J. Mater. Sci. Technol. ›› 2021, Vol. 73: 1-8.DOI: 10.1016/j.jmst.2020.08.065
• Research Article • Next Articles
Lu Yanga, Zhuo Chenga, Weiwei Zhua,b, Cancan Zhaoa, Fuzeng Rena,*()
Received:
2020-07-01
Revised:
2020-08-11
Accepted:
2020-08-17
Published:
2021-05-20
Online:
2021-05-20
Contact:
Fuzeng Ren
About author:
*E-mail address: renfz@sustech.edu.cn (F. Ren).Lu Yang, Zhuo Cheng, Weiwei Zhu, Cancan Zhao, Fuzeng Ren. Significant reduction in friction and wear of a high-entropy alloy via the formation of self-organized nanolayered structure[J]. J. Mater. Sci. Technol., 2021, 73: 1-8.
Fig. 1. Phase and microstructure of (CoCrFeNi)90Ag10 HEA. (a) XRD patterns of the 12 h-ball milled powder and the as-sintered bulk alloy; (b) SEM image; (c) EBSD IPF map; and (d) the size distribution of Ag precipitates.
Element | Co | Cr | Fe | Ni | Ag |
---|---|---|---|---|---|
Co | - | -4 | -1 | 0 | 19 |
Cr | -4 | - | -1 | -7 | 27 |
Fe | -1 | -7 | - | -2 | 28 |
Ni | 0 | 27 | -2 | - | 15 |
Table 1 The values of $ΔH^{AB}_{mix}$ΔHmixAB (kJ/mol) in binary alloys calculated by Miedema’s model [23].
Element | Co | Cr | Fe | Ni | Ag |
---|---|---|---|---|---|
Co | - | -4 | -1 | 0 | 19 |
Cr | -4 | - | -1 | -7 | 27 |
Fe | -1 | -7 | - | -2 | 28 |
Ni | 0 | 27 | -2 | - | 15 |
Fig. 4. Coefficients of friction as a function of sliding distance (a) and wear rates (b) of CoCrFeNi and (CoCrFeNi)90Ag10 HEAs upon sliding against alumina ball with a load of 5 N and sliding velocity of 0.1 m/s.
Fig. 5. SEM images of worn surfaces and 3D profile of CoCrFeNi (a, b) and (CoCrFeNi)90Ag10 (c, d) alloys after sliding against alumina ball for 500 m with a load of 5 N and velocity of 0.1 m/s. SD denotes the sliding direction. The insets in (a) and (c) are the typical EDX spectra obtained from the surface.
Fig. 6. Sliding wear-induced ND-SD cross-sectional subsurface microstructure of CoCrFeNi HEA. (a) Bright-field TEM image; (b) a high-magnification bright-field TEM image of the nanocrystalline (NC) layer and corresponding SAED pattern (inset); (c) a dark-field image corresponding to (b); (d) a high-magnification bright-field image and corresponding SAED pattern of nanolaminated layer in (a); and (e) a dark-field TEM image corresponding to (d); (f) a high-magnification bright-field TEM image of the deformation layer in (a); and (g) SAED pattern corresponding to (f).
Fig. 7. Sliding wear-induced ND-SD cross-sectional subsurface microstructure of (CoCrFeNi)90Ag10 HEA. (a) HAADF-STEM image; (b) high-magnification HAADF-STEM image of the selected area in (a) with the EDX spectra obtained from the matrix (point 1) and the Ag layer (point 2); (c) bright-field TEM image corresponding to (a); (d) high-magnification bright-field TEM image of the selected area in (c); (e) the SAED pattern of nanolayered region selected in (d); and (f) high-resolution TEM image obtained at the interfaces between CoCrFeNi matrix and the Ag layer.
Fig. 8. Stacking faults and nanoscale deformation twins present in the CoCrFeNi matrix nanolayers in (CoCrFeNi)90Ag10 HEA after sliding against alumina ball for 500 m with a load of 5 N and velocity of 0.1 m/s.
[1] |
D. Berman, S.A. Deshmukh, S.K.R.S. Sankaranarayanan, A. Erdemir, A.V. Sumant, Science 348 (2015) 1118-1122.
DOI URL |
[2] |
G. Purcek, O. Saray, F. Rubitschek, T. Niendorf, H.J. Maier, I. Karaman, Acta Mater. 59 (2011) 7683-7694.
DOI URL |
[3] |
T.J. Rupert, C.A. Schuh, Acta Mater. 58 (2010) 4137-4148.
DOI URL |
[4] |
J.F. Curry, T.F. Babuska, T.A. Furnish, P. Lu, D.P. Adams, A.B. Kustas, B.L. Nation, M.T. Dugger, M. Chandross, B.G. Clark, B.L. Boyce, C.A. Schuh, N. Argibay, Adv. Mater. 30 (2018), 1802026.
DOI URL |
[5] |
D.A. Rigney, Wear 245 (2000) 1-9.
DOI URL |
[6] | C. Greiner, J. Gagel, P. Gumbsch, Adv. Mater. (2019), 1806705. |
[7] |
F. Ren, S.N. Arshad, P. Bellon, R.S. Averback, M. Pouryazdan, H. Hahn, Acta Mater. 72 (2014) 148-158.
DOI URL |
[8] |
F. Ren, P. Bellon, R.S. Averback, Tribol. Int. 100 (2016) 420-429.
DOI URL |
[9] |
K. Chu, F. Ren, W. Zhu, C. Zhao, P. Bellon, R.S. Averback, Wear 392-393 (2017) 69-76.
DOI URL |
[10] | X. Chen, Z. Han, X. Li, K. Lu, Sci. Adv. 2(2016). |
[11] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[12] |
F. He, Z. Wang, X. Shang, C. Leng, J. Li, J. Wang, Mater. Des. 104 (2016) 259-264.
DOI URL |
[13] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI URL |
[14] |
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Acta Mater. 128 (2017) 292-303.
DOI URL |
[15] | Z. Zhang, H. Sheng, Z. Wang, B. Gludovatz, Z. Zhang, E.P. George, Q. Yu, S.X. Mao, R.O. Ritchie, Nat. Commun. 8(2017). |
[16] |
J. Miao, C.E. Slone, T.M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.M. Pharr, M.J. Mills, Acta Mater. 132 (2017) 35-48.
DOI URL |
[17] |
M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Acta Mater. 59 (2011) 6308-6317.
DOI URL |
[18] |
C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, Metall. Mater. Tran. A 35 (2004) 1465-1469.
DOI URL |
[19] |
M.G. Poletti, G. Fiore, F. Gili, D. Mangherini, L. Battezzati, Mater. Des. 115 (2017) 247-254.
DOI URL |
[20] |
J.W. Christian, S. Mahajan, Prog. Mater. Sci. 39 (1995) 1-157.
DOI URL |
[21] |
E.E. Danaf, S.R. Kalidindi, R.D. Doherty, Metall. Mater. Trans. A 30 (1999) 1223-1233.
DOI URL |
[22] |
A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving, JOM 65 (2013) 1780-1789.
DOI URL |
[23] |
A. Takeuchi, A. Inoue, Mater. Trans. 46 (2005) 2817-2829.
DOI URL |
[24] |
I. Moravcik, J. Cizek, Z. Kovacova, J. Nejezchlebova, M. Kitzmantel, E. Neubauer, I. Kubena, V. Hornik, I. Dlouhy, Mater. Sci. Eng. A 701 (2017) 370-380.
DOI URL |
[25] |
I. Moravcik, J. Cizek, J. Zapletal, Z. Kovacova, J. Vesely, P. Minarik, M. Kitzmantel, E. Neubauer, I. Dlouhy, Mater. Des. 119 (2017) 141-150.
DOI URL |
[26] |
J.F. Archard, J. Appl. Phys. 24 (1953) 981-988.
DOI URL |
[27] |
X.H. An, S.D. Wu, Z.G. Wang, Z.F. Zhang, Prog. Mater. Sci. 101 (2019) 1-45.
DOI |
[28] |
Y. Zhang, N.R. Tao, K. Lu, Acta Mater. 59 (2011) 6048-6058.
DOI URL |
[29] |
Y.B. Wang, X.Z. Liao, Y.H. Zhao, E.J. Lavernia, S.P. Ringer, Z. Horit, T.G. Langdon, Y.T. Zhu, Mater. Sci. Eng. A 527 (2010) 4959-4966.
DOI URL |
[30] |
W. Guo, Z. Pei, X. Sang, J.D. Poplawsky, S. Bruschi, J. Qu, D. Raabe, H. Bei, Acta Mater. 170 (2019) 176-186.
DOI URL |
[31] |
I.A. Ovid’ko, R.Z. Valiev, Y.T. Zhu, Prog. Mater. Sci. 94 (2018) 462-540.
DOI URL |
[32] |
H. Huang, X. Li, Z. Dong, W. Li, S. Huang, D. Meng, X. Lai, T. Liu, S. Zhu, L. Vitos, Acta Mater. 149 (2018) 388-396.
DOI URL |
[33] |
X.H. An, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, T.G. Langdon, Scr. Mater. 63 (2010) 560-563.
DOI URL |
[34] |
Y.Z. Tian, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, T.G. Langdon, Acta Mater. 59 (2011) 2783-2796.
DOI URL |
[35] |
S.N. Arshad, T.G. Lach, M. Pouryazdan, H. Hahn, P. Bellon, S.J. Dillona, R.S. Averback, Scr. Mater. 68 (2013) 215-218.
DOI URL |
[1] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[2] | Byungchul Kang, Taeyeong Kong, Ho Jin Ryu, Soon Hyung Hong. Superior mechanical properties and strengthening mechanisms of lightweight AlxCrNbVMo refractory high-entropy alloys (x = 0, 0.5, 1.0) fabricated by the powder metallurgy process [J]. J. Mater. Sci. Technol., 2021, 69(0): 32-41. |
[3] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
[4] | Ting Xiong, Wenfan Yang, Shijian Zheng, Zhaorui Liu, Yiping Lu, Ruifeng Zhang, Yangtao Zhou, Xiaohong Shao, Bo Zhang, Jun Wang, Fuxing Yin, Peter K. Liaw, Xiuliang Ma. Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1 [J]. J. Mater. Sci. Technol., 2021, 65(0): 216-227. |
[5] | X.W. Liu, N. Gao, J. Zheng, Y. Wu, Y.Y. Zhao, Q. Chen, W. Zhou, S.Z. Pu, W.M. Jiang, Z.T. Fan. Improving high-temperature mechanical properties of cast CrFeCoNi high-entropy alloy by highly thermostable in-situ precipitated carbides [J]. J. Mater. Sci. Technol., 2021, 72(0): 29-38. |
[6] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
[7] | Yaxin Xu, Wenya Li, Longzhen Qu, Xiawei Yang, Bo Song, Rocco Lupoi, Shuo Yin. Solid-state cold spraying of FeCoCrNiMn high-entropy alloy: an insight into microstructure evolution and oxidation behavior at 700-900 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 172-183. |
[8] | Raymond Kwesi Nutor, Q.P. Cao, X.D. Wang, D.X. Zhang, J.Z. Jiang. Tunability of the mechanical properties of (Fe50Mn27Ni10Cr13)100-xMox high-entropy alloys via secondary phase control [J]. J. Mater. Sci. Technol., 2021, 73(0): 210-217. |
[9] | Chendong Zhao, Jinshan Li, Yudong Liu, William Yi Wang, Hongchao Kou, Eric Beaugnon, Jun Wang. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 83-90. |
[10] | Qingkai Shen, Xiangdong Kong, Xizhang Chen. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 136-142. |
[11] | Yongliang Qi, Tinghui Cao, Hongxiang Zong, Yake Wu, Lin He, Xiangdong Ding, Feng Jiang, Shenbao Jin, Gang Sha, Jun Sun. Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping [J]. J. Mater. Sci. Technol., 2021, 75(0): 154-163. |
[12] | Haoxue Yang, Jinshan Li, Xiangyu Pan, William Yi Wang, Hongchao Kou, Jun Wang. Nanophase precipitation and strengthening in a dual-phase Al0.5CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 1-7. |
[13] | Yuan Wu, Fei Zhang, Xiaoyuan Yuan, Hailong Huang, Xiaocan Wen, Yihan Wang, Mengyuan Zhang, Honghui Wu, Xiongjun Liu, Hui Wang, Suihe Jiang, Zhaoping Lu. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 214-220. |
[14] | Yong Hee Jo, Junha Yang, Won-Mi Choi, Kyung-Yeon Doh, Donghwa Lee, Hyoung Seop Kim, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 222-230. |
[15] | Hongxia Wan, Dongdong Song, Xiaolei Shi, Yong Cai, Tingting Li, Changfeng Chen. Corrosion behavior of Al0.4CoCu0.6NiSi0.2Ti0.25 high-entropy alloy coating via 3D printing laser cladding in a sulphur environment [J]. J. Mater. Sci. Technol., 2021, 60(0): 197-205. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||