J. Mater. Sci. Technol. ›› 2021, Vol. 76: 207-214.DOI: 10.1016/j.jmst.2020.11.025
• Research Article • Previous Articles Next Articles
Shaodong Hua,c, Long Houb, Kang Wanga, Zhongmiao Liaoa, Wen Zhua, Aihua Yia, Wenfang Lia,*(), Yves Fautrelled, Xi Lib,*(
)
Received:
2020-06-20
Revised:
2020-07-22
Accepted:
2020-09-04
Published:
2021-06-20
Online:
2020-11-10
Contact:
Wenfang Li,Xi Li
About author:
lx_net@sina.com (X. Li).Shaodong Hu, Long Hou, Kang Wang, Zhongmiao Liao, Wen Zhu, Aihua Yi, Wenfang Li, Yves Fautrelle, Xi Li. Effect of transverse static magnetic field on radial microstructure of hypereutectic aluminum alloy during directional solidification[J]. J. Mater. Sci. Technol., 2021, 76: 207-214.
Fig. 1. The microstructures near the liquid/solid interface in directionally solidified Al-40 wt% Cu alloy at 10 μm/s growth rate with various magnetic fields: (a) 0 T; (b) 0.1 T; (c) 0.3 T; (d) 0.5 T. (a1), (b1), (c1) and (d1) are the longitudinal solidification microstructures. (a2), (b2), (c2) and (d2) are the corresponding transverse solidification microstructures.
Fig. 4. The microstructures near the liquid/solid interface in directionally solidified Al-40 wt% Cu alloy at various growth rates with and without magnetic field: (a) 0 T, 30 μm/s; (b) 0.5 T, 30 μm/s; (c) 0.5 T, 100 μm/s; (d) 0.5 T, 300 μm/s. (a1), (b1), (c1) and (d1) are the longitudinal solidification microstructures. (a2), (b2), (c2) and (d2) are the corresponding transverse solidification microstructures.
Fig. 5. The microstructures near the liquid/solid interface in directionally solidified Al-40 wt% Cu alloy at various temperature gradients with and without magnetic field: (a) 0 T, 60 K/cm; (b) 0.5 T, 60 K/cm; (c) 0.5 T, 90 K/cm; (d) 0.5 T, 120 K/cm. (a1), (b1), (c1) and (d1) are the longitudinal solidification microstructures. (a2), (b2), (c2) and (d2) are the corresponding transverse solidification microstructures.
Name and symbol | Unit | Solid | Liquid |
---|---|---|---|
Absolute thermoelectric power, S | V/K | -1.5 × 10-6 | -2.25 × 10-6 |
Electric conductivity, σ | (Ω m)-1 | 7.9 × 107 | 4.0 × 106 |
Dynamic viscosity, μ | Pa s | - | 2.9 × 10-3 |
Density, ρ | Kg/m3 | 2.7 × 103 | 2.4 × 103 |
Thermal conductivity, λ | W/(m K) | 150 | 90 |
Table 1 Physical properties of Al alloy in the numerical simulation [[20], [21], [22], [23]].
Name and symbol | Unit | Solid | Liquid |
---|---|---|---|
Absolute thermoelectric power, S | V/K | -1.5 × 10-6 | -2.25 × 10-6 |
Electric conductivity, σ | (Ω m)-1 | 7.9 × 107 | 4.0 × 106 |
Dynamic viscosity, μ | Pa s | - | 2.9 × 10-3 |
Density, ρ | Kg/m3 | 2.7 × 103 | 2.4 × 103 |
Thermal conductivity, λ | W/(m K) | 150 | 90 |
Fig. 6. Numerical simulation for the thermoeletric magnetic effects near the sloping interface in the directionally solidified Al-based alloys under 0.1 T transverse magnetic field: (a) the geometry of computing domain; (b) the computed thermoelectric current (the unit in caption is A/m2); (c) the computed TEMC (the unit in caption is μm/s); (d) the computed TEMC in the X-Y plane (the unit in caption is μm/s). Red arrows show the direction of the TEMC and the colored surfaces present their magnitudes.
Fig. 7. Single dendrite scale numerical simulation for the thermoeletric magnetic effects in the directionally solidified Al-based alloys under 0.1 T transverse magnetic field: (a, d) the geometry of computing domain; (b, e) the computed TEMC (the unit in caption is μm/s); (c, f) the computed TEMC in the X-Y plane (the unit in caption is μm/s). The red arrows show the direction of the TEMC and the colored surfaces present their magnitudes.
Fig. 8. The schematic of TEMC under transverse magnetic field resulting in freckle formation in the mushy zone during directional solidification: (a) the TEMC circulation under transverse magnetic field; (b) the freckle formation caused by the anisotropic TEMC.
[1] |
S.N. Geng, P. Jiang, X.Y. Shao, L.Y. Guo, X.S. Gao, J. Mater. Sci. Technol., 46 (2020), pp. 50-63
DOI URL |
[2] |
Y.H. Dong, S.S. Shuai, T.X. Zheng, J.W. Cao, C.Y. Chen, J. Wang, Z.M. Ren, J. Mater. Sci. Technol., 39 (2020), pp. 113-123
DOI URL |
[3] |
P. Gao, T. Liu, M. Dong, Y. Yuan, Q. Wang, J. Magn. Magn. Mater., 401 (2016), pp. 755-759
DOI URL |
[4] | A.F. Giamei, B.H. Kear, Metall. Mater. Trans. B, 1 (1970), pp. 2185-2192 |
[5] |
T.M. Pollock, S. Tin, J. Propu. Power 22 (2006), pp. 361-365
DOI URL |
[6] |
M.G. Worster, J. Fluid Mech., 237 (1992), pp. 649-669
DOI URL |
[7] |
J. Madison, J. Spowart, D. Rowenhorst, L.K. Aagesen, K. Thornton, T.M. Pollock, Acta Mater., 58 (2010), pp. 2864-2875
DOI URL |
[8] |
M. Medina, Y.D. Terrail, F. Durand, Y. Fautrelle, Metall. Mater. Trans. B, 35 (2004), pp. 743-754
DOI URL |
[9] |
S. Boden, S. Eckert, G. Gerbeth, Mater. Lett., 64 (2010), pp. 1340-1343
DOI URL |
[10] |
L. Qin, J. Shen, Q. Li, Z. Shang, J. Mater. Res., 32 (2017), pp. 2045-2054
DOI URL |
[11] | B.Q. Li, JOM, 50 (1998), pp. 1-10 |
[12] |
P. Gillon, Mater. Sci. Eng. A, 287 (2000), pp. 146-152
DOI URL |
[13] |
S.S. Shuai, X. Lin, Y.H. Dong, L. Hou, H.L. Liao, J. Wang, Z.M. Ren, J. Mater. Sci. Technol., 35 (2019), pp. 1587-1592
DOI URL |
[14] |
Z. Shen, M.H. Peng, D.S. Zhu, T.X. Zheng, Y.B. Zhong, W.L. Ren, C.J. Li, W.D. Xuan, Z.M. Ren, J. Mater. Sci. Technol., 35 (2019), pp. 568-577
DOI |
[15] | C.S. Li, S.D. Hu, Z.M. Ren, Y. Fautrelle, X. Li, J. Mater. Sci. Technol., 35 (2018), pp. 2431-2438 |
[16] |
S.N. Tewari, R. Shah, H. Song, Metall. Mater. Trans. A, 25 (1994), pp. 1535-1544
DOI URL |
[17] |
H.X. Li, D.F. Du, A. Gagnoud, Y. Fautrelle, R. Moreau, X. Li, J. Mater. Res., 31 (2016), pp. 213-221
DOI URL |
[18] |
X. Li, Y. Fautrelle, A. Gagnoud, R. Moreau, D.F. Du, J. Wang, Z.M. Ren, H. Nguyen-Thi, N. Mangelinck-Noel, Acta Mater., 64 (2014), pp. 367-381
DOI URL |
[19] | T. Alboussiere, A.C. Neubrand, J.P. Garandet, R. Moreau, Magnetohydrodynamics, 31 (1995), pp. 228-235 |
[20] |
J. Wang, Y. Fautrelle, H. Nguyen-Thi, G. Reinhart, H.L. Liao, X. Li, Y.B. Zhong, Z.M. Ren, Metall. Mater. Trans. A, 47 (2016), pp. 1169-1179
DOI URL |
[21] |
F. Baltaretu, J. Wang, S. Letout, Z.M. Ren, X. Li, O. Budenkova, Y. Fautrelle, Magnetohydrodynamics, 51 (2015), pp. 45-55
DOI URL |
[22] |
J. Wang, X. Lin, Y. Fautrelle, H. Nguyen-Thi, Z.M. Ren, Metall. Mater. Trans. B, 49 (2018), pp. 861-865
DOI URL |
[23] |
G. Salloum-Abou-Jaoude, J. Wang, L. Abou-Khalil, G. Reinhart, Z.M. Ren, N. Mangelinck-Noël, X. Li, Y. Fautrelle, H. Nguyen-Thi, J. Cryst. Growth, 417 (2015), pp. 25-30
DOI URL |
[24] |
R. Mehrabian, M. Keane, M.C. Flemings, Metall. Mater. Trans. B, 1 (1970), pp. 1209-1220
DOI URL |
[25] |
W. Yang, W. Chen, K.M. Chang, S. Mannan, J. DeBarbadillo, Metall. Mater. Trans. A, 32 (2001), pp. 397-405
DOI URL |
[26] |
L. Yuan, P.D. Lee, Acta Mater., 60 (2012), pp. 4917-4926
DOI URL |
[27] |
S.D. Felicelli, J.C. Heinrich, D.R. Poirier, Metall. Mater. Trans. B, 22 (1991), pp. 847-859
DOI URL |
[28] |
X. Li, J.T. Wang, L. Hou, A. Gagnoud, Y. Fautrelle, J. Alloys Compd., 821 (2020), 153457
DOI URL |
[29] |
S. Karagadde, L. Yuan, N. Shevchenko, S. Eckert, P.D. Lee, Acta Mater., 79 (2014), pp. 168-180
DOI URL |
[1] | Lei Luo, Liangshun Luo, Yanqing Su, Lin Su, Liang Wang, Jingjie Guo, Hengzhi Fu. Optimizing microstructure, shrinkage defects and mechanical performance of ZL205A alloys via coupling travelling magnetic fields with unidirectional solidification [J]. J. Mater. Sci. Technol., 2021, 74(0): 246-258. |
[2] | Peng Peng, Anqiao Zhang, Jinmian Yue, Xudong Zhang, Yuanli Xu. Macrosegregation and thermosolutal convection-induced freckle formation in dendritic mushy zone of directionally solidified Sn-Ni peritectic alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 21-26. |
[3] | Xiaotan Yuan, Tao Zhou, Weili Ren, Jianchao Peng, Tianxiang Zheng, Long Hou, Jianbo Yu, Zhongming Ren, Peter K. Liaw, Yunbo Zhong. Nondestructive effect of the cusp magnetic field on the dendritic microstructure during the directional solidification of Nickel-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 52-59. |
[4] | Luyan Yang, Shuangming Li, Kai Fan, Yang Li, Yanhui Chen, Wei Li, Deli Kong, Pengfei Cao, Haibo Long, Ang Li. Twin crystal structured Al-10 wt.% Mg alloy over broad velocity conditions achieved by high thermal gradient directional solidification [J]. J. Mater. Sci. Technol., 2021, 71(0): 152-162. |
[5] | Peng Peng, Jinmian Yue, Anqiao Zhang, Xudong Zhang, Yuanli Xu. Analysis on fluid permeability of dendritic mushy zone during peritectic solidification in a temperature gradient [J]. J. Mater. Sci. Technol., 2021, 71(0): 169-176. |
[6] | Weidan Ma, Jun Zhang, Haijun Su, Guangrao Fan, Min Guo, Lin Liu, Hengzhi Fu. Phase growth patterns for Al2O3/GdAlO3 eutectics over wide ranges of compositions and solidification rates [J]. J. Mater. Sci. Technol., 2021, 65(0): 89-98. |
[7] | Haijun Su, Yuan Liu, Qun Ren, Zhonglin Shen, Haifang Liu, Di Zhao, Guangrao Fan, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu. Distribution control and formation mechanism of gas inclusions in directionally solidified Al2O3-Er3Al5O12-ZrO2 ternary eutectic ceramic by laser floating zone melting [J]. J. Mater. Sci. Technol., 2021, 66(0): 21-27. |
[8] | Ying Niu, Yue Wang, Long Hou, Lansong Ba, Yanchao Dai, Yves Fautrelle, Zongbin Li, Zhongming Ren, Xi Li. Effect of γ phase on mechanical behavior and detwinning evolution of directionally solidified Ni-Mn-Ga alloys under uniaxial compression [J]. J. Mater. Sci. Technol., 2021, 66(0): 91-96. |
[9] | Yubao Xiao, Tie Liu, Yuxin Tong, Meng Dong, Jinshan Li, Jun Wang, Qiang Wang. Microstructure evolution of peritectic Al-18 at.% Ni alloy directionally solidified in high magnetic fields [J]. J. Mater. Sci. Technol., 2021, 76(0): 51-59. |
[10] | Pinfang Jiang, Jiantao Wang, Long Hou, Yves Fautrelle, Xi Li. Controlling and adjusting the concentration distribution during solidification process using static magnetic fields [J]. J. Mater. Sci. Technol., 2020, 50(0): 86-91. |
[11] | Yuanhao Dong, Sansan Shuai, Tianxiang Zheng, Jiawei Cao, Chaoyue Chen, Jiang Wang, Zhongming Ren. In-situ observation of solid-liquid interface transition during directional solidification of Al-Zn alloy via X-ray imaging [J]. J. Mater. Sci. Technol., 2020, 39(0): 113-123. |
[12] | Chunjuan Cui, Cong Wang, Pei Wang, Wei Liu, Yuanyuan Lai, Li Deng, Haijun Su. Microstructure and fracture toughness of the Bridgman directionally solidified Fe-Al-Ta eutectic at different solidification rates [J]. J. Mater. Sci. Technol., 2020, 42(0): 63-74. |
[13] | Huiting Zheng, Ruirun Chen, Gang Qin, Xinzhong Li, Yanqing Su, Hongsheng Ding, Jingjie Guo, Hengzhi Fu. Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification [J]. J. Mater. Sci. Technol., 2020, 38(0): 19-27. |
[14] | Wonjoo Lee, Yuhyeong Jeong, Jae-Wook Lee, Howon Lee, Seong-hoon Kang, Young-Min Kim, Jonghun Yoon. Numerical simulation for dendrite growth in directional solidification using LBM-CA (cellular automata) coupled method [J]. J. Mater. Sci. Technol., 2020, 49(0): 15-24. |
[15] | Xuchen Yin, Jianrong Liu, Qingjiang Wang, Lei Wang. Investigation of beta fleck formation in Ti-17 alloy by directional solidification method [J]. J. Mater. Sci. Technol., 2020, 48(0): 36-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||