J. Mater. Sci. Technol. ›› 2021, Vol. 73: 210-217.DOI: 10.1016/j.jmst.2020.09.029
• Research Article • Previous Articles
Raymond Kwesi Nutora, Q.P. Caoa, X.D. Wanga, D.X. Zhanga,b, J.Z. Jianga,*()
Received:
2020-05-29
Revised:
2020-07-09
Accepted:
2020-07-14
Published:
2021-05-20
Online:
2020-09-30
Contact:
J.Z. Jiang
About author:
*E-mail address: jiangjz@zju.edu.cn (J.Z. Jiang).Raymond Kwesi Nutor, Q.P. Cao, X.D. Wang, D.X. Zhang, J.Z. Jiang. Tunability of the mechanical properties of (Fe50Mn27Ni10Cr13)100-xMox high-entropy alloys via secondary phase control[J]. J. Mater. Sci. Technol., 2021, 73: 210-217.
Fig. 2. (a) Typical engineering stress-strain, (b) true stress - true strain, (c) strain-hardening rate-true strain, and (d) variations in the strain-hardening exponent of the prepared (Fe50Mn27Ni10Cr13)100-xMox (x = 0, 2, 4, 6 at.%) HEAs.
Alloys | Yield strength (MPa) | Ultimate tensile strength (MPa) | Elongation (%) |
---|---|---|---|
ASC Mo0 | 90 | 250 | 40 |
RA Mo0 | 205 | 463 | 42 |
ASC Mo2 | 215 | 387 | 25.3 |
RA Mo2 | 405 | 665 | 24 |
ASC Mo4 | 295 | 455 | 11.3 |
RA Mo4 | 575 | 658 | 6.2 |
ASC Mo6 | 450 | 465 | 2.5 |
Table 1 Room temperature mechanical properties of (Fe50Mn27Ni10Cr13)100-xMox (x = 0, 2, 4, 6 at.%) HEAs.
Alloys | Yield strength (MPa) | Ultimate tensile strength (MPa) | Elongation (%) |
---|---|---|---|
ASC Mo0 | 90 | 250 | 40 |
RA Mo0 | 205 | 463 | 42 |
ASC Mo2 | 215 | 387 | 25.3 |
RA Mo2 | 405 | 665 | 24 |
ASC Mo4 | 295 | 455 | 11.3 |
RA Mo4 | 575 | 658 | 6.2 |
ASC Mo6 | 450 | 465 | 2.5 |
Alloy | Region | Fe | Mn | Ni | Cr | Mo |
---|---|---|---|---|---|---|
ASC Mo0 | fcc | 49.8 | 26.4 | 11.1 | 12.7 | |
RA Mo0 | fcc | 50.0 | 26.6 | 10.7 | 12.7 | |
ASC Mo2 | A | 48.5 | 26.3 | 10.0 | 13.0 | 2.2 |
B | 45.8 | 23.5 | 5.1 | 20.1 | 5.6 | |
RA Mo2 | A | 49.7 | 25.6 | 9.3 | 13.2 | 2.3 |
B | 46.5 | 22.2 | 4.3 | 21.1 | 5.8 | |
ASC Mo4 | A | 48.7 | 25.7 | 10.5 | 11.2 | 4.0 |
B | 45.0 | 22.5 | 4.1 | 17.2 | 11.1 | |
RA Mo4 | A | 48.8 | 25.8 | 9.5 | 11.5 | 4.3 |
B | 45.6 | 23.4 | 5.6 | 15.6 | 9.7 |
Table 2 SEM-EDX chemical compositions in at.% at various regions of the samples.
Alloy | Region | Fe | Mn | Ni | Cr | Mo |
---|---|---|---|---|---|---|
ASC Mo0 | fcc | 49.8 | 26.4 | 11.1 | 12.7 | |
RA Mo0 | fcc | 50.0 | 26.6 | 10.7 | 12.7 | |
ASC Mo2 | A | 48.5 | 26.3 | 10.0 | 13.0 | 2.2 |
B | 45.8 | 23.5 | 5.1 | 20.1 | 5.6 | |
RA Mo2 | A | 49.7 | 25.6 | 9.3 | 13.2 | 2.3 |
B | 46.5 | 22.2 | 4.3 | 21.1 | 5.8 | |
ASC Mo4 | A | 48.7 | 25.7 | 10.5 | 11.2 | 4.0 |
B | 45.0 | 22.5 | 4.1 | 17.2 | 11.1 | |
RA Mo4 | A | 48.8 | 25.8 | 9.5 | 11.5 | 4.3 |
B | 45.6 | 23.4 | 5.6 | 15.6 | 9.7 |
Fig. 5. Bright-field TEM images of and corresponding SAED patterns of the RA Mo2 specimen at different magnifications (lime green arrows: dislocations, blue arrows: annealing twins).
Fig. 7. (a) BF-TEM image, and SAED patterns of (b) twin region, (c) B2 nanoparticles of RA Mo2 specimen deformed to failure showing nano-twins and intermetallic particle (red arrows: nanotwins, and yellow arrows: dislocations).
Alloys | ΔSmix (J/(mol K)) | Δχ | VEC |
---|---|---|---|
Fe50Mn27Ni10Cr13 | 9.94 | 0.1322 | 7.67 |
(Fe50Mn27Ni10Cr13)98Mo2 | 10.56 | 0.1435 | 7.6366 |
(Fe50Mn27Ni10Cr13)96Mo4 | 10.94 | 0.1535 | 7.6032 |
(Fe50Mn27Ni10Cr13)94Mo6 | 11.23 | 0.1625 | 7.5698 |
Table 3 Summary of mixing entropy (ΔSmix), electronegativity (Δχ), and valence electron concentration (VEC).
Alloys | ΔSmix (J/(mol K)) | Δχ | VEC |
---|---|---|---|
Fe50Mn27Ni10Cr13 | 9.94 | 0.1322 | 7.67 |
(Fe50Mn27Ni10Cr13)98Mo2 | 10.56 | 0.1435 | 7.6366 |
(Fe50Mn27Ni10Cr13)96Mo4 | 10.94 | 0.1535 | 7.6032 |
(Fe50Mn27Ni10Cr13)94Mo6 | 11.23 | 0.1625 | 7.5698 |
[1] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[2] |
J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, Y. Liu, J. Alloys. Compd. 760 (2018) 15-30.
DOI URL |
[3] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4 (2019) 515-534.
DOI |
[4] | J.W. Yeh, Ann. Chim. Sci. Des Matériaux 31 (2006) 633-648. |
[5] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
[6] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[7] |
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213-218.
DOI URL |
[8] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI URL |
[9] |
Z. Zhang, M.M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, R.O. Ritchie, Nat. Commun. 6 (2015) 10143.
DOI URL |
[10] |
K.V.S. Thurston, A. Hohenwarter, G. Laplanche, E.P. George, B. Gludovatz, R.O. Ritchie, Intermetallics 110 (2019), 106469.
DOI URL |
[11] |
R.O. Ritchie, Nat. Mater. 10 (2011) 817-822.
DOI PMID |
[12] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
[13] |
Z. Li, F. Körmann, B. Grabowski, J. Neugebauer, D. Raabe, Acta Mater. 136 (2017) 262-270.
DOI URL |
[14] |
Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, D. Raabe, Acta Mater. 94 (2015) 124-133.
DOI URL |
[15] |
Z. Fu, B.E. MacDonald, Z. Li, Z. Jiang, W. Chen, Y. Zhou, E.J. Lavernia, Mater. Res. Lett. 6 (2018) 634-640.
DOI URL |
[16] |
S.W. Wu, G. Wang, Q. Wang, Y.D. Jia, J. Yi, Q.J. Zhai, J.B. Liu, B.A. Sun, H.J. Chu, J. Shen, P.K. Liaw, C.T. Liu, T.Y. Zhang, Acta Mater. 165 (2019) 444-458.
DOI |
[17] |
C. Zhang, C. Zhu, T. Harrington, K. Vecchio, Scr. Mater. 154 (2018) 78-82.
DOI URL |
[18] |
L.B. Chen, R. Wei, K. Tang, J. Zhang, F. Jiang, L. He, J. Sun, Mater. Sci. Eng. A 716 (2018) 150-156.
DOI URL |
[19] |
L.B. Chen, R. Wei, K. Tang, J. Zhang, F. Jiang, J. Sun, Mater. Lett. 236 (2019) 416-419.
DOI |
[20] |
R. Wei, H. Sun, Z.H. Han, C. Chen, T. Wang, S.K. Guan, F.S. Li, Mater. Lett. 219 (2018) 85-88.
DOI URL |
[21] |
R. Chang, W. Fang, H. Yu, X. Bai, X. Zhang, B. Liu, F. Yin, Scr. Mater. 172 (2019) 144-148.
DOI URL |
[22] |
W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, C.T. Liu, Acta Mater. 116 (2016) 332-342.
DOI URL |
[23] |
Q. An, J. Wang, Y. Liu, B. Liu, W. Guo, Q. Fang, Y. Nie, Intermetallics 110 (2019), 106471.
DOI URL |
[24] |
B. Cai, B. Liu, S. Kabra, Y. Wang, K. Yan, P.D. Lee, Y. Liu, Acta Mater. 127 (2017) 471-480.
DOI URL |
[25] |
J. Su, D. Raabe, Z. Li, Acta Mater. 163 (2019) 40-54.
DOI URL |
[26] |
Z. Li, C.C. Tasan, H. Springer, B. Gault, D. Raabe, Sci. Rep. 7 (2017) 40704.
DOI URL |
[27] |
M. Wang, Z. Li, D. Raabe, Acta Mater. 147 (2018) 236-246.
DOI URL |
[28] |
Y.X. Zhuang, X.L. Zhang, X.Y. Gu, J. Alloys. Compd. 743 (2018) 514-522.
DOI URL |
[29] |
Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C.T. Liu, J.J. Kai, Acta Mater. 138 (2017) 72-82.
DOI URL |
[30] |
W.H. Liu, T. Yang, C.T. Liu, Mater. Chem. Phys. 210 (2018) 2-11.
DOI URL |
[31] |
K. Ming, X. Bi, J. Wang, Scr. Mater. 137 (2017) 88-93.
DOI URL |
[32] | W.F. Hosford, Mechanical Behavior of Materials, Cambridge University Press, 2005. |
[33] |
W. Li, P.K. Liaw, Y. Gao, Intermetallics 99 (2018) 69-83.
DOI URL |
[34] |
C.M.F. Rae, R.C. Reed, Acta Mater. 49 (2001) 4113-4125.
DOI URL |
[35] |
T.T. Shun, L.Y. Chang, M.H. Shiu, Mater. Charact. 81 (2013) 92-96.
DOI URL |
[36] |
D. Wei, X. Li, S. Schönecker, J. Jiang, W.-M Choi, B.-J Lee, H.S Kim, A Chiba, H Kato, Acta Mater. 181 (2019) 318-330.
DOI URL |
[37] |
W.R. Wang, W.L. Wang, J.W. Yeh, J. Alloys. Compd. 589 (2014) 143-152.
DOI URL |
[38] |
S. Picak, J. Liu, C. Hayrettin, W. Nasim, D. Canadinc, K. Xie, Y.I. Chumlyakov, I.V. Kireeva, I. Karaman, Acta Mater. 181 (2019) 555-569.
DOI |
[39] |
S. Mahajan, G.Y. Chin, Acta Metall. 21 (1973) 1353-1363.
DOI URL |
[40] |
J. He, S.K. Makineni, W. Lu, Y. Shang, Z. Lu, Z. Li, B. Gault, Scr. Mater. 175 (2020) 1-6.
DOI URL |
[41] |
M.J. Yao, K.G. Pradeep, C.C. Tasan, D. Raabe, Scr. Mater. 72-73 (2014) 5-8.
DOI URL |
[42] |
Y. Dong, Y. Lu, L. Jiang, T. Wang, T. Li, Intermetallics 52 (2014) 105-109.
DOI URL |
[43] |
S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109 (2011), 103505.
DOI URL |
[44] |
G. Qin, R. Chen, H. Zheng, H. Fang, L. Wang, Y. Su, J. Guo, H. Fu, J. Mater. Sci. Technol. 35 (2019) 578-583.
DOI URL |
[45] |
A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving, JOM 65 (2013) 1780-1789.
DOI URL |
[46] |
A.J. Zaddach, R.O. Scattergood, C.C. Koch, Mater. Sci. Eng. A 636 (2015) 373-378.
DOI URL |
[47] |
M. Kang, K.R. Lim, J.W. Won, Y.S. Na, J. Alloys. Compd. 769 (2018) 808-812.
DOI URL |
[48] |
S.M. Copley, B.H. Kear, Acta Metall. 16 (1968) 227-231.
DOI URL |
[49] |
D. Raabe, C.C. Tasan, H. Springer, M. Bausch, Steel Res. Int. 86 (2015) 1127-1138.
DOI URL |
[50] |
Z. Li, D. Raabe, JOM 69 (2017) 2099-2106.
DOI URL |
[1] | Yuankui Cao, Weidong Zhang, Bin Liu, Yong Liu, Meng Du, Ao Fu. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 10-20. |
[2] | Fangqiang Ning, Jibo Tan, Ziyu Zhang, Xinqiang Wu, Xiang Wang, En-Hou Han, Wei Ke. Effects of thiosulfate and dissolved oxygen on crevice corrosion of Alloy 690 in high-temperature chloride solution [J]. J. Mater. Sci. Technol., 2021, 66(0): 163-176. |
[3] | Changhong Cai, Marta M. Alves, Renbo Song, Yongjin Wang, Jingyuan Li, M. Fátima Montemor. Non-destructive corrosion study on a magnesium alloy with mechanical properties tailored for biodegradable cardiovascular stent applications [J]. J. Mater. Sci. Technol., 2021, 66(0): 128-138. |
[4] | Li Sun, Xiaobo Ren, Jianying He, Zhiliang Zhang. Numerical investigation of a novel pattern for reducing residual stress in metal additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 67(0): 11-22. |
[5] | Nana Zhao, Fengchu Zhang, Fei Zhan, Ding Yi, Yijun Yang, Weibin Cui, Xi Wang. Fe 3+-stabilized Ti3C2Tx MXene enables ultrastable Li-ion storage at low temperature [J]. J. Mater. Sci. Technol., 2021, 67(0): 156-164. |
[6] | Yongxin Ruan, Changrong Li, Yuping Ren, Xiaopan Wu, R. Schmid-Fetzer, Cuiping Guo, Zhenmin Du. Phases equilibrated with long-period stacking ordered phases in the Mg-rich corner of the Mg-Y-Zn system [J]. J. Mater. Sci. Technol., 2021, 68(0): 147-159. |
[7] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
[8] | Qiuzhi Gao, Ziyun Liu, Huijun Li, Hailian Zhang, Chenchen Jiang, Aimin Hao, Fu Qu, Xiaoping Lin. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling [J]. J. Mater. Sci. Technol., 2021, 68(0): 91-102. |
[9] | Xiaoxu Liu, Yong Du, Shuhong Liu, Kaiming Cheng, Zhihong Zhang. Phase equilibria and crystal structure of ternary compounds in Al-rich corner of Al-Er-Y system at 673 and 873K [J]. J. Mater. Sci. Technol., 2021, 60(0): 128-138. |
[10] | Kaiming Cheng, Jiaxing Sun, Huixia Xu, Jin Wang, Chengwei Zhan, Reza Ghomashchi, Jixue Zhou, Shouqiu Tang, Lijun Zhang, Yong Du. Diffusion growth of ϕ ternary intermetallic compound in the Mg-Al-Zn alloy system: In-situ observation and modeling [J]. J. Mater. Sci. Technol., 2021, 60(0): 222-229. |
[11] | Daqiang Jiang, Zhenghao Jia, Hong Yang, Yinong Liu, Fangfeng Liu, Xiaohua Jiang, Yang Ren, Lishan Cui. Large elastic strains and ductile necking of W nanowires embedded in TiNi matrix [J]. J. Mater. Sci. Technol., 2021, 60(0): 56-60. |
[12] | Zhongdi Yu, Minghui Chen, Jinlong Wang, Fengjie Li, Shenglong Zhu, Fuhui Wang. Enamel coating for protection of the 316 stainless steel against tribo-corrosion in molten zinc alloy at 460 °C [J]. J. Mater. Sci. Technol., 2021, 65(0): 126-136. |
[13] | Jinlong Du, Cai Li, Zumin Wang, Yuan Huang. Direct alloying of immiscible molybdenum-silver system and its thermodynamic mechanism [J]. J. Mater. Sci. Technol., 2021, 65(0): 18-28. |
[14] | Bingnan Qian, Jinyong Zhang, Yangyang Fu, Fan Sun, Yuan Wu, Jun Cheng, Philippe Vermaut, Frédéric Prima. In-situ microstructural investigations of the TRIP-to-TWIP evolution in Ti-Mo-Zr alloys as a function of Zr concentration [J]. J. Mater. Sci. Technol., 2021, 65(0): 228-237. |
[15] | Ping Deng, Qunjia Peng, En-Hou Han, Wei Ke, Chen Sun. Proton irradiation assisted localized corrosion and stress corrosion cracking in 304 nuclear grade stainless steel in simulated primary PWR water [J]. J. Mater. Sci. Technol., 2021, 65(0): 61-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||