk metallic glass composite induced by ion irradiation [J]. J. Mater. Sci. Technol., 2019, 35(10): 2221-2226. |
| [15] | Peng Jia, Leipeng Duan, Kang Wang, Engang Wang. Magnetic properties and magnetocaloric effects of Gd65(Cu,Co,Mn)35 amorphous ribbons [J]. J. Mater. Sci. Technol., 2019, 35(10): 2283-2287. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
