J. Mater. Sci. Technol. ›› 2021, Vol. 76: 215-221.DOI: 10.1016/j.jmst.2020.11.027
• Research Article • Previous Articles Next Articles
Xuefeng Liao, Jiasheng Zhang, Jiayi He, Wenbing Fan, Hongya Yu, Xichun Zhong, Zhongwu Liu*()
Received:
2020-06-17
Revised:
2020-08-06
Accepted:
2020-09-04
Published:
2020-11-11
Online:
2020-11-11
Contact:
Zhongwu Liu
About author:
*E-mail address: zwliu@scut.edu.cn (Z. Liu).Xuefeng Liao, Jiasheng Zhang, Jiayi He, Wenbing Fan, Hongya Yu, Xichun Zhong, Zhongwu Liu. Development of cost-effective nanocrystalline multi-component (Ce,La,Y)-Fe-B permanent magnetic alloys containing no critical rare earth elements of Dy, Tb, Pr and Nd[J]. J. Mater. Sci. Technol., 2021, 76: 215-221.
Fig. 1. XRD patterns (a), the enlarged patterns in the range of 40.5°-43.5° (b), the mass fraction (d) and lattice parameters of 1:2 phase (c) and 2:14:1 phase (e) for the S1-S5 samples.
Samples | Mass fraction (%) | Lattice parameters | ||||
---|---|---|---|---|---|---|
RE2Fe14B phase | REFe2 phase | RE2Fe14B phase | REFe2 phase | |||
a (Å) | c (Å) | c/a | a (Å) | |||
S1 | 82.4 | 17.6 | 8.751 | 12.115 | 1.384 | 7.312 |
S2 | 91.8 | 8.2 | 8.756 | 12.140 | 1.386 | 7.333 |
S3 | 100 | - | 8.759 | 12.161 | 1.388 | - |
S4 | 100 | - | 8.757 | 12.111 | 1.383 | - |
S5 | 100 | - | 8.755 | 12.082 | 1.380 | - |
Table 1 Mass fraction and lattice parameters of different phases for S1-S5 samples evaluated by Rietveld refinement.
Samples | Mass fraction (%) | Lattice parameters | ||||
---|---|---|---|---|---|---|
RE2Fe14B phase | REFe2 phase | RE2Fe14B phase | REFe2 phase | |||
a (Å) | c (Å) | c/a | a (Å) | |||
S1 | 82.4 | 17.6 | 8.751 | 12.115 | 1.384 | 7.312 |
S2 | 91.8 | 8.2 | 8.756 | 12.140 | 1.386 | 7.333 |
S3 | 100 | - | 8.759 | 12.161 | 1.388 | - |
S4 | 100 | - | 8.757 | 12.111 | 1.383 | - |
S5 | 100 | - | 8.755 | 12.082 | 1.380 | - |
Fig. 2. Bright field TEM images for the S1-Ce17Fe78B6 (a, d), S2-(Ce0.9La0.1)17Fe78B6 (b) and S4-[(Ce0.8La0.2)0.7Y0.3]17Fe78B6 (c). The selected-area electron diffraction (SEAD) for the S1 (a) are shown in the (a) inset. The high-resolution TEM (HRTEM) images of grains I and II obtained from (d) for S1, grains III and IV obtained from (b) for S2, grain V and grain boundaries (GBs) VI obtained from (c) for S4, are shown in (j, l), (e) and (f, h), and the corresponding fast Fourier transformation (FFT) are shown in (k, m), (e) insets and (g, i), respectively. EDS line scanning of typical GB phase (marked by red line) in S2 (b) and S4 (c) are shown in (n) and (o), respectively.
Fig. 4. Comparison of magnetic properties Hcj and (BH)max (a), temperature coefficient α and β (b), and Tc ((b) inset) for melt-spun (Ce,La,Y)17Fe78B6 alloys obtained in the current work with a variety of previously reported melt-spun Ce-based or Nd-based RE-Fe-B alloys.
RE | Critical RE | Abundant RE | |||||
---|---|---|---|---|---|---|---|
Nd | Pr | Dy | Tb | Ce | La | Y | |
Price ($/kg) | 57.32 | 91.71 | 340.34 | 841.03 | 4.08 | 4.16 | 32.96 |
Table 2 The current market prices of commonly RE used in Nd-Fe-B type magnets.
RE | Critical RE | Abundant RE | |||||
---|---|---|---|---|---|---|---|
Nd | Pr | Dy | Tb | Ce | La | Y | |
Price ($/kg) | 57.32 | 91.71 | 340.34 | 841.03 | 4.08 | 4.16 | 32.96 |
Sample | Composition (wt.%) | Cost of RE ($/kg) | (BH)max (MGOe) | Cost performance (MGOe kg/$) |
---|---|---|---|---|
S1 | Ce35.02Fe64.03B0.95 | 1.43 | 4.32 | 3.02 |
S3 | Ce28.03La6.95Fe64.07B0.95 | 1.43 | 5.44 | 3.80 |
S4 | Ce20.4La5.06Y6.93Fe66.62B0.99 | 3.33 | 7.41 | 2.23 |
MQP-12-8HD | Nd11.5Pr3.8Ce9.9Fe72B1.1Zr1.7 | 10.48 | 12.00 | 1.15 |
MQP-A-10179-070 | Nd29Fe70B1 | 16.62 | 13.00 | 0.78 |
MQP-15-9HD | Nd18.8Pr5.3Fe73.4B1.1Zr1.4 | 15.64 | 14.50 | 0.93 |
MQP-16-9HD | Nd24.4Fe73.1B1.1Zr1.4 | 13.99 | 15.50 | 1.11 |
Table 3 Comparison of the cost performance for melt-spun (Ce,La,Y)17Fe78B6 alloys obtained in the current work with commercial melt-spun magnetic powders.
Sample | Composition (wt.%) | Cost of RE ($/kg) | (BH)max (MGOe) | Cost performance (MGOe kg/$) |
---|---|---|---|---|
S1 | Ce35.02Fe64.03B0.95 | 1.43 | 4.32 | 3.02 |
S3 | Ce28.03La6.95Fe64.07B0.95 | 1.43 | 5.44 | 3.80 |
S4 | Ce20.4La5.06Y6.93Fe66.62B0.99 | 3.33 | 7.41 | 2.23 |
MQP-12-8HD | Nd11.5Pr3.8Ce9.9Fe72B1.1Zr1.7 | 10.48 | 12.00 | 1.15 |
MQP-A-10179-070 | Nd29Fe70B1 | 16.62 | 13.00 | 0.78 |
MQP-15-9HD | Nd18.8Pr5.3Fe73.4B1.1Zr1.4 | 15.64 | 14.50 | 0.93 |
MQP-16-9HD | Nd24.4Fe73.1B1.1Zr1.4 | 13.99 | 15.50 | 1.11 |
[1] |
K.P. Skokov, O. Gutfleisch, Scr. Mater., 154 (2018), pp. 289-294
DOI URL |
[2] | H.X. Zeng, Z.W. Liu, J.S. Zhang, X.F. Liao, H.Y. Yu, J. Mater, Sci. Technol., 36 (2020), pp. 50-54 |
[3] |
Q. Jiang, Z. Zhong, J. Mater. Sci. Technol., 33 (2017), pp. 1087-1096
DOI URL |
[4] |
X. Tang, H. Sepehri-Amin, T. Ohkubo, M. Yano, M. Ito, A. Kato, N. Sakuma, T. Shoji, T. Schrefl, K. Hono, Acta Mater., 144 (2018), pp. 884-895
DOI URL |
[5] | M. Zhu, W. Li, J. Wang, L. Zheng, Y. Li, K. Zhang, H. Feng, T. Liu, IEEE Trans. Magn., 50 (2014), pp. 1-4 |
[6] |
Y.L. Huang, Z.H. Li, X.J. Ge, Z.Q. Shi, Y.H. Hou, G.P. Wang, Z.W. Liu, Z.C. Zhong, J. Alloys. Compd., 797 (2019), pp. 1133-1141
DOI URL |
[7] | J.F. Herbst, M.S. Meyer, F.E. Pinkerton, J. Appl. Phys., 111 (2012), p. 819 |
[8] | J.S. Zhang, W. Li, X.F. Liao, H.Y. Yu, L.Z. Zhao, H.X. Zeng, D.R. Peng, Z.W. Liu, J. Mater, Sci. Technol., 35 (2019), pp. 1877-1885 |
[9] |
J.S. Zhang, L.Z. Zhao, X.F. Liao, H.X. Zeng, D.R. Peng, H.Y. Yu, X.C. Zhong, Z.W. Liu, Intermetallics, 107 (2019), pp. 75-80
DOI |
[10] |
Q. Jiang, M. Zhong, W. Lei, Q. Zeng, Y. Hu, Q. Quan, Y. Xu, X. Hu, L. Zhang, R. Liu, AIP Adv., 7 (2017), 085013
DOI URL |
[11] |
B.J. Ni, H. Xu, X.H. Tan, X.L. Hou, J. Magn. Magn. Mater., 401 (2016), pp. 784-787
DOI URL |
[12] |
S.U. Rehman, Q. Jiang, K. Liu, L. He, H. Ouyang, L. Zhang, L. Wang, S. Ma, Z. Zhong, J. Phys. Chem. Solids, 132 (2019), pp. 182-186
DOI URL |
[13] |
E.J. Skoug, M.S. Meyer, F.E. Pinkerton, M.M. Tessema, D. Haddad, J.F. Herbst, J. Alloys Compd., 574 (2013), pp. 552-555
DOI URL |
[14] |
Q. Jiang, M. Zhong, Q. Quan, W. Lei, Q. Zeng, Y. Hu, Y. Xu, X. Hu, L. Zhang, R. Liu, J. Magn. Magn. Mater., 444 (2017), pp. 344-348
DOI URL |
[15] |
X.F. Liao, L.Z. Zhao, J.S. Zhang, G. Ahmed, A.J. Khan, H.X. Zeng, H.Y. Yu, X.C. Zhong, Z.W. Liu, G.Q. Zhang, Curr. Appl. Phys., 19 (2019), pp. 733-738
DOI |
[16] |
X. Liao, J. Zhang, H. Yu, X. Zhong, Y. Liu, Y. Liu, Z. Liu, J. Magn. Magn. Mater., 489 (2019), 165444
DOI URL |
[17] |
X. Liao, J. Zhang, H. Yu, X. Zhong, A.J. Khan, X. Zhou, H. Zhang, Z. Liu, J. Mater. Sci., 54 (2019), pp. 14577-14587
DOI URL |
[18] |
X.F. Liao, J.S. Zhang, H.Y. Yu, X.C. Zhong, L.Z. Zhao, K. Xu, D.R. Peng, Z.W. Liu, J. Mater. Sci., 54 (2019), pp. 7288-7299
DOI |
[19] |
J. Jin, Z. Zhang, L. Zhao, B. Peng, Y. Liu, J.M. Greneche, M. Yan, Scr. Mater., 170 (2019), pp. 150-155
DOI URL |
[20] |
L.Z. Zhao, W.T. Guo, Z.Y. Zhang, D.L. Jiao, J.S. Zhang, Z.W. Liu, J.M. Greneche, J. Alloys Compd., 715 (2017), pp. 60-64
DOI URL |
[21] |
Z.Y. Zhang, L.Z. Zhao, J.S. Zhang, X.C. Zhong, W.Q. Qiu, D.L. Jiao, Z.W. Liu, Mater. Res. Express, 4 (2017), 086503
DOI URL |
[22] |
W. Chen, J.M. Luo, Y.W. Guan, Y.L. Huang, M. Chen, Y.H. Hou, J. Phys. D Appl. Phys., 51 (2018), 185001
DOI URL |
[23] |
X.B. Liu, Z. Altounian, M. Huang, Q. Zhang, J.P. Liu, J. Alloys. Compd., 549 (2013), pp. 366-369
DOI URL |
[24] | H. Soeda, M. Yanagida, J. Yamasaki, K. Mohri, IEEE Trans. J.Magn. In Jpn., 1 (1985), pp. 1006-1008 |
[25] |
R. Grössinger, X.K. Sun, R. Eibler, K.H.J. Buschow, H.R. Kirchmayr, J. Magn. Magn. Mater., 58 (1986), pp. 55-60
DOI URL |
[26] | S. Hirosawa, Y. Matsuura, H. Yamamoto, S. Fujimura, M. Sagawa, J. Appl. Phys., 24 (1985), pp. 803-805 |
[27] |
M. Grigoras, M. Lostun, G. Stoian, D.D. Herea, H. Chiriac, N. Lupu, J. Magn. Magn. Mater., 432 (2017), pp. 119-123
DOI URL |
[28] | Q.Y. Zhou, Z. Liu, S. Guo, A.R. Yan, D. Lee, IEEE Trans. Magn., 51 (2015), pp. 1-4 |
[29] |
Z.B. Li, M. Zhang, B.G. Shen, F.X. Hu, J.R. Sun, Mater. Lett., 172 (2016), pp. 102-104
DOI URL |
[30] |
X. Tan, H. Li, H. Xu, K. Han, W. Li, F. Zhang, Materials, 10 (2017), p. 869
DOI URL |
[31] |
K. Xu, H. Li, Y. Luo, L. Wang, D. Yu, Z. Wang, H. Peng, Y. Zhang, J. Magn. Magn. Mater., 461 (2018), pp. 100-105
DOI URL |
[32] |
Z. Liu, D. Qian, D. Zeng, IEEE Trans. Magn., 48 (2012), pp. 2797-2799
DOI URL |
[33] |
X.F. Liao, L.Z. Zhao, J.S. Zhang, X.C. Zhong, D.L. Jiao, Z.W. Liu, J. Magn. Magn. Mater., 464 (2018), pp. 31-35
DOI URL |
[34] |
Z.M. Chen, Y.Q. Wu, M.J. Kramerb, B.R. Smitha, B.M. Ma, M.Q. Huang, J. Magn. Magn. Mater., 268 (2004), pp. 105-113
DOI URL |
[35] |
R. Li, R.X. Shang, J.F. Xiong, D. Liu, H. Kuang, W.L. Zuo, T.Y. Zhao, J.R. Sun, B.G. Shen, AIP Adv., 7 (2017), 056207
DOI URL |
[36] |
D.N. Brown, D. Lau, Z. Chen, AIP Adv., 6 (2016), 056019
DOI URL |
[37] |
J. Jin, T. Ma, Y. Zhang, G. Bai, M. Yan, Sci. Rep., 6 (2016), p. 32200
DOI URL |
[38] |
J. Cui, M. Kramer, L. Zhou, F. Liu, A. Gabay, G. Hadjipanayis, B. Balasubramanian, D. Sellmyer, Acta Mater., 158 (2018), pp. 118-137
DOI URL |
[1] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[2] | Yongsheng Liu, Jiaying Jin, Tianyu Ma, Baixing Peng, Xinhua Wang, Mi Yan. Promoting the La solution in 2:14: 1-type compound: Resultant chemical deviation and microstructural nanoheterogeneity [J]. J. Mater. Sci. Technol., 2021, 62(0): 195-202. |
[3] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Ze Tian, Nannan Lu, Xikun Qin, Jingwei Liang. Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 69(0): 200-211. |
[4] | Xutong Yang, Xiao Zhong, Junliang Zhang, Junwei Gu. Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance [J]. J. Mater. Sci. Technol., 2021, 68(0): 209-215. |
[5] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Nannan Lu, Ze Tian, Xikun Qin. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67(0): 23-35. |
[6] | Binbin Zhang, Weichen Xu, Qingjun Zhu, Baorong Hou. Scalable, fluorine free and hot water repelling superhydrophobic and superoleophobic coating based on functionalized Al2O3 nanoparticles [J]. J. Mater. Sci. Technol., 2021, 66(0): 74-81. |
[7] | Tao Yuan, Xin Song, Xianglong Zhou, Wentao Jia, Munzali Musa, Jingdong Wang, Tianyu Ma. Role of primary Zr-rich particles on microstructure and magnetic properties of 2:17-type Sm-Co-Fe-Cu-Zr permanent magnets [J]. J. Mater. Sci. Technol., 2020, 53(0): 73-81. |
[8] | Qing Du, Xiongjun Liu, Yihuan Cao, Yuren Wen, Dongdong Xiao, Yuan Wu, Hui Wang, Zhaoping Lu. Enhanced crystallization resistance and thermal stability via suppressing the metastable superlattice phase in Ni-(Pd)-P metallic glasses [J]. J. Mater. Sci. Technol., 2020, 42(0): 203-211. |
[9] | E. Burzo, P. Vlaic, D.P. Kozlenko, N.O. Golosova, S.E. Kichanov, B.N. Savenko, A. Ostlin, L. Chioncel. Structure and magnetic properties of YCo5 compound at high pressures [J]. J. Mater. Sci. Technol., 2020, 42(0): 106-112. |
[10] | Gongcheng Yao, Chezheng Cao, Shuaihang Pan, Jie Yuan, Igor De Rosa, Xiaochun Li. Thermally stable ultrafine grained copper induced by CrB/CrB2 microparticles with surface nanofeatures via regular casting [J]. J. Mater. Sci. Technol., 2020, 58(0): 55-62. |
[11] | Yongbin Hua, Jae Su Yu. Warm white emission of LaSr2F7:Dy3+/Eu3+ NPs with excellent thermal stability for indoor illumination [J]. J. Mater. Sci. Technol., 2020, 54(0): 230-239. |
[12] | Jiajie Li, Xiangyun Huang, Liangliang Zeng, Bo Ouyang, Xiaoqiang Yu, Munan Yang, Bin Yang, Rawat Rajdeep Singh, Zhenchen Zhong. Tuning magnetic properties, thermal stability and microstructure of NdFeB magnets with diffusing Pr-Zn films [J]. J. Mater. Sci. Technol., 2020, 41(0): 81-87. |
[13] | Yanhui Li, Siwen Wang, Xuewei Wang, Meiling Yin, Wei Zhang. New FeNiCrMo(P, C, B) high-entropy bulk metallic glasses with unusual thermal stability and corrosion resistance [J]. J. Mater. Sci. Technol., 2020, 43(0): 32-39. |
[14] | H.R. Peng, B.S Liu, F. Liu. A strategy for designing stable nanocrystalline alloys by thermo-kinetic synergy [J]. J. Mater. Sci. Technol., 2020, 43(0): 21-31. |
[15] | Zhijie Huang, Li Yin, Chaoliang Hu, Jiajun Shen, Tiejun Zhu, Qian Zhang, Kaiyang Xia, Jiazhan Xin, Xinbing Zhao. Low contact resistivity and long-term thermal stability of Nb0.8Ti0.2FeSb/Ti thermoelectric junction [J]. J. Mater. Sci. Technol., 2020, 40(0): 113-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||