J. Mater. Sci. Technol. ›› 2021, Vol. 73: 9-22.DOI: 10.1016/j.jmst.2020.09.025
• Invited Review • Previous Articles Next Articles
Tingting Wua, Guoqiang Dengb,c, Chao Zhenb,*()
Received:
2020-07-21
Revised:
2020-09-05
Accepted:
2020-09-07
Published:
2021-05-20
Online:
2020-09-25
Contact:
Chao Zhen
About author:
*E-mail address: czhen@imr.ac.cn (C. Zhen).Tingting Wu, Guoqiang Deng, Chao Zhen. Metal oxide mesocrystals and mesoporous single crystals: synthesis, properties and applications in solar energy conversion[J]. J. Mater. Sci. Technol., 2021, 73: 9-22.
Fig. 2. The classical crystallization (blue route) via ion-by-ion addition versus single-crystal formation (red route) by a mesocrystal intermediate made of nanoparticles. (a-d) Illustrative diagrams of the four principal possibilities that could explain the 3D oriented alignment of nanoparticles, a) by an oriented organic matrix, b) by physical fields or mutual alignment of identical crystal faces, c) by epitaxial growth of a nanoparticle employing a mineral bridge connecting the two nanoparticles, and d) by spatial constraints [34].
Fig. 3. (a) SEM and (b) HRTEM images of nanoporous anatase TiO2 mesocrystals. The inset in (b) shows the SAED pattern related to the whole particle; (c) Schematic illustration of a tentative mechanism for the formation of nanoporous anatase TiO2 mesocrystals without additives [51].
Fig. 5. (a) Schematic of MSC nucleation and growth within a mesoporous template. (b) Template-nucleated variant of the solid crystals, grown from a seed at or near the external template surface such that a non-porous volume coexists with a mesoporous region within a single faceted microcrystal. (c) Fully mesoporous TiO2 crystals grown by seeded nucleation in the bulk of the silica template. (d) Schematic of the synthesis procedures of the films of nonporous single-crystal rod arrays (the top panel) and mesoporous single‐crystal rod arrays (the bottom panel) of rutile TiO2 supported on fluorine-doped tin oxide (FTO) glass substrates. (e) Top-view SEM images of mesoporous rutile TiO2 rod array films supported on FTO substrates [28,70].
Fig. 6. Nanostructure evolution mechanism. SEM images of (a) K-titanate, (b) H-titanate, and (c) porous single-crystalline TiO2, respectively. (d) Schematic illustration of converting K-titanate to porous single-crystalline TiO2 via ion exchange followed by calcination. (e) Atomic crystal model of crystal structure changes during ion-exchange and calcination processes [80].
Fig. 7. (a) Porous Meso-TiO2 consists of orderly aligned anatase nanocrystals with dominant {001} facets, leading to high efficiency of charge separation under UV light irradiation. (b) Response voltages achieving a current of 0.5 nA, plotted against UV intensity. The inset shows typical current-voltage curves measured for Meso-TiO2-500 (red) and Nano-TiO2 (blue) at constant UV intensity (9.1 mW/cm2). (c) Mobility dependence on photoinduced charge density for MSC and nanoparticle films measured via transient mobility spectroscopy [28,35].
Fig. 8. (a) Schematic illustration of charge transfer and photocatalytic H2 production in reduced TiO2 mesocrystals (R-TMC). (b)Photocatalytic hydrogen evolution of TMC and R-TMC (loaded with 1 wt % Pt) as a function of time under the solar light irradiation [93].
Fig. 9. SEM images of solid rutile TiO2 single crystals exposing (a) more (110) facets than (111) facets, (b) equivalent (110) facets to (111) facets and (c) total (111) facets. SEM images of mesoporous rutile TiO2 single crystals exposing (d) more (110) facets than (111) facets, (e) equivalent (110) facets to (111) facets and (f) total (111) facets. (g) Comparison of photocatalytic hydrogen generation after 5 h UV-vis irradiation over mesoporous and solid rutile TiO2 single crystals with different percentages of exposed {111} facets loaded with 1 wt% Pt in the presence of methanol as electron donor [70,76].
Fig. 10. (a) Schematic illustration of the growth of TiO2 mesocrystals on a g-C3N4 NS. (b) Photodegradation of MO (c) Photoreduction of Cr6+ over DTMCs, g-C3N4 NSs, 33.3 % g-C3N 4/DTMCs, and the corresponding mechanical mixture. (d) Proposed photocatalytic mechanism for photoinduced charge-carrier transfer within the DTMC/g-C3N4 NS heterostructure [112].
Fig. 11. (a) Preparation scheme for Au NRs/TMC. (b) UV-visible diffuse reflectance spectra of TMC and Au NRs/TMC with different aspect ratios. (c) Time courses of H2 production from water in the presence of methanol (20 vol%) using TMC, different Au NRs/TMC, or Au NRs/P25 as a photocatalyst under visible-NIR light irradiation (λ > 420 nm, 200 mW/cm2). (d) Extinction spectrum and action spectrum of AQE for the photocatalytic H2 production using Au NRs/TMC-780 [125].
Fig. 12. (a) Schematic illustration of the composites photoanode composed of rutile TiO2 mesocrystalline and nanoparticles. (b) A schematic diagram of the bi-layer photoanode with MCs scattering layer on top of the nanocrystalline underlayer [126,127].
Photoanode (DSSCs) | η (%) | Voc (V) | Js (mA/cm2) | FF | Ref. |
---|---|---|---|---|---|
Composite electrode with rutile TiO2 MCs and P25 particles | 7.3 | 0.68 | 15.21 | 0.7 | [ |
Ellipsoidal TiO2 MCs (scattering layer) | 7.16 | 0.689 | 15 | 0.69 | [ |
Spherical TiO2 MCs (scattering layer) | 8.10 | 0.748 | 16.6 | 0.652 | [ |
TiO2 MCs with 100 % exposed (101) facets (scattering layer) | 7.23 | 0.73 | 14.35 | 0.69 | [ |
Mesoporous TiO2 microspheres with single-crystal-like anatase walls | 12.1 | 0.75 | 22.91 | 0.71 | [ |
TiO2 MCs with exposed (111) facets (scattering layer) | 9.6 | 0.76 | 19.07 | 0.6621 | [ |
Mesocrystalline TiO2 nanosheet arrays with exposed (001) facets | 8.85 | 0.826 | 16.86 | 0.634 | [ |
Oliver-shaped mesoporous TiO2 MCs | 11.6 | 0.713 | 21.8 | 0.748 | [ |
Oliver-shaped TiO2 MSCs | 11.3 | 0.727 | 21.4 | 0.731 | [ |
Anatase TiO2 MSCs with (001) and (101) facets | 3.11 | 0.76 | 6.47 | 0.63 | [ |
MSC TiO2 Polyhedron-Constructed Core-Shell Microspheres | 6.6 | 0.7 | 14.9 | 0.62 | [ |
Ellipsoidal TiO2 MSCs with polyhedral pores | 8.3 | 0.855 | 14.5 | 0.67 | [ |
In situ grown MSC TiO2 nanosheets | 5.83 | 0.704 | 12.86 | 0.64 | [ |
MSC ZnO platelets with smaller size | 5.63 | 0.774 | 12.42 | 0.59 | [ |
Photoanode (PSCs) | |||||
Anatase TiO2 MSCs with (001) and (101) facets | 7.29 | 0.79 | 0.79 | 0.7 | [ |
SnO2 MSCs | 3.76 | 0.546 | 0.546 | 0.633 | [ |
SnO2 MSCs coated with TiO2 | 8.54 | 0.802 | 0.802 | 0.621 | [ |
Anatase TiO2 MSCs | 12.96±0.26 | 0.859±0.011 | 0.859±0.011 | 0.66±0.01 | [ |
Table 1 Summary of performance based on metal oxide MCs and MSCs.
Photoanode (DSSCs) | η (%) | Voc (V) | Js (mA/cm2) | FF | Ref. |
---|---|---|---|---|---|
Composite electrode with rutile TiO2 MCs and P25 particles | 7.3 | 0.68 | 15.21 | 0.7 | [ |
Ellipsoidal TiO2 MCs (scattering layer) | 7.16 | 0.689 | 15 | 0.69 | [ |
Spherical TiO2 MCs (scattering layer) | 8.10 | 0.748 | 16.6 | 0.652 | [ |
TiO2 MCs with 100 % exposed (101) facets (scattering layer) | 7.23 | 0.73 | 14.35 | 0.69 | [ |
Mesoporous TiO2 microspheres with single-crystal-like anatase walls | 12.1 | 0.75 | 22.91 | 0.71 | [ |
TiO2 MCs with exposed (111) facets (scattering layer) | 9.6 | 0.76 | 19.07 | 0.6621 | [ |
Mesocrystalline TiO2 nanosheet arrays with exposed (001) facets | 8.85 | 0.826 | 16.86 | 0.634 | [ |
Oliver-shaped mesoporous TiO2 MCs | 11.6 | 0.713 | 21.8 | 0.748 | [ |
Oliver-shaped TiO2 MSCs | 11.3 | 0.727 | 21.4 | 0.731 | [ |
Anatase TiO2 MSCs with (001) and (101) facets | 3.11 | 0.76 | 6.47 | 0.63 | [ |
MSC TiO2 Polyhedron-Constructed Core-Shell Microspheres | 6.6 | 0.7 | 14.9 | 0.62 | [ |
Ellipsoidal TiO2 MSCs with polyhedral pores | 8.3 | 0.855 | 14.5 | 0.67 | [ |
In situ grown MSC TiO2 nanosheets | 5.83 | 0.704 | 12.86 | 0.64 | [ |
MSC ZnO platelets with smaller size | 5.63 | 0.774 | 12.42 | 0.59 | [ |
Photoanode (PSCs) | |||||
Anatase TiO2 MSCs with (001) and (101) facets | 7.29 | 0.79 | 0.79 | 0.7 | [ |
SnO2 MSCs | 3.76 | 0.546 | 0.546 | 0.633 | [ |
SnO2 MSCs coated with TiO2 | 8.54 | 0.802 | 0.802 | 0.621 | [ |
Anatase TiO2 MSCs | 12.96±0.26 | 0.859±0.011 | 0.859±0.011 | 0.66±0.01 | [ |
[1] |
H. Anders, B. Gerrit, S. Licheng, K. Lars, P. Henrik, Chem. Rev. 110 (2010) 6595-6663.
DOI URL |
[2] |
X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Chem. Rev. 110 (2010) 6503-6570.
DOI URL |
[3] |
T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 43 (2014) 7520-7535.
DOI PMID |
[4] |
G. Liu, L.Z. Wang, H.G. Yang, H.M. Cheng, G.Q. Lu, J. Mater. Chem. 20 (2010) 831-843.
DOI URL |
[5] |
M. Grätzel, Nature 414 (2001) 338-344.
PMID |
[6] |
M.A. Green, Prog. Photovolt. 17 (2009) 183-189.
DOI URL |
[7] |
L. El Chaar, L.A. Lamont, N. El Zein, Renew. Sustain. Energy Rev. 15 (2011) 2165-2175.
DOI URL |
[8] |
B. Li, L.D. Wang, B.N. Kang, P. Wang, Y. Qiu, Sol. Energy Mater. Sol. Cells 90 (2006) 549-573.
DOI URL |
[9] |
M. Grätzel, Acc. Chem. Res. 42 (2009) 1788-1798.
DOI URL |
[10] |
M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photon. 8 (2014) 506-514.
DOI URL |
[11] |
A. Kudo, Y. Miseki, Chem. Soc. Rev. 38 (2009) 253-278.
DOI URL |
[12] |
M. Kitano, M. Hara, J. Mater. Chem. 20 (2010) 627-641.
DOI URL |
[13] |
J.M. Herrmann, Catal. Today 53 (1999) 115-129.
DOI URL |
[14] |
W.Q. Wu, D.H. Chen, R.A. Caruso, Y.B. Cheng, J. Mater. Chem. A 5 (2017) 10092-10109.
DOI URL |
[15] |
B. O’regan, M. Grätzel, Nature 353 (1991) 737-740.
DOI URL |
[16] |
J. Liu, J. Luo, W.G. Yang, Y.L. Wang, L.Y. Zhu, Y.Y. Xu, Y. Tang, Y.J. Hu, C. Wang, Y.G. Chen, W.M. Shi, J. Mater. Sci. Technol. 31 (2015) 106-109.
DOI URL |
[17] |
G. Liu, H.G. Yang, J. Pan, Y.Q. Yang, G.Q. Lu, H.M. Cheng, Chem. Rev. 114 (2014) 9559-9612.
DOI URL |
[18] |
T.L. Lu, Y.Q. Wang, Y.L. Wang, L.P. Zhou, X.M. Yang, Y.L. Su, J. Mater. Sci. Technol. 33 (2017) 300-304.
DOI URL |
[19] |
Z. Pan, G. Zhang, X. Wang, Angew. Chem. Int. Ed. Engl. 58 (2019) 7102-7106.
DOI URL |
[20] |
N. Kanjana, W. Maiaugree, P. Poolcharuansin, P. Laokul, J. Mater. Sci. Technol. 48 (2020) 105-113.
DOI URL |
[21] |
R.Q. Song, H. Cölfen, Adv. Mater. 22 (2010) 1301-1330.
DOI URL |
[22] |
E.V. Sturm, H. Cölfen, Chem. Soc. Rev. 45 (2016) 5821-5833.
DOI URL |
[23] |
E.V. Sturm, H. Cölfen, Crystals 7 (2017) 207.
DOI URL |
[24] |
Z.F. Bian, T. Tachikawa, W. Kim, W.Y. Choi, T. Majima, J. Phys. Chem. C 116 (2012) 25444-25453.
DOI URL |
[25] |
N. Lakshminarasimhan, W. Kim, W. Choi, J. Phys. Chem. C 112 (2008) 20451-20457.
DOI URL |
[26] | J.P. Gonzalez Vazquez, V. Morales Flórez, J.A. Anta, J. Phys. Chem. Lett. 3 (2012) 386-393. |
[27] |
Y. Park, W. Kim, D. Monllor Satoca, T. Tachikawa, T. Majima, W. Choi, J. Phys. Chem. Lett. 4 (2013) 189-194.
DOI URL |
[28] |
E.J.W. Crossland, N. Noel, V. Sivaram, T. Leijtens, J.A. Alexander-Webber, H.J. Snaith, Nature 495 (2013) 215-219.
DOI PMID |
[29] |
S. So, P. Schmuki, Angew. Chem. Int. Ed. 52 (2013) 7933-7935.
DOI URL |
[30] | H. Coelfen, S. Mann, Angew. Chem. Int. Ed. 34 (2003) 2350-2365. |
[31] |
H. Cölfen, M. Antonietti, Angew. Chem. Int. Ed. 44 (2005) 5576-5591.
DOI URL |
[32] |
J.G. Cai, L.M. Qi, Sci. China Chem. 55 (2012) 2318-2326.
DOI URL |
[33] |
T. Tachikawa, T. Majima, NPG Asia Mater. 6 (2014) e100.
DOI URL |
[34] |
P. Zhang, T. Tachikawa, M. Fujitsuka, T. Majima, Chem.-Eur. J. 24 (2018) 6295-6307.
DOI |
[35] |
Z.F. Bian, T. Tachikawa, T. Majima, J. Phys. Chem. Lett. 3 (2012) 1422-1427.
DOI URL |
[36] |
M.S. Mo, S.H. Lim, Y.W. Mai, R.K. Zheng, S.P. Ringer, Adv. Mater. 20 (2008) 339-342.
DOI URL |
[37] |
J.H. Zhao, R.Q. Tan, Y.Q. Guo, Y.H. Lu, W. Xu, W.J. Song, Crystengcomm 14 (2012) 4575-4577.
DOI URL |
[38] |
M.W. Xu, F. Wang, B.J. Ding, X.P. Song, J.X. Fang, RSC Adv. 2 (2012) 2240-2243.
DOI URL |
[39] |
S. Deng, V. Tjoa, H.M. Fan, H.R. Tan, D.C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, C.H. Sow, J. Am. Chem. Soc. 134 (2012) 4905-4917.
DOI URL |
[40] |
G.H. Yue, Y. Zhang, X.Q. Zhang, C.G. Wang, Y.C. Zhao, D.L. Peng, Appl. Phys. A 118 (2015) 763-767.
DOI URL |
[41] |
B. Liu, L.H. Tian, R. Wang, J.F. Yang, R. Guan, X.B. Chen, Appl. Surf. Sci. 422 (2017) 607-615.
DOI URL |
[42] |
X.W. Lu, X.Z. Li, F. Chen, C.Y. Ni, Z.G. Chen, J. Alloys Compd. 476 (2009) 958-962.
DOI URL |
[43] |
J.X. Fang, P.M. Leufke, R. Kruk, D. Wang, T. Scherer, H. Hahn, Nano Today 5 (2010) 175-182.
DOI URL |
[44] |
J. Polleux, N. Pinna, M. Antonietti, M. Niederberger, Adv. Mater. 16 (2004) 436-439.
DOI URL |
[45] |
Y.Q. Liu, Y. Zhang, J. Wang, CrystEngComm 16 (2014) 5948-5967.
DOI URL |
[46] |
S.J. Liu, J.Y. Gong, B. Hu, S.H. Yu, Cryst. Growth Des. 9 (2008) 203-209.
DOI URL |
[47] |
L. Li, C.Y. Liu, CrystEngComm 12 (2010) 2073-2078.
DOI URL |
[48] |
Z.S. Hong, M.D. Wei, T.B. Lan, G.Z. Cao, Nano Energy 1 (2012) 466-471.
DOI URL |
[49] |
H.L. Wu, Y.K. Yang, Y. Ou, B. Lu, J. Li, W.T. Yuan, Y. Wang, Z. Zhang, Cryst. Growth Des. 18 (2018) 4209-4214.
DOI URL |
[50] |
D.Q. Zhang, G.S. Li, F. Wang, J.C. Yu, CrystEngComm 12 (2010) 1759-1763.
DOI URL |
[51] |
J.F. Ye, W. Liu, J.G. Cai, S. Chen, X.W. Zhao, H.H. Zhou, L.M. Qi, J. Am. Chem. Soc. 133 (2010) 933-940.
DOI URL |
[52] |
Z.H. Li, A. Shkilnyy, A. Taubert, Cryst. Growth Des. 8 (2008) 4526-4532.
DOI URL |
[53] |
Z. Liu, X.D. Wen, X.L. Wu, Y.J. Gao, H.T. Chen, J. Zhu, P.K. Chu, J. Am. Chem. Soc. 131 (2009) 9405-9412.
DOI URL |
[54] |
T. Wang, M. Antonietti, H. Cölfen, Chem. Eur. J. 12 (2006) 5722-5730.
DOI URL |
[55] |
S. Wohlrab, N. Pinna, M. Antonietti, H. Cölfen, Chem. Eur. J. 11 (2005) 2903-2913.
DOI URL |
[56] | J.I. Park, Y.W. Jun, J.S. Choi, J. Cheon, Chem. Commun. (2007) 5001-5003. |
[57] |
A. Ahniyaz, Y. Sakamoto, M.L. Bergstr, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 17570-17574.
PMID |
[58] |
P. Niu, T.T. Wu, L. Wen, J. Tan, Y.Q. Yang, S.j. Zheng, Y. Liang, F. Li, I. John, G. Liu, Adv. Mater. 30 (2018), 1705999.
DOI URL |
[59] |
J.G. Cai, S.Y. Chen, J. Hu, Z. Wang, Y.R. Ma, L.M. Qi, Crystengcomm 15 (2013) 6284-6288.
DOI URL |
[60] |
L. Zhou, D. Smyth Boyle, P. O’Brien, J. Am. Chem. Soc. 130 (2008) 1309-1320.
DOI URL |
[61] | L. Zhou, D.S. Boyle, P. O’Brien, Chem. Commun. (2007) 144-146. |
[62] |
L. Zhou, J. Chen, C. Ji, L. Zhou, P. O’Brien, Crystengcomm 15 (2013) 5012-5015.
DOI URL |
[63] |
J.Y. Feng, M.C. Yin, Z.Q. Wang, S.C. Yan, L.J. Wan, Z.S. Li, Z.G. Zou, Crystengcomm 12 (2010) 3425-3429.
DOI URL |
[64] |
Y.H. Zhang, J.G. Cai, Y.R. Ma, L.M. Qi, Nano Res. 10 (2017) 2610-2625.
DOI URL |
[65] |
T.T. Wu, P. Niu, Y.Q. Yang, L.C. Yin, J. Tan, H.Z. Zhu, J.T. Irvine, L.Z. Wang, G. Liu, H.M. Cheng, Adv. Funct. Mater. 29 (2019), 1901943.
DOI URL |
[66] |
E. Hosono, S. Fujihara, H. Imai, I. Honma, I. Masaki, H. Zhou, ACS Nano 1 (2007) 273-278.
DOI PMID |
[67] |
H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Nature 453 (2008) 638.
DOI PMID |
[68] |
Z.C. Lai, F. Peng, H.J. Wang, H. Yu, S.Q. Zhang, H.J. Zhao, J. Mater. Chem. A 1 (2013) 4182-4185.
DOI URL |
[69] |
T.Y. Li, B.Z. Tian, J.L. Zhang, R.F. Dong, T.T. Wang, F. Yang, Ind. Eng. Chem. Res. 52 (2013) 6704-6712.
DOI URL |
[70] |
C. Zhen, T.T. Wu, M.W. Kadi, I. Ismail, G. Liu, H.M. Cheng, Chin. J. Catal. 36 (2015) 2171-2177.
DOI URL |
[71] | K. Jiao, B. Zhang, B. Yue, Y. Ren, S.X. Liu, S.R. Yan, C. Dickinson, W.Z. Zhou, H.Y. He, Chem. Commun. (2005) 5618-5620. |
[72] |
Y.G. Wang, X.H. Yuan, X.H. Liu, J.W. Ren, W.Y. Tong, Y.Q. Wang, G.Z. Lu, Solid State Sci. 10 (2008) 1117-1123.
DOI URL |
[73] |
C. Dickinson, W.Z. Zhou, R.P. Hodgkins, Y. Shi, D.Y. Zhao, H.Y. He, Chem. Mater. 18 (2006) 3088-3095.
DOI URL |
[74] |
C.W. Wang, S. Yang, W.Q. Fang, P.R. Liu, H.J. Zhao, H.G. Yang, Nano Lett. 16 (2016) 427-433.
DOI URL |
[75] |
W. Jiao, Y.P. Xie, R.X. Chen, C. Zhen, G. Liu, X.L. Ma, H.M. Cheng, Chem. Commun. 49 (2013) 11770-11772.
DOI URL |
[76] |
T.T. Wu, X.D. Kang, M.W. Kadi, I. Ismail, G. Liu, H.M. Cheng, Chin. J. Catal. 36 (2015) 2103-2108.
DOI URL |
[77] |
X.L. Zheng, Q. Kuang, K.Y. Yan, Y.C. Qiu, J.H. Qiu, S.H. Yang, ACS Appl. Mater. Interfaces 5 (2013) 11249-11257.
DOI URL |
[78] |
X.L. Zheng, Y.Y. Lv, Q. Kuang, Z.L. Zhu, X. Long, S.H. Yang, Chem. Mater. 26 (2014) 5700-5709.
DOI URL |
[79] |
B.R. Jia, M.L. Qin, S.M. Li, Z.L. Zhang, H.F. Lu, P.Q. Chen, H.Y. Wu, X. Lu, L. Zhang, X.H. Qu, ACS Appl. Mater. Interfaces 8 (2016) 15582-15590.
DOI URL |
[80] | T. Butburee, Y. Bai, H. Wang, H. Chen, Z. Wang, G. Liu, J. Zou, P. Khemthong, G.Q.M. Lu, L. Wang, Adv. Mater. 30 (2018), e1705666. |
[81] |
F. Cheng, G. Lin, X. Hu, S. Xi, K. Xie, Nat. Commun. 10 (2019) 3618.
DOI URL |
[82] |
X.D. Wang, C.J. Summers, Z.L. Wang, Adv. Mater. 16 (2004) 1215-1218.
DOI URL |
[83] |
J.Y. Dong, C.H. Lin, Y.J. Hsu, S.Y. Lu, D.S. Wong, Crystengcomm 14 (2012) 4732-4737.
DOI URL |
[84] |
J.J. Lin, L. Zhao, Y.U. Heo, L. Wang, F.H. Bijarbooneh, A.J. Mozer, A. Nattestad, Y. Yamauchi, S.X. Dou, J.H. Kim, Nano Energy 11 (2015) 557-567.
DOI URL |
[85] |
J.J. Liu, G. Chen, Y.G. Yu, Y.L. Wu, M.J. Zhou, H.Q. Zhang, C.D. Lv, H. Qin, X. Qi, RSC Adv. 6 (2016) 14615-14619.
DOI URL |
[86] |
N. Lakshminarasimhan, B. Eunyoung, W. Choi, J. Phys. Chem. C 111 (2007) 15244-15250.
DOI URL |
[87] |
S. Tirosh, T. Dittrich, A. Ofir, L. Grinis, A. Zaban, J. Phys. Chem. B 110 (2006) 16165-16168.
PMID |
[88] |
K. Li, J. Liu, X. Sheng, L.P. Chen, T. Xu, K. Zhu, X.J. Feng, Chem.-Eur. J. 24 (2018) 89-92.
DOI URL |
[89] |
Y.J. Li, X.Z. Ye, S.X. Cao, C.J. Yang, Y. Wang, J.F. Ye, Chem.-Eur. J. 25 (2019) 3032-3041.
DOI URL |
[90] | B.Y. Tan, X.H. Zhang, Y.J. Li, H. Chen, X.Z. Ye, Y. Wang, J.F. Ye, Chemistry 23 (2017) 5478-5487. |
[91] |
X. Yu, X.L. Fan, Z.H. Li, J.W. Liu, Dalton Trans. 46 (2017) 11898-11904.
DOI URL |
[92] |
Y. Zhou, W.Z. Fang, Y.X. Deng, L.H. Pan, B. Shen, H.X. Li, Y. Hu, H.J. Chen, M.Y. Xing, J.L. Zhang, RSC Adv. 7 (2017) 55927-55934.
DOI URL |
[93] |
O. Elbanna, M. Fujitsuka, S. Kim, T. Majima, J. Phys. Chem. C 122 (2018) 15163-15170.
DOI URL |
[94] |
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269-271.
DOI URL |
[95] |
Z. P, T. T, F. M, M. T, ChemSusChem 9 (2016) 617-623.
DOI URL |
[96] |
W.Q. Fang, Z.Y. Huo, P.R. Liu, X.L. Wang, M. Zhang, Y. Jia, H.M. Zhang, H.J. Zhao, H.G. Yang, X.D. Yao, Chem.-Eur. J. 20 (2014) 11439-11444.
DOI URL |
[97] |
P. Zhang, M. Fujitsuka, T. Majima, Appl. Catal. B 185 (2016) 181-188.
DOI URL |
[98] |
O. Elbanna, P. Zhang, M. Fujitsuka, T. Majima, Appl. Catal. B 192 (2016) 80-87.
DOI URL |
[99] |
G. Liu, L.-C. Yin, J. Wang, P. Niu, C. Zhen, Y. Xie, H.-M. Cheng, Energy Environ. Sci. 5 (2012) 9603-9610.
DOI URL |
[100] |
X. Hong, J. Tan, H. Zhu, N. Feng, Y. Yang, J.T. Irvine, L. Wang, G. Liu, H.M. Cheng, Chem. Eur. J. 25 (2019) 1787-1794.
DOI URL |
[101] |
W. Jiao, L. Wang, G. Liu, G.Q. Lu, H. Cheng, ACS Catal. 2 (2012) 1854-1859.
DOI URL |
[102] |
Z. Hong, H. Dai, Z. Huang, M. Wei, Phys. Chem. Chem. Phys. 16 (2014) 7441-7447.
DOI URL |
[103] |
J. Pan, G. Liu, G.Q. Lu, H.M. Cheng, Angew. Chem. Int. Ed. 123 (2011) 2181-2185.
DOI URL |
[104] |
X.Q. Gong, A. Selloni, J. Phys. Chem. B 109 (2005) 19560-19562.
DOI URL |
[105] |
H. Yu, B.Z. Tian, J.L. Zhang, Chem.-Eur. J. 17 (2011) 5499-5502.
DOI URL |
[106] |
J.Y. Chen, G.Y. Li, H.M. Zhang, P.R. Liu, H.J. Zhao, T.C. An, Catal. Today 224 (2014) 216-224.
DOI URL |
[107] |
J.G. Yu, J.X. Low, W. Xiao, P. Zhou, M. Jaroniec, J. Am. Chem. Soc. 136 (2014) 8839-8842.
DOI URL |
[108] |
Q.F. Chen, W.H. Ma, C.C. Chen, H.W. Ji, J.C. Zhao, Chem.-Eur. J. 18 (2012) 12584-12589.
DOI URL |
[109] | P. Zhang, T. Tachikawa, Z.F. Bian, T. Majima, Appl. Catal. B 176 (2015) 678-686. |
[110] | S. Wang, J.-H. Yun, B. Luo, T. Butburee, P. Peerakiatkhajohn, S. Thaweesak, M. Xiao, L. Wang, J. Mater. Sci. Technol. 33 (2017) 1-22. |
[111] | X.F. Lu, Q.L. Wang, D.L. Cui, J. Mater. Sci. Technol. 26 (2010) 925-930. |
[112] | B.Y. Tan, X.Z. Ye, Y.J. Li, X.Q. Ma, Y. Wang, J.F. Ye, Chemistry 24 (2018) 13311. |
[113] | X.R. Li, J.G. Wang, Y. Men, Z.F. Bian, Appl. Catal. B 187 (2016) 115-121. |
[114] |
P. Zhang, T. Tachikawa, M. Fujitsuka, T. Majima, Chem. Commun. 51 (2015) 7187-7190.
DOI URL |
[115] | Y.X. Zhang, M.J. Xu, H. Li, H. Ge, Z.F. Bian, Appl. Catal. B 226 (2018) 213-219. |
[116] |
B. Liu, H.C. Zeng, Chem. Mater. 20 (2008) 2711-2718.
DOI URL |
[117] |
C.H. Park, C.M. Lee, J.W. Choi, G.C. Park, J. Joo, Ceram. Int. 44 (2018) 1641-1645.
DOI URL |
[118] |
X.F. Yang, J.L. Qin, Y. Li, R.X. Zhang, H. Tang, J. Hazard. Mater. 261 (2013) 342-350.
DOI URL |
[119] |
Z.R. Yan, Q.F. Chen, P. Xia, W.X. Ma, B.S. Ren, Nanotechnology 27 (2015), 035707.
DOI URL |
[120] |
D.Z. Chen, Z.N. Huang, H.Y. Quan, S.S. Chen, J.L. Lin, X.B. Luo, L. Guo, Sci. Adv. Mater. 8 (2016) 760-766.
DOI URL |
[121] |
X.J. Chen, F.G. Chen, F.L. Liu, X.D. Yan, W. Hu, G.B. Zhang, L.H. Tian, Q.H. Xia, X.B. Chen, Catal. Sci. Technol. 6 (2016) 4184-4191.
DOI URL |
[122] |
Q. Zhang, J.K. Liu, J.D. Wang, H.X. Luo, Y. Lu, X.H. Yang, Ind. Eng. Chem. Res. 53 (2014) 13236-13246.
DOI URL |
[123] |
T.H. Han, H.G. Wang, X.M. Zheng, RSC Adv. 6 (2016) 7829-7837.
DOI URL |
[124] |
S. Linic, P. Christopher, D.B. Ingram, Nat. Mater. 10 (2011) 911.
DOI URL |
[125] | O. Elbanna, S. Kim, M. Fujitsuka, T. Majima, Nano Energy 35 (2017) 1-8. |
[126] |
H.Q. Wang, L. Sun, H. Wang, L. Xin, Q.Y. Wang, Y. Liu, L.J. Wang, RSC Adv. 4 (2014) 58615-58623.
DOI URL |
[127] |
M.T. Di, Y.G. Li, H.Z. Wang, Y.C. Rui, W. Jia, Q.H. Zhang, Electrochim. Acta 261 (2018) 365-374.
DOI URL |
[128] |
D.P. Wu, K. Cao, H.J. Wang, F.J. Wang, Z.Y. Gao, F. Xu, Y.M. Guo, K. Jiang, J. Colloid Interface Sci. 456 (2015) 125-131.
DOI URL |
[129] |
Y. Liu, R. Che, G. Chen, J. Fan, Z. Sun, Z. Wu, M. Wang, B. Li, J. Wei, Y. Wei, Sci. Adv. 1 (2015), e1500166.
DOI URL |
[130] |
Y. Zhou, X.Y. Wang, H. Wang, Y.P. Song, L. Fang, N.Q. Ye, L.J. Wang, Dalton Trans. 43 (2014) 4711-4719.
DOI PMID |
[131] |
V. Amoli, S. Bhat, A. Maurya, B. Banerjee, A. Bhaumik, A.K. Sinha, ACS Appl. Mater. Interfaces 7 (2015) 26022-26035.
DOI URL |
[132] |
J.D. Peng, H.H. Lin, C.T. Lee, C.M. Tseng, V. Suryanarayanan, R. Vittal, K.C. Ho, RSC Adv. 6 (2016) 14178-14191.
DOI URL |
[133] |
J.D. Peng, P.C. Shih, H.H. Lin, C.M. Tseng, R. Vittal, V. Suryanarayanan, K.C. Ho, Nano Energy 10 (2014) 212-221.
DOI URL |
[134] |
X. Wu, Z.G. Chen, G.Q. Lu, L.Z. Wang, Adv. Funct. Mater. 21 (2011) 4167-4172.
DOI URL |
[135] |
Y. Liu, Y.F. Luo, A. Elzatahry, W. Luo, R.C. Che, J.W. Fan, K. Lan, A.M. Alenizi, Z.K. Sun, L. Bin, ACS Cent. Sci. 1 (2015) 400-408.
DOI URL |
[136] |
V. Sivaram, E.J.W. Crossland, T. Leijtens, N.K. Noel, J. Alexanderwebber, P. Docampo, H.J. Snaith, J. Phys. Chem. C 118 (2014) 1821-1827.
DOI URL |
[137] |
M.G. Xu, P. Ruan, H.X. Xie, A. Yu, X.F. Zhou, ACS Sustain. Chem. Eng. 2 (2014) 621-628.
DOI URL |
[138] |
H. Yu, L. Wang, M. Dargusch, Sol. Energy 123 (2016) 17-22.
DOI URL |
[139] |
L.D. Marco, D. Calestani, A. Qualtieri, R. Giannuzzi, M. Manca, P. Ferro, G. Gigli, A. Listorti, R. Mosca, Sol. Energy Mater. Sol. Cells 168 (2017) 227-233.
DOI URL |
[140] |
J. Huang, Y. Yuan, Y. Shao, Y. Yan, Nat. Rev. Mater. 2 (2017) 17042.
DOI URL |
[141] |
S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Science 342 (2013) 341-344.
DOI URL |
[142] |
Z. Zhu, X. Zheng, Y. Bai, T. Zhang, Z. Wang, S. Xiao, S. Yang, Phys. Chem. Chem. Phys. 17 (2015) 18265-18268.
DOI URL |
[143] |
Y.L. Xiong, Y. Liu, K. Lan, A.Y. Mei, Y.S. Sheng, D.Y. Zhao, H.W. Han, New J. Chem. 42 (2018) 2669-2674.
DOI URL |
[1] | Xueru Chen, Yin Zhang, Dashui Yuan, Wu Huang, Jing Ding, Hui Wan, Wei-Lin Dai, Guofeng Guan. One step method of structure engineering porous graphitic carbon nitride for efficient visible-light photocatalytic reduction of Cr(VI) [J]. J. Mater. Sci. Technol., 2021, 71(0): 211-220. |
[2] | Tingting Xu, Ping Niu, Shulan Wang, Li Li. High visible light photocatalytic activities obtained by integrating g-C3N4 with ferroelectric PbTiO3 [J]. J. Mater. Sci. Technol., 2021, 74(0): 128-135. |
[3] | Xiangang Lin, Xiaojuan Hou, Lixia Cui, Shiqiang Zhao, Hong Bi, Haiwei Du, Yupeng Yuan. Increasing π-electron availability in benzene ring incorporated graphitic carbon nitride for increased photocatalytic hydrogen generation [J]. J. Mater. Sci. Technol., 2021, 65(0): 164-170. |
[4] | Xian Yue, Junhui Xiang, Junyong Chen, Huaxin Li, Yunsheng Qiu, Xianbo Yu. High surface area, high catalytic activity titanium dioxide aerogels prepared by solvothermal crystallization [J]. J. Mater. Sci. Technol., 2020, 47(0): 223-230. |
[5] | Noh Young Wook, Jin In Su, Park Sang Hyun, Jung Jae Woong. Room-temperature synthesis of ZrSnO4 nanoparticles for electron transport layer in efficient planar hetrojunction perovskite solar cells [J]. J. Mater. Sci. Technol., 2020, 42(0): 38-45. |
[6] | Jianying Huang, Jiali Shen, Shuhui Li, Jingsheng Cai, Shanchi Wang, Yao Lu, Jihuan He, Claire J.Carmalt, Ivan P.Parkin, Yuekun Lai. TiO2 nanotube arrays decorated with Au and Bi2S3 nanoparticles for efficient Fe3+ ions detection and dye photocatalytic degradation [J]. J. Mater. Sci. Technol., 2020, 39(0): 28-38. |
[7] | Meng-Jie Chang, Wen-Na Cui, Jun Liu, Kang Wang, Hui-Ling Du, Lei Qiu, Si-Meng Fan, Zhen-Min Luo. Construction of novel TiO2/Bi4Ti3O12/MoS2 core/shell nanofibers for enhanced visible light photocatalysis [J]. J. Mater. Sci. Technol., 2020, 36(0): 97-105. |
[8] | Dongran Qin, Yang Xia, Qin Li, Chao Yang, Yanmin Qin, Kangle Lv. One-pot calcination synthesis of Cd0.5Zn0.5S/g-C3N4 photocatalyst with a step-scheme heterojunction structure [J]. J. Mater. Sci. Technol., 2020, 56(0): 206-215. |
[9] | Kyungeun Jung, Du Hyeon Kim, Jaemin Kim, Sunglim Ko, Jae Won Choi, Ki Chul Kim, Sang-Geul Lee, Man-Jong Lee. Influence of a UV-ozone treatment on amorphous SnO2 electron selective layers for highly efficient planar MAPbI3 perovskite solar cells [J]. J. Mater. Sci. Technol., 2020, 59(0): 195-202. |
[10] | Panyong Kuang, Jingxiang Low, Bei Cheng, Jiaguo Yu, Jiajie Fan. MXene-based photocatalysts [J]. J. Mater. Sci. Technol., 2020, 56(0): 18-44. |
[11] | Xiaoyi Shen, Hongmei Shao, Yan Liu, Yuchun Zhai. Synthesis and photocatalytic performance of ZnO with flower-like structure from zinc oxide ore [J]. J. Mater. Sci. Technol., 2020, 51(0): 1-7. |
[12] | Yunfeng Li, Minghua Zhou, Bei Cheng, Yan Shao. Recent advances in g-C3N4-based heterojunction photocatalysts [J]. J. Mater. Sci. Technol., 2020, 56(0): 1-17. |
[13] | Duoduo Gao, Ranran Yuan, Jiajie Fan, Xuekun Hong, Huogen Yu. Highly efficient S2--adsorbed MoSx-modified TiO2 photocatalysts: A general grafting strategy and boosted interfacial charge transfer [J]. J. Mater. Sci. Technol., 2020, 56(0): 122-132. |
[14] | Qian-Qian Chu, Bin Ding, Jun Peng, Heping Shen, Xiaolei Li, Yan Liu, Cheng-Xin Li, Chang-Jiu Li, Guan-Jun Yang, Thomas P. White, Kylie R. Catchpole. Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering [J]. J. Mater. Sci. Technol., 2019, 35(6): 987-993. |
[15] | Ke Wang, Baodan Liu, Jing Li, Xiaoyuan Liu, Yang Zhou, Xinglai Zhang, Xiaoguo Bi, Xin Jiang. In-situ synthesis of TiO2 nanostructures on Ti foil for enhanced and stable photocatalytic performance [J]. J. Mater. Sci. Technol., 2019, 35(4): 615-622. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||