J. Mater. Sci. Technol. ›› 2021, Vol. 70: 250-267.DOI: 10.1016/j.jmst.2020.08.037
• Research Article • Previous Articles
					
													R. Liu, P. Zhang*( ), Z.J. Zhang, B. Wang, Z.F. Zhang*(
), Z.J. Zhang, B. Wang, Z.F. Zhang*( )
)
												  
						
						
						
					
				
Received:2020-08-16
															
							
																	Revised:2020-08-24
															
							
																	Accepted:2020-09-08
															
							
																	Published:2021-04-20
															
							
																	Online:2021-04-15
															
						Contact:
								P. Zhang,Z.F. Zhang   
													About author:* E-mail: pengzhang@imr.ac.cn (P. Zhang),R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: II. Parameter analysis and fatigue strength improvement[J]. J. Mater. Sci. Technol., 2021, 70: 250-267.
 
																													Fig. 1. Influences of elastic modulus E on damage capacity C and fatigue strength. (a) The linear σw/σy--σy/σb relation shared by three different series of aluminum alloys (3003, 3004 and 5050, E = 71GPa) [8], with the separated σw--σb relations (the inserted figure). (b) Typical linear σw/σy--σy/σb relations of steels [1,[9], [10], [11], [12]], copper alloys [[13], [14], [15], [16], [17]], aluminum alloys [1,8,18] and magnesium alloys [1]; corresponding values of C have been marked out. (c) Linear relation of parameter C in the 1/C--E /E0 coordinate, E0 = 650GPa. (d) Calculated ranges of σw--E relations (substituted values of σy and σb have been marked out) and corresponding tested fatigue strength of steels and magnesium alloys.
| Series | Materials | E(GPa) [ | C | ω | R-square | Source/Ref. | 
|---|---|---|---|---|---|---|
| Steel | Carbon Steels & Alloy Steels | 200 | 1.51 | 1.61 | 0.85 | [ | 
| Cu Alloy | Cu-Al Alloys | 125 | 1.26 | 0.87 | 0.97 | [ | 
| Al Alloy | Wrought Al Alloys | 70 | 1.16 | 0.85 | 0.71 | [ | 
| Mg Alloy | Wrought Mg Alloys | 45 | 1.11 | 0.79 | 0.6 | [ | 
Table 1 The typical values of elastic modulus and the parameters in the Y-T-F model for several series of metallic materials.
| Series | Materials | E(GPa) [ | C | ω | R-square | Source/Ref. | 
|---|---|---|---|---|---|---|
| Steel | Carbon Steels & Alloy Steels | 200 | 1.51 | 1.61 | 0.85 | [ | 
| Cu Alloy | Cu-Al Alloys | 125 | 1.26 | 0.87 | 0.97 | [ | 
| Al Alloy | Wrought Al Alloys | 70 | 1.16 | 0.85 | 0.71 | [ | 
| Mg Alloy | Wrought Mg Alloys | 45 | 1.11 | 0.79 | 0.6 | [ | 
 
																													Fig. 2. Influences of nano-crystallization on elastic modulus E, parameter C and fatigue strength. (a) The σw--σb relations of Cu and Cu-Al alloys [[14], [15], [16], [17]]; hollow points represent the data of nano-crystalline states. (b) Linear σw/σy--σy/σb relation of Cu and Cu-Al alloys, with the nano-crystalline data (hollow points) deviate downward; corresponding values of CCG and CNG have been marked out, which are in accordance with the change of E.
 
																													Fig. 3. Influences of alloying content on elastic modulus E, parameter C and fatigue strength. (a) The decreased parameter C with the increasing Al content in Cu-Al alloys, which is in accordance with the decreasing trend of E (the inserted figure). (b) Calculated curves of σw changing with Al content (substituted values of σy and σb have been marked out) and corresponding tested fatigue strength of Cu and Cu-Al alloys.
 
																													Fig. 4. The linear σb--σy relations and the influencing factors of slope a. (a) F138 steels produced by rolled and equal-channel angular pressing (ECAP) [21]; (b) 7075 Al alloys produced by cryorolled and room-temperature rolled processes [22]; (c) Cu and IF steel produced by the same ECAP and cold-rolled preparation process [23].
 
																													Fig. 5. Influences of preparation processes on the microstructure characteristic coefficient a and the tendency of fatigue strength. (a) The linear σb--σy relations of wrought Al alloys with different processing types and states [8]; corresponding values of a have been marked out. (b) A negative correlation between a and σ0. (c) The σw--σy curves with different tendencies influenced by the value of a·C. (H: strain-hardened state; T: solution heat-treated state).
 
																													Fig. 6. Microstructure morphologies of Cu-11at.%Al with rather uniform equiaxial grains: (a) ①-coarse grain (CG); (b) ②-fine grain (FG); (c) ③-ultra-fine grain (UFG); (d) ④-nano-grain (NG). Average grain sizes dˉ have been marked out.
 
																													Fig. 7. Influences of grain size on yield strength σy, tensile strength σb and fatigue strength σw in Cu-11at.%Al with rather uniform microstructures. (a) Hall-Petch relations between σy, σb and average grain size dˉ. (b) Linear σw/σy--σy/σb relation. (c) Calculated curve of σw changing with dˉ and corresponding tested fatigue strength data; for the rise-fall trend, there exists a critical grain size dcri corresponding to the maximum fatigue strength (the star mark).
 
																													Fig. 8. Microstructure morphologies and cracking behaviors of Cu-5at.%Al with various uniformity. (a) Typical microstructures of ① cold-rolled state (CR); ②③④ partially recrystallized states (cold-rolled and annealed at 300/325/350 °C, marked as CR + A300/325/350) and ⑤⑥ fully recrystallized states (cold-rolled and annealed at 425/500 °C, marked as CR + A425/500). (b) Typical initiation location of fatigue cracks: ① grain coarsening region; ② recrystallized region.
 
																													Fig. 9. Influences of grain size on yield strength σy, tensile strength σb and fatigue strength σw in Cu-5at.%Al with part of non-uniform microstructures (marked as hollow points). (a)(b) Hall-Petch relations between σy (a), σb (b) and average grain size dˉ; grain size distributions with the maximum grain sizes dmax and minimum grain sizes dmin have been marked out. (c) Original linear σw/σy--σy/σb relation. (d) Calculated curve of σw changing with dˉ and corresponding tested fatigue strength data; the data of non-uniform states (②③④ hollow points) derived from the curve. (e) Modified linear σw/σy--σy/σb relation, in which original parameters σy and σb are replaced by the localized properties σy-loc and σb-loc. (f) Modified curve of σw changing with dloc (dmax) and corresponding tested fatigue strength data; the original deviation of non-uniform data (②③④ hollow points) are diminished.
 
																													Fig. 10. Influences of defects on the damage concentration coefficient ω and fatigue strength. (a) Typical values of ω for aluminum alloys [1]; the ω of cast states is commonly larger than that of wrought states. (b) Linear σw/σy--σy/σb relations of low-carbon steels with or without inclusions [1,4]; the line turns downward with the increasing defect dimension, corresponding to an increasing ω.
| Materials | Components | Yield strength, σy (MPa) | Tensile strength, σb (MPa) | Fatigue strength, σw (MPa) | Defect size, D (μm) | ω | 
|---|---|---|---|---|---|---|
| Low carbon steel-1 [ | Armco iron, 0.012C, 0.07Mn | 103 | 284 | 191 | ~1 | 0.37 | 
| Ingot iron, 0.015C, 0.03Mn | 156 | 298 | 182 | |||
| Ingot iron, 0.014C, 0.015Mn | 163 | 298 | 197 | |||
| Wrought iron, 0.017C, 0.122Si | 204 | 319 | 204 | |||
| Wrought iron, 0.017C, 0.122Si | 197 | 319 | 190 | |||
| Steel, 0.13C | 304 | 465 | 248 | |||
| Steel, 0.15C, 0.66Mn | 293 | 387 | 222 | |||
| Low carbon steel-2 [ | Annealed low carbon steel | ~156 | ~298 | 181 | 60 | 0.41 | 
| 172 | 93 | 0.43 | ||||
| 157 | 136 | 0.47 | ||||
| 157 | 119 | 0.48 | ||||
| 147 | 185 | 0.51 | ||||
| 137 | 272 | 0.54 | ||||
| 142 | 298 | 0.53 | ||||
| 128 | 463 | 0.58 | ||||
| 118 | 681 | 0.63 | 
Table 2 Fatigue properties of two series of low carbon steels (one with different tensile properties, another with different defect sizes).
| Materials | Components | Yield strength, σy (MPa) | Tensile strength, σb (MPa) | Fatigue strength, σw (MPa) | Defect size, D (μm) | ω | 
|---|---|---|---|---|---|---|
| Low carbon steel-1 [ | Armco iron, 0.012C, 0.07Mn | 103 | 284 | 191 | ~1 | 0.37 | 
| Ingot iron, 0.015C, 0.03Mn | 156 | 298 | 182 | |||
| Ingot iron, 0.014C, 0.015Mn | 163 | 298 | 197 | |||
| Wrought iron, 0.017C, 0.122Si | 204 | 319 | 204 | |||
| Wrought iron, 0.017C, 0.122Si | 197 | 319 | 190 | |||
| Steel, 0.13C | 304 | 465 | 248 | |||
| Steel, 0.15C, 0.66Mn | 293 | 387 | 222 | |||
| Low carbon steel-2 [ | Annealed low carbon steel | ~156 | ~298 | 181 | 60 | 0.41 | 
| 172 | 93 | 0.43 | ||||
| 157 | 136 | 0.47 | ||||
| 157 | 119 | 0.48 | ||||
| 147 | 185 | 0.51 | ||||
| 137 | 272 | 0.54 | ||||
| 142 | 298 | 0.53 | ||||
| 128 | 463 | 0.58 | ||||
| 118 | 681 | 0.63 | 
 
																													Fig. 11. Illustration of the defect related influencing factors on fatigue strength. (a) Different forms of defects induced fatigue crack initiation [27]: (a1) scratch on surface; (a2) inclusion in subsurface. (b) Common features of defects: the origin of stress-strain concentration. (c) Main factors and the influences on stress concentration: (c1) defect dimension D, is related to stress distribution gradient; (c2) defect shape Kt, affects peak value of stress concentration; (c3) property of matrix material σy, σb that influences the plastic zone.
 
																													Fig. 12. Influences of defect dimension D on the damage concentration coefficient ω and fatigue strength. (a) Linear relations between ω/ω0 and D in double logarithm coordinate of various steels [4,28,[30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48]]; (b) Linear relations between σw and D in double logarithm coordinate of these steels [4,28,[30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48]]. The value of slope kω (1/6) in the model of Murakami has been marked out.
| Materials | Hardness,HV | Defect size, D (μm) | Fatigue strength, σw (MPa) | ω/ω0 | Type R-square | k | 
|---|---|---|---|---|---|---|
| S10C(A) [ 30,31,32,33,34,35] | 120 | 105 | 632 | 3.71 | S1 | k = 0.17 σb = 464 MPa | 
| 134 | 316 | 2.91 | ||||
| 172 | 74 | 2.26 | ||||
| 181 | 60 | 2.15 | ||||
| 172 | 93 | 2.26 | ||||
| 157 | 136 | 2.48 | ||||
| 157 | 119 | 2.48 | ||||
| 147 | 185 | 2.65 | ||||
| 137 | 272 | 2.84 | ||||
| 142 | 298 | 2.74 | ||||
| 128 | 463 | 3.04 | ||||
| 118 | 681 | 3.30 | ||||
| 123 | 632 | 3.17 | ||||
| S30C(A) [ | 153 | 220 | 16 | 1.59 | S1 | |
| 225 | 16 | 1.55 | ||||
| 199 | 32 | 1.76 | ||||
| 204 | 32 | 1.71 | ||||
| 208 | 32 | 1.68 | ||||
| 196 | 63 | 1.78 | ||||
| 140 | 316 | 2.50 | ||||
| 144 | 316 | 2.43 | ||||
| S35C(A) [ | 160 | 120 | 632 | 7.28 | S1 | |
| 122 | 632 | 7.16 | ||||
| 126 | 632 | 6.93 | ||||
| 144 | 316 | 6.07 | ||||
| 127 | 474 | 6.88 | ||||
| 101 | 949 | 8.65 | ||||
| 152 | 409 | 5.75 | ||||
| 137 | 681 | 6.38 | ||||
| S45C(A1) [ | 180 | 280 | 16 | 1.70 | S2 | k = 0.19 σb = 569 MPa | 
| 275 | 16 | 1.73 | ||||
| 245 | 32 | 1.94 | ||||
| 250 | 32 | 1.90 | ||||
| 245 | 32 | 1.94 | ||||
| 160 | 316 | 2.97 | ||||
| 151 | 316 | 3.14 | ||||
| S45C(A2) [ | 170 | 235 | 37 | 1.82 | S2 | |
| 226 | 46 | 1.89 | ||||
| 226 | 68 | 1.89 | ||||
| 230 | 48 | 1.86 | ||||
| 211 | 74 | 2.03 | ||||
| 201 | 109 | 2.13 | ||||
| 226 | 60 | 1.89 | ||||
| 201 | 93 | 2.13 | ||||
| 196 | 93 | 2.18 | ||||
| 191 | 136 | 2.24 | ||||
| 201 | 119 | 2.13 | ||||
| 181 | 185 | 2.37 | ||||
| 172 | 272 | 2.49 | ||||
| 181 | 298 | 2.36 | ||||
| 157 | 463 | 2.72 | ||||
| 147 | 681 | 2.91 | ||||
| S50C(A) [ | 177 | 144 | 316 | 3.59 | S2 | |
| 196 | 95 | 2.64 | ||||
| 160 | 379 | 3.23 | ||||
| 133 | 538 | 3.89 | ||||
| 123 | 791 | 4.20 | ||||
| S50C(T) [ | 319 | 209 | 316 | 4.39 | S3 | k = 0.23 σb = 1108 MPa | 
| 378 | 252 | 316 | 3.64 | |||
| 375 | 468 | 16 | 1.96 | |||
| 478 | 16 | 1.92 | ||||
| 373 | 63 | 2.46 | ||||
| 252 | 316 | 3.64 | ||||
| YUS170 [ | 244 | 304 | 93 | 2.42 | S3 | |
| 294 | 139 | 2.50 | ||||
| 265 | 185 | 2.78 | ||||
| S45C(Q) [ | 650 | 667 | 37 | 2.62 | S4 | k = 0.25 σb = 1843 MPa | 
| 568 | 62 | 3.07 | ||||
| 559 | 93 | 3.12 | ||||
| 470 | 117 | 3.71 | ||||
| S45C(T) [ | 520 | 568 | 37 | 2.45 | S4 | |
| 519 | 62 | 2.68 | ||||
| 421 | 117 | 3.31 | ||||
| 382 | 202 | 3.64 | ||||
| SUS603 [ | 355 | 530 | 37 | 1.97 | S4 | |
| 441 | 74 | 2.37 | ||||
| 441 | 93 | 2.37 | ||||
| 432 | 139 | 2.42 | ||||
| 373 | 185 | 2.80 | ||||
| Maraging Steel [ | 720 | 686 | 19 | 2.00 | S4 | |
| 677 | 37 | 2.03 | ||||
| 530 | 93 | 2.59 | ||||
| 441 | 185 | 3.12 | ||||
| 546 | 63 | 2.52 | ||||
| 454 | 95 | 3.03 | ||||
| 60Si2CrV [ | 538 | 632 | 32 | 2.92 | S4 | |
| 543 | 662 | 29 | 2.79 | |||
| 565 | 560 | 31 | 3.30 | |||
| 571 | 675 | 20 | 2.74 | |||
| 562 | 750 | 16 | 2.46 | |||
| 558 | 760 | 18 | 2.43 | 
Table 3 Fatigue properties of various steels (divided into 4 types S1-S4 according to the hardness and strength) with different defect sizes.
| Materials | Hardness,HV | Defect size, D (μm) | Fatigue strength, σw (MPa) | ω/ω0 | Type R-square | k | 
|---|---|---|---|---|---|---|
| S10C(A) [ 30,31,32,33,34,35] | 120 | 105 | 632 | 3.71 | S1 | k = 0.17 σb = 464 MPa | 
| 134 | 316 | 2.91 | ||||
| 172 | 74 | 2.26 | ||||
| 181 | 60 | 2.15 | ||||
| 172 | 93 | 2.26 | ||||
| 157 | 136 | 2.48 | ||||
| 157 | 119 | 2.48 | ||||
| 147 | 185 | 2.65 | ||||
| 137 | 272 | 2.84 | ||||
| 142 | 298 | 2.74 | ||||
| 128 | 463 | 3.04 | ||||
| 118 | 681 | 3.30 | ||||
| 123 | 632 | 3.17 | ||||
| S30C(A) [ | 153 | 220 | 16 | 1.59 | S1 | |
| 225 | 16 | 1.55 | ||||
| 199 | 32 | 1.76 | ||||
| 204 | 32 | 1.71 | ||||
| 208 | 32 | 1.68 | ||||
| 196 | 63 | 1.78 | ||||
| 140 | 316 | 2.50 | ||||
| 144 | 316 | 2.43 | ||||
| S35C(A) [ | 160 | 120 | 632 | 7.28 | S1 | |
| 122 | 632 | 7.16 | ||||
| 126 | 632 | 6.93 | ||||
| 144 | 316 | 6.07 | ||||
| 127 | 474 | 6.88 | ||||
| 101 | 949 | 8.65 | ||||
| 152 | 409 | 5.75 | ||||
| 137 | 681 | 6.38 | ||||
| S45C(A1) [ | 180 | 280 | 16 | 1.70 | S2 | k = 0.19 σb = 569 MPa | 
| 275 | 16 | 1.73 | ||||
| 245 | 32 | 1.94 | ||||
| 250 | 32 | 1.90 | ||||
| 245 | 32 | 1.94 | ||||
| 160 | 316 | 2.97 | ||||
| 151 | 316 | 3.14 | ||||
| S45C(A2) [ | 170 | 235 | 37 | 1.82 | S2 | |
| 226 | 46 | 1.89 | ||||
| 226 | 68 | 1.89 | ||||
| 230 | 48 | 1.86 | ||||
| 211 | 74 | 2.03 | ||||
| 201 | 109 | 2.13 | ||||
| 226 | 60 | 1.89 | ||||
| 201 | 93 | 2.13 | ||||
| 196 | 93 | 2.18 | ||||
| 191 | 136 | 2.24 | ||||
| 201 | 119 | 2.13 | ||||
| 181 | 185 | 2.37 | ||||
| 172 | 272 | 2.49 | ||||
| 181 | 298 | 2.36 | ||||
| 157 | 463 | 2.72 | ||||
| 147 | 681 | 2.91 | ||||
| S50C(A) [ | 177 | 144 | 316 | 3.59 | S2 | |
| 196 | 95 | 2.64 | ||||
| 160 | 379 | 3.23 | ||||
| 133 | 538 | 3.89 | ||||
| 123 | 791 | 4.20 | ||||
| S50C(T) [ | 319 | 209 | 316 | 4.39 | S3 | k = 0.23 σb = 1108 MPa | 
| 378 | 252 | 316 | 3.64 | |||
| 375 | 468 | 16 | 1.96 | |||
| 478 | 16 | 1.92 | ||||
| 373 | 63 | 2.46 | ||||
| 252 | 316 | 3.64 | ||||
| YUS170 [ | 244 | 304 | 93 | 2.42 | S3 | |
| 294 | 139 | 2.50 | ||||
| 265 | 185 | 2.78 | ||||
| S45C(Q) [ | 650 | 667 | 37 | 2.62 | S4 | k = 0.25 σb = 1843 MPa | 
| 568 | 62 | 3.07 | ||||
| 559 | 93 | 3.12 | ||||
| 470 | 117 | 3.71 | ||||
| S45C(T) [ | 520 | 568 | 37 | 2.45 | S4 | |
| 519 | 62 | 2.68 | ||||
| 421 | 117 | 3.31 | ||||
| 382 | 202 | 3.64 | ||||
| SUS603 [ | 355 | 530 | 37 | 1.97 | S4 | |
| 441 | 74 | 2.37 | ||||
| 441 | 93 | 2.37 | ||||
| 432 | 139 | 2.42 | ||||
| 373 | 185 | 2.80 | ||||
| Maraging Steel [ | 720 | 686 | 19 | 2.00 | S4 | |
| 677 | 37 | 2.03 | ||||
| 530 | 93 | 2.59 | ||||
| 441 | 185 | 3.12 | ||||
| 546 | 63 | 2.52 | ||||
| 454 | 95 | 3.03 | ||||
| 60Si2CrV [ | 538 | 632 | 32 | 2.92 | S4 | |
| 543 | 662 | 29 | 2.79 | |||
| 565 | 560 | 31 | 3.30 | |||
| 571 | 675 | 20 | 2.74 | |||
| 562 | 750 | 16 | 2.46 | |||
| 558 | 760 | 18 | 2.43 | 
 
																													Fig. 13. Influences of defect shape (Kt) on the damage concentration coefficient ω and fatigue strength. (a) Linear relations between ω/ω0 and D in double logarithm coordinate of 45 steel and 40Cr steel [29], with the slop kω changing with Kt; a group data of low-carbon steel [4] with constant kω has also been included. (b) Linear relations between σw and D in double logarithm coordinate of these steels, with the slop -kω changing with Kt. (c) The natural exponential relations between kω and Kt of 45 steel and 40Cr steel; a reference line with kω = 1/6 (the model of Murakami) has been marked out, which is approximately the slope of the low-carbon steel (the inserted figure). (d) Calculated curves of σw changing with Kt and corresponding tested fatigue strength data of 45 steel and 40Cr steel; corresponding values of D have been marked out.
| Materials | Notch size, D (μm) | Notch shape,Kt | Fatigue strength, σw (MPa) | ω/ω0 | k | 
|---|---|---|---|---|---|
| Normalized45 steel(σb = 660 MPa) [ | ~1 | 1 | 318 | 1 | 0 | 
| 170 | 4.62 | 144 | 2.21 | 0.154 | |
| 221 | 5.14 | 131 | 2.43 | 0.164 | |
| 315 | 5.76 | 108 | 2.94 | 0.188 | |
| 236 | 3.49 | 155 | 2.05 | 0.131 | |
| 309 | 3.85 | 148 | 2.15 | 0.133 | |
| 442 | 4.38 | 114 | 2.79 | 0.168 | |
| 376 | 2.35 | 201 | 1.58 | 0.077 | |
| 511 | 2.53 | 180 | 1.77 | 0.092 | |
| 749 | 2.68 | 154 | 2.06 | 0.109 | |
| 528 | 1.78 | 234 | 1.36 | 0.049 | |
| 724 | 1.84 | 221 | 1.44 | 0.055 | |
| 1128 | 1.92 | 206 | 1.54 | 0.061 | |
| 1304 | 1.34 | 286 | 1.11 | 0.015 | |
| 1346 | 1.35 | 277 | 1.15 | 0.019 | |
| 1750 | 1.36 | 277 | 1.15 | 0.019 | |
| Quenched and tempered 40Cr steel (σb = 1945 MPa) [ | ~1 | 1 | 865 | 1 | 0 | 
| 170 | 4.62 | 322 | 2.69 | 0.193 | |
| 221 | 5.14 | 280 | 3.09 | 0.209 | |
| 315 | 5.76 | 240 | 3.61 | 0.223 | |
| 236 | 3.49 | 373 | 2.32 | 0.154 | |
| 309 | 3.85 | 335 | 2.58 | 0.165 | |
| 442 | 4.38 | 285 | 3.04 | 0.183 | |
| 376 | 2.35 | 489 | 1.77 | 0.096 | |
| 511 | 2.53 | 433 | 2 | 0.111 | |
| 749 | 2.68 | 386 | 2.24 | 0.122 | |
| 528 | 1.78 | 592 | 1.46 | 0.060 | |
| 724 | 1.84 | 558 | 1.55 | 0.067 | |
| 1128 | 1.92 | 524 | 1.65 | 0.071 | |
| 1304 | 1.34 | 733 | 1.18 | 0.023 | |
| 1346 | 1.35 | 752 | 1.15 | 0.019 | |
| 1750 | 1.36 | 739 | 1.17 | 0.021 | 
Table 4 Fatigue properties of two steels (normalized 45 steel and quenched and tempered 40Cr steel) with U-shape notches of various sizes and shapes.
| Materials | Notch size, D (μm) | Notch shape,Kt | Fatigue strength, σw (MPa) | ω/ω0 | k | 
|---|---|---|---|---|---|
| Normalized45 steel(σb = 660 MPa) [ | ~1 | 1 | 318 | 1 | 0 | 
| 170 | 4.62 | 144 | 2.21 | 0.154 | |
| 221 | 5.14 | 131 | 2.43 | 0.164 | |
| 315 | 5.76 | 108 | 2.94 | 0.188 | |
| 236 | 3.49 | 155 | 2.05 | 0.131 | |
| 309 | 3.85 | 148 | 2.15 | 0.133 | |
| 442 | 4.38 | 114 | 2.79 | 0.168 | |
| 376 | 2.35 | 201 | 1.58 | 0.077 | |
| 511 | 2.53 | 180 | 1.77 | 0.092 | |
| 749 | 2.68 | 154 | 2.06 | 0.109 | |
| 528 | 1.78 | 234 | 1.36 | 0.049 | |
| 724 | 1.84 | 221 | 1.44 | 0.055 | |
| 1128 | 1.92 | 206 | 1.54 | 0.061 | |
| 1304 | 1.34 | 286 | 1.11 | 0.015 | |
| 1346 | 1.35 | 277 | 1.15 | 0.019 | |
| 1750 | 1.36 | 277 | 1.15 | 0.019 | |
| Quenched and tempered 40Cr steel (σb = 1945 MPa) [ | ~1 | 1 | 865 | 1 | 0 | 
| 170 | 4.62 | 322 | 2.69 | 0.193 | |
| 221 | 5.14 | 280 | 3.09 | 0.209 | |
| 315 | 5.76 | 240 | 3.61 | 0.223 | |
| 236 | 3.49 | 373 | 2.32 | 0.154 | |
| 309 | 3.85 | 335 | 2.58 | 0.165 | |
| 442 | 4.38 | 285 | 3.04 | 0.183 | |
| 376 | 2.35 | 489 | 1.77 | 0.096 | |
| 511 | 2.53 | 433 | 2 | 0.111 | |
| 749 | 2.68 | 386 | 2.24 | 0.122 | |
| 528 | 1.78 | 592 | 1.46 | 0.060 | |
| 724 | 1.84 | 558 | 1.55 | 0.067 | |
| 1128 | 1.92 | 524 | 1.65 | 0.071 | |
| 1304 | 1.34 | 733 | 1.18 | 0.023 | |
| 1346 | 1.35 | 752 | 1.15 | 0.019 | |
| 1750 | 1.36 | 739 | 1.17 | 0.021 | 
 
																													Fig. 14. Influences of matrix material (σb) on the damage concentration coefficient ω and fatigue strength. (a) Linear relations between σw and D in double logarithm coordinate of the four series of steels S1-S4 [4,28,[30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48]] (classified according to the strength of matrix materials σb), with the slop -kω changing with σb. (b) The natural exponential relations between kω and σb of the S1-S4 steels; data of 45 steel and 40Cr steel with various Kt are also included. (c) Correlations among Kt and the two parameters kσb and σb0: a natural exponential kσb--Kt relation, and a weak correlation between σb0 and Kt (the insert figure). (d) Calculated curves of σw changing with σb and the corresponding tested fatigue strength data of 45 steel; the corresponding values of D and Kt have been marked out.
 
																													Fig. 15. Illustration of the defect related influences considered in the Y-T-F model. (a) Comparisons of the fatigue models [4,[49], [50], [51], [52]] considering the effect of defects, and the various values of kω changing with defect size; (b) influences of defect shape and the quantified relation between kω and Kt in the Y-T-F model; (c) influences of matrix material and the quantified relation between kω and σb in the Y-T-F model.
 
																													Fig. 16. Comprehensive influences of defect related factors on fatigue strength. (a) Calculated curves of σw changing with σb under a certain Kt and various of D. (b) Calculated curves of σw changing with σb under a certain D and various of Kt. Parameter values have been marked out, as well as the peak values of the curves (star marks).
 
																													Fig. 17. Illustration of possible approaches for fatigue strength improvement. (a) Three series of parameters in the Y-T-F model: the component related damage capacity C; the microstructure related parameters a, σy and σb; and the defect related damage concentration coefficient ω; possible changing trends of the parameters for fatigue strength improvement are marked out by arrows. (b) Trends of fatigue strength changing with the above three types of factors, and detailed approaches for fatigue strength improvement: (b1) increase elastic modulus (increase C); (b2) balance microstructures (change a, σy and σb); (b3) reduce defect damage (decrease ω).
| [1] | P.G. Forrest, Fatigue of Metals, Pergamon Press, Oxford 1962. | 
| [2] | A.S. Argon, Strengthening Mechanisms in Crystal Plasticity, Oxford University Press, New York 2008. | 
| [3] | S. Suresh, Fatigue of Materials, Cambridge University Press 1998. | 
| [4] | Y. Murakami, Oxford 2002. | 
| [5] | M. Meyers, K. Chawla, Mechanical Behavior of Materials (Second Edition), Cambridge University Press 2009. | 
| [6] | J.C. Pang, S.X. Li, Z.G. Wang, Z.F. Zhang, Nucl. Eng., 37(2014), pp. 958-976. | 
| [7] | R. Liu, P. Zhang, B. Wang, Y.Z. Tian, Z.J. Zhang, Z.F. Zhang, J. Mater. Sci. Technol. (2020), in press. | 
| [8] | J.R. Davis, USA 1998. | 
| [9] | H.J. Gough, London 1924. | 
| [10] | H.J. Gough, H.V. Pollard, W.J. Clenshaw, Aero. Res. Council R. (1951), p. 2522. | 
| [11] | G.A. Hankins, D. Hanson, G.W. Ford, J. Iron Steel Inst., 114(1926), p. 265. | 
| [12] | W.E. Bardgett, Iron Steel, 29(1956), p. 392. | 
| [13] | R. Liu, Y.Z. Tian, Z.J. Zhang, P. Zhang, Z.F. Zhang, Mater. Sci. Eng. A, 702(2017), pp. 259-264. DOI URL | 
| [14] | X.H. An, S.D. Wu, Z.G. Wang, Z.F. Zhang, Acta Mater., 74(2014), pp. 200-214. DOI URL | 
| [15] | X.H. An, Q.Y. Lin, S.D. Wu, Z.F. Zhang, Mater. Res. Lett., 3(2015), pp. 135-141. DOI URL | 
| [16] | R. Liu, et al., Acta Mater., 144(2018), pp. 613-626. DOI URL | 
| [17] | P. Xue, et al., Sci.China Mater., 59(2016), pp. 531-537. | 
| [18] | Anon, Fatigue Properties of Some Noral Wrought Aluminium Alloys, Aluminium Labs. Ltd. (1952), Research Bulletin No. 1. | 
| [19] | M.F. Ashby, Materials Selection in Mechanical Design, (4th ed.), Butterworth-Heinemann, Elsevier Ltd., Burlington 2011. | 
| [20] | P. Sharma, S. Ganti, J. Mater. Res., 18(2003), pp. 1823-1826. DOI URL | 
| [21] | N.S. De Vincentis, M.C. Avalos, A.M. Kliauga, V.L. Sordi, N. Schell, H.G. Brokmeier, R.E. Bolmaro, Deformation analysis on F138 austenitic stainless steel: ECAE and rolling, 6th International Conference on Nanomaterials by Severe Plastic Deformation 2014. | 
| [22] | P. Das, R. Jayaganthan, T. Chowdhury, I.V. Singh, Mater. Sci. Eng. A, 528(2011), pp. 7124-7132. DOI URL | 
| [23] | A.A. Gazder, S.S. Hazra, C.F. Gu, W.Q. Cao, C.H.J. Davies, E.V. Pereloma, Mechanical, microstructure and texture properties of interstitial-free steel and copper subjected to equal channel angular extrusion and cold-rolling, 15th International Conference on the Strength of Materials 2010. | 
| [24] | E.O. Hall, Proc. Phys. Soc. Lond. B, 64(1951), p. 747. DOI URL | 
| [25] | N.J. Petch, J. Iron Steel Inst., 174(1953), pp. 25-28. | 
| [26] | Y. Wang, M. Chen, F. Zhou, E. Ma, Nature, 419(2002), pp. 912-915. DOI URL | 
| [27] | J.C. Pang, S.X. Li, Z.G. Wang, Z.F. Zhang, Mater. Sci. Eng. A, 564(2013), pp. 331-341. DOI URL | 
| [28] | S.X. Li, Int. Mater. Rev., 57(2012), pp. 92-114. DOI URL | 
| [29] | S.B. Zhao, Handbook of Anti-fatigue Design, China Machine Press, Beijing 2015. | 
| [30] | Y. Murakmi, M. Endo, Trans. Jpn. Soc. Mech. Eng. A, 49(1983), pp. 127-136. DOI URL | 
| [31] | Y. Murakami, S. Fukuda, T. Endo, Trans. Jpn. Soc. Mech. Eng. Ser. I, 44(1978), pp. 4003-4013. | 
| [32] | H. Nisitani, M. Kage, Trans. Jpn. Soc. Mech. Eng. Ser. I, 39(1973), pp. 2005-2012. | 
| [33] | H. Ohba, Y. Murakami, T. Endo, Trans. Jpn. Soc. Mech. Eng. A, 49(1983), pp. 901-910. DOI URL | 
| [34] | H. Nisitani, S. Nishida, Trans. Jpn. Soc. Mech. Eng. Set I, 35(1969), pp. 2310-2315. | 
| [35] | H. Nisitani, Y. Murakami, Trans. Jpn. Soc. Mech. Eng. Ser. I, 35(1969), pp. 1389-1396. | 
| [36] | H. Nisitani, Correlation between notch sensitivity of a material and its non-propagating crack, under rotating bending stress, Proc. 1st Int. Conf. Mech. Behav. Mater., Kyoto, I(1972), pp. 312-322. | 
| [37] | H. Nisitani, K. Kawano, Non-propagating crack and crack strength of shafts with a shoulder fillet subjected to rotary bending, Proc. 11th Jpn. Congr. Mater. Res.-Metallic Mater(1968), pp. 49-51. | 
| [38] | H. Kobayashi, H. Nakazawa, Trans. Jpn. Soc. Mech. Eng. Ser. I, 35(1969), pp. 1856-1863. | 
| [39] | H. Nisitani, K. Kawano, Trans. Jpn. Soc. Mech. Eng., Ser. I, 37(1971), pp. 1492-1496. | 
| [40] | H. Nisitani, M. Endo, Trans. Jpn. Soc. Mech. Eng. A, 51(1985), pp. 1008-1016. DOI URL | 
| [41] | H. Nisitani, M. Endo, Trans. Jpn. SOC. Mech. Eng. A, 51(1985), pp. 784-789. DOI URL | 
| [42] | H. Nisitani, M. Endo, ASTM STP, 924(1988), pp. 136-153. | 
| [43] | H. Nisitani, I. Chishiro, Trans. Jpn. Soc. Mech. Eng. Ser. I, 40(1974), pp. 41-52. | 
| [44] | H. Kobayashi, H. Nakazawa, Trans. Jpn. Soc. Mech. Eng. Ser. I, 36(1970), pp. 1789-1798. | 
| [45] | S. Nishida, Private Communication, 1985. | 
| [46] | Y. Murakami, H. Kawano, T. Endo, Trans. Jpn. Soc. Mech. Eng. A, 45(1979), pp. 1479-1486. DOI URL | 
| [47] | Y. Murakami, T. Endo, The effects of small defects on the fatigue strength of hard steels, Proc. Int. Conf. Fatigue’ 81, Materials Experimentation and Design, Warwick Univ. (1981), pp. 431-440. | 
| [48] | Y. Murakami, M. Abe, T. Kiyota, Trans. Jpn. Soc. Mech. Eng. A, 53(1987), pp. 1482-1491. DOI URL | 
| [49] | Y. Murakami, M. Endo, Int. J. Fatigue, 16(1994), pp. 163-182. DOI URL | 
| [50] | N.E. Frost, K.J. Marsh, L.P. Peek, Metal Fatigue, Oxford University Press, Oxford 1974. | 
| [51] | H. Kobayashi, H. Nakazawa, Trans. Jpn. Soc. Mech. Eng., 36(1969), p. 1856. | 
| [52] | M.H. El Haddad,  T.H. Topper,  K.N. Smith, Eng. Fract. Mech., 11(1979), pp. 573-584. DOI URL | 
| [1] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. | 
| [2] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. | 
| [3] | Yongsheng Liu, Jiaying Jin, Tianyu Ma, Baixing Peng, Xinhua Wang, Mi Yan. Promoting the La solution in 2:14: 1-type compound: Resultant chemical deviation and microstructural nanoheterogeneity [J]. J. Mater. Sci. Technol., 2021, 62(0): 195-202. | 
| [4] | Tong Yang, Yi Kong, Jiangbo Lu, Zhenjun Zhang, Mingjun Yang, Ning Yan, Kai Li, Yong Du. Self-accommodated defect structures modifying the growth of Laves phase [J]. J. Mater. Sci. Technol., 2021, 62(0): 203-213. | 
| [5] | Jing Chen, Liang Wu, Xingxing Ding, Qiang Liu, Xu Dai, Jiangfeng Song, Bin Jiang, Andrej Atrens, Fusheng Pan. Effects of deformation processes on morphology, microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2021, 64(0): 10-20. | 
| [6] | Yong Li, Zhiyong Liu, Endian Fan, Yunhua Huang, Yi Fan, Bojie Zhao. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64(0): 141-152. | 
| [7] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. | 
| [8] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. | 
| [9] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. | 
| [10] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. | 
| [11] | Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering [J]. J. Mater. Sci. Technol., 2021, 72(0): 23-28. | 
| [12] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. | 
| [13] | Juanli Zhao, Yuchen Liu, Yun Fan, Wei Zhang, Chengguan Zhang, Guang Yang, Hongfei Chen, Bin Liu. Native point defects and oxygen migration of rare earth zirconate and stannate pyrochlores [J]. J. Mater. Sci. Technol., 2021, 73(0): 23-30. | 
| [14] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. | 
| [15] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: I. Model building and fatigue strength prediction [J]. J. Mater. Sci. Technol., 2021, 70(0): 233-249. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
 WeChat
			   WeChat
			