J. Mater. Sci. Technol. ›› 2021, Vol. 73: 23-30.DOI: 10.1016/j.jmst.2020.09.033
• Research Article • Previous Articles Next Articles
Juanli Zhao, Yuchen Liu, Yun Fan, Wei Zhang, Chengguan Zhang, Guang Yang, Hongfei Chen, Bin Liu*()
Received:
2020-07-04
Revised:
2020-07-21
Accepted:
2020-07-26
Published:
2021-05-20
Online:
2020-10-01
Contact:
Bin Liu
About author:
*E-mail address: binliu@shu.edu.cn (B. Liu).Juanli Zhao, Yuchen Liu, Yun Fan, Wei Zhang, Chengguan Zhang, Guang Yang, Hongfei Chen, Bin Liu. Native point defects and oxygen migration of rare earth zirconate and stannate pyrochlores[J]. J. Mater. Sci. Technol., 2021, 73: 23-30.
Compounds | a (Å) | Compounds | a (Å) | ||
---|---|---|---|---|---|
Cal. | Exp. | Cal. | Exp. | ||
La2Zr2O7 | 10.739 | 10.774 [ | La2Sn2O7 | 10.696 | 10.711 [ |
Ce2Zr2O7 | 10.747 | 10.701 [ | Ce2Sn2O7 | 10.697 | 10.642 [ |
Pr2Zr2O7 | 10.690 | 10.658 [ | Pr2Sn2O7 | 10.642 | 10.620 [ |
Nd2Zr2O7 | 10.640 | 10.623 [ | Nd2Sn2O7 | 10.594 | 10.575 [ |
Pm2Zr2O7 | 10.594 | - | Pm2Sn2O7 | 10.545 | - |
Sm2Zr2O7 | 10.559 | 10.575 [ | Sm2Sn2O7 | 10.509 | 10.520 [ |
Eu2Zr2O7 | 10.518 | 10.475 [ | Eu2Sn2O7 | 10.466 | 10.490 [ |
Gd2Zr2O7 | 10.480 | 10.503 [ | Gd2Sn2O7 | 10.430 | 10.458 [ |
Table 1 Calculated and/or experimental lattice parameters a, of rare earth zirconate and stannate pyrochlores.
Compounds | a (Å) | Compounds | a (Å) | ||
---|---|---|---|---|---|
Cal. | Exp. | Cal. | Exp. | ||
La2Zr2O7 | 10.739 | 10.774 [ | La2Sn2O7 | 10.696 | 10.711 [ |
Ce2Zr2O7 | 10.747 | 10.701 [ | Ce2Sn2O7 | 10.697 | 10.642 [ |
Pr2Zr2O7 | 10.690 | 10.658 [ | Pr2Sn2O7 | 10.642 | 10.620 [ |
Nd2Zr2O7 | 10.640 | 10.623 [ | Nd2Sn2O7 | 10.594 | 10.575 [ |
Pm2Zr2O7 | 10.594 | - | Pm2Sn2O7 | 10.545 | - |
Sm2Zr2O7 | 10.559 | 10.575 [ | Sm2Sn2O7 | 10.509 | 10.520 [ |
Eu2Zr2O7 | 10.518 | 10.475 [ | Eu2Sn2O7 | 10.466 | 10.490 [ |
Gd2Zr2O7 | 10.480 | 10.503 [ | Gd2Sn2O7 | 10.430 | 10.458 [ |
μLa | μZr | μO | μCe | μZr | μO | μPr | μZr | μO | |
---|---|---|---|---|---|---|---|---|---|
A: B-&BO2-rich | -1.456 | 0 | -5.410 | -0.952 | 0 | -5.410 | -1.079 | 0 | -5.410 |
B: O-&BO2-rich | -9.571 | -10.820 | 0 | -9.067 | -10.820 | 0 | -9.195 | -10.820 | 0 |
C: O-&A2O3-rich | -9.186 | -11.205 | 0 | -8.712 | -11.176 | 0 | -8.887 | -11.128 | 0 |
D: B-&A2O3-rich | -0.782 | 0 | -5.603 | -0.330 | 0 | -5.589 | -0.542 | 0 | -5.564 |
μNd | μZr | μO | μPm | μZr | μO | μSm | μZr | μO | |
A: B-&BO2-rich | -1.120 | 0 | -5.410 | -1.189 | 0 | -5.410 | -1.196 | 0 | -5.410 |
B: O-&BO2-rich | -9.235 | -10.820 | 0 | -9.300 | -10.820 | 0 | -9.311 | -10.820 | 0 |
C: O-&A2O3-rich | -8.985 | -11.071 | 0 | -9.122 | -11.003 | 0 | -9.191 | -10.941 | 0 |
D: B-&A2O3-rich | -0.681 | 0 | -5.535 | -0.870 | 0 | -5.501 | -0.984 | 0 | -5.471 |
μEu | μZr | μO | μGd | μZr | μO | ||||
A: B-&BO2-rich | -1.232 | 0 | -5.410 | -1.254 | 0 | -5.410 | |||
B: O-&BO2-rich | -9.348 | -10.820 | 0 | -9.369 | -10.820 | 0 | |||
C: O-&A2O3-rich | -9.294 | -10.874 | 0 | -9.401 | -10.789 | 0 | |||
D: B-&A2O3-rich | -1.139 | 0 | -5.437 | -1.309 | 0 | -5.394 | |||
μLa | μSn | μO | μCe | μSn | μO | μPr | μSn | μO | |
A: B-&BO2-rich | -5.367 | 0 | -2.833 | -4.930 | 0 | -2.833 | -5.092 | 0 | -2.833 |
B: O-&BO2-rich | -9.616 | -5.665 | 0 | -9.178 | -5.665 | 0 | -9.341 | -5.665 | 0 |
C: O-&A2O3-rich | -9.186 | -6.095 | 0 | -8.712 | -6.132 | 0 | -8.887 | -6.120 | 0 |
D: B-&A2O3-rich | -4.615 | 0 | -3.047 | -4.113 | 0 | -3.066 | -4.300 | 0 | -3.060 |
μNd | μSn | μO | μPm | μSn | μO | μSm | μSn | μO | |
A: B-&BO2-rich | -5.165 | 0 | -2.833 | -5.265 | 0 | -2.833 | -5.300 | 0 | -2.833 |
B: O-&BO2-rich | -9.414 | -5.6656 | 0 | -9.514 | -5.665 | 0 | -9.546 | -5.665 | 0 |
C: O-&A2O3-rich | -8.985 | -6.095 | 0 | -9.122 | -6.057 | 0 | -9.191 | -6.021 | 0 |
D: B-&A2O3-rich | -4.414 | 0 | -3.047 | -4.579 | 0 | -3.029 | -4.674 | 0 | -3.011 |
μEu | μSn | μO | μGd | μSn | μO | ||||
A: B-&BO2-rich | -5.361 | 0 | -2.833 | -5.405 | 0 | -2.833 | |||
B: O-&BO2-rich | -9.610 | -5.665 | 0 | -9.655 | -5.665 | 0 | |||
C: O-&A2O3-rich | -9.294 | -5.981 | 0 | -9.410 | -5.918 | 0 | |||
D: B-&A2O3-rich | -4.808 | 0 | -2.991 | -4.962 | 0 | -2.959 |
Table 2 Chemical potentials (μ A, μ B and μ O) of A, B, and O at the corner points, A, B, C and D in Fig. 2.
μLa | μZr | μO | μCe | μZr | μO | μPr | μZr | μO | |
---|---|---|---|---|---|---|---|---|---|
A: B-&BO2-rich | -1.456 | 0 | -5.410 | -0.952 | 0 | -5.410 | -1.079 | 0 | -5.410 |
B: O-&BO2-rich | -9.571 | -10.820 | 0 | -9.067 | -10.820 | 0 | -9.195 | -10.820 | 0 |
C: O-&A2O3-rich | -9.186 | -11.205 | 0 | -8.712 | -11.176 | 0 | -8.887 | -11.128 | 0 |
D: B-&A2O3-rich | -0.782 | 0 | -5.603 | -0.330 | 0 | -5.589 | -0.542 | 0 | -5.564 |
μNd | μZr | μO | μPm | μZr | μO | μSm | μZr | μO | |
A: B-&BO2-rich | -1.120 | 0 | -5.410 | -1.189 | 0 | -5.410 | -1.196 | 0 | -5.410 |
B: O-&BO2-rich | -9.235 | -10.820 | 0 | -9.300 | -10.820 | 0 | -9.311 | -10.820 | 0 |
C: O-&A2O3-rich | -8.985 | -11.071 | 0 | -9.122 | -11.003 | 0 | -9.191 | -10.941 | 0 |
D: B-&A2O3-rich | -0.681 | 0 | -5.535 | -0.870 | 0 | -5.501 | -0.984 | 0 | -5.471 |
μEu | μZr | μO | μGd | μZr | μO | ||||
A: B-&BO2-rich | -1.232 | 0 | -5.410 | -1.254 | 0 | -5.410 | |||
B: O-&BO2-rich | -9.348 | -10.820 | 0 | -9.369 | -10.820 | 0 | |||
C: O-&A2O3-rich | -9.294 | -10.874 | 0 | -9.401 | -10.789 | 0 | |||
D: B-&A2O3-rich | -1.139 | 0 | -5.437 | -1.309 | 0 | -5.394 | |||
μLa | μSn | μO | μCe | μSn | μO | μPr | μSn | μO | |
A: B-&BO2-rich | -5.367 | 0 | -2.833 | -4.930 | 0 | -2.833 | -5.092 | 0 | -2.833 |
B: O-&BO2-rich | -9.616 | -5.665 | 0 | -9.178 | -5.665 | 0 | -9.341 | -5.665 | 0 |
C: O-&A2O3-rich | -9.186 | -6.095 | 0 | -8.712 | -6.132 | 0 | -8.887 | -6.120 | 0 |
D: B-&A2O3-rich | -4.615 | 0 | -3.047 | -4.113 | 0 | -3.066 | -4.300 | 0 | -3.060 |
μNd | μSn | μO | μPm | μSn | μO | μSm | μSn | μO | |
A: B-&BO2-rich | -5.165 | 0 | -2.833 | -5.265 | 0 | -2.833 | -5.300 | 0 | -2.833 |
B: O-&BO2-rich | -9.414 | -5.6656 | 0 | -9.514 | -5.665 | 0 | -9.546 | -5.665 | 0 |
C: O-&A2O3-rich | -8.985 | -6.095 | 0 | -9.122 | -6.057 | 0 | -9.191 | -6.021 | 0 |
D: B-&A2O3-rich | -4.414 | 0 | -3.047 | -4.579 | 0 | -3.029 | -4.674 | 0 | -3.011 |
μEu | μSn | μO | μGd | μSn | μO | ||||
A: B-&BO2-rich | -5.361 | 0 | -2.833 | -5.405 | 0 | -2.833 | |||
B: O-&BO2-rich | -9.610 | -5.665 | 0 | -9.655 | -5.665 | 0 | |||
C: O-&A2O3-rich | -9.294 | -5.981 | 0 | -9.410 | -5.918 | 0 | |||
D: B-&A2O3-rich | -4.808 | 0 | -2.991 | -4.962 | 0 | -2.959 |
Fig. 4. (a) Formation energy difference ΔEf of O Frenkel pairs, $\text{V}_{\text{O}}^{\cdot \cdot }$ and $\text{O}_{i}^{''}$, (b) chemical bond broken energy difference and the relaxation energy difference of $\text{V}_{\text{O}}^{\cdot \cdot }$ and $\text{O}_{i}^{''}$.
BO2-rich (line AB in |
---|
$B{{\text{O}}_{2}}+\frac{1}{2}A_{A}^{\times }\leftrightarrow \frac{1}{4}{{A}_{2}}{{B}_{2}}{{\text{O}}_{7}}+\frac{1}{2}B_{A}^{\cdot }+\frac{1}{4}\text{O}_{i}^{''}$ (R1) |
$B{{\text{O}}_{2}}+\frac{4}{7}A_{A}^{\times }\leftrightarrow \frac{2}{7}{{A}_{2}}{{B}_{2}}{{\text{O}}_{7}}+\frac{3}{7}B_{A}^{\cdot }+\frac{1}{7}\text{V}_{A}^{'''}$ (R2) |
$B{{\text{O}}_{2}}+A_{A}^{\times }+\frac{3}{2}\text{O}_{\text{O}}^{\times }\leftrightarrow \frac{1}{2}{{A}_{2}}{{B}_{2}}{{\text{O}}_{7}}+\text{V}_{A}^{'''}+\frac{3}{2}\text{V}_{\text{O}}^{\cdot \cdot }$ (R3) |
$B{{\text{O}}_{2}}+\frac{4}{7}A_{A}^{\times }\leftrightarrow \frac{2}{7}{{A}_{2}}{{B}_{2}}{{\text{O}}_{7}}+\frac{3}{7}B_{i}^{\cdot \cdot \cdot \cdot }+\frac{4}{7}\text{V}_{A}^{'''}$ (R4) |
A2O3-rich (line CD in |
$\frac{1}{2}{{A}_{2}}{{\text{O}}_{3}}+\frac{1}{2}B_{B}^{\times }+\frac{1}{4}\text{O}_{\text{O}}^{\times }\leftrightarrow \frac{1}{4}{{A}_{2}}{{B}_{2}}{{\text{O}}_{7}}+\frac{1}{4}\text{V}_{\text{O}}^{\cdot \cdot }+\frac{1}{2}A_{B}^{'}$ (R5) |
$\frac{1}{2}{{A}_{2}}{{\text{O}}_{3}}+\frac{3}{7}B_{B}^{\times }\leftrightarrow \frac{3}{14}{{A}_{2}}{{B}_{2}}{{\text{O}}_{7}}+\frac{3}{7}A_{B}^{'}+\frac{1}{7}A_{i}^{\cdot \cdot \cdot }$ (R6) |
$\frac{1}{2}{{A}_{2}}{{\text{O}}_{3}}+B_{B}^{\times }+2\text{O}_{\text{O}}^{\times }\leftrightarrow \frac{1}{2}{{A}_{2}}{{B}_{2}}{{\text{O}}_{7}}+\text{V}_{B}^{''''}+2\text{V}_{\text{O}}^{\cdot \cdot }$ (R7) |
$\frac{1}{2}{{A}_{2}}{{\text{O}}_{3}}+\frac{3}{7}B_{B}^{\times }\leftrightarrow \frac{3}{14}{{A}_{2}}{{B}_{2}}{{\text{O}}_{7}}+\frac{3}{7}\text{V}_{B}^{''''}+\frac{4}{7}A_{i}^{\cdot \cdot \cdot }$ (R8) |
Table 3 Defect reactions (R: reaction) of A2B2O7 under BO2-rich and A2O3-rich conditions.
BO2-rich (line AB in |
---|
$B{{\text{O}}_{2}}+\frac{1}{2}A_{A}^{\times }\leftrightarrow \frac{1}{4}{{A}_{2}}{{B}_{2}}{{\text{O}}_{7}}+\frac{1}{2}B_{A}^{\cdot }+\frac{1}{4}\text{O}_{i}^{''}$ (R1) |
$B{{\text{O}}_{2}}+\frac{4}{7}A_{A}^{\times }\leftrightarrow \frac{2}{7}{{A}_{2}}{{B}_{2}}{{\text{O}}_{7}}+\frac{3}{7}B_{A}^{\cdot }+\frac{1}{7}\text{V}_{A}^{'''}$ (R2) |
$B{{\text{O}}_{2}}+A_{A}^{\times }+\frac{3}{2}\text{O}_{\text{O}}^{\times }\leftrightarrow \frac{1}{2}{{A}_{2}}{{B}_{2}}{{\text{O}}_{7}}+\text{V}_{A}^{'''}+\frac{3}{2}\text{V}_{\text{O}}^{\cdot \cdot }$ (R3) |
$B{{\text{O}}_{2}}+\frac{4}{7}A_{A}^{\times }\leftrightarrow \frac{2}{7}{{A}_{2}}{{B}_{2}}{{\text{O}}_{7}}+\frac{3}{7}B_{i}^{\cdot \cdot \cdot \cdot }+\frac{4}{7}\text{V}_{A}^{'''}$ (R4) |
A2O3-rich (line CD in |
$\frac{1}{2}{{A}_{2}}{{\text{O}}_{3}}+\frac{1}{2}B_{B}^{\times }+\frac{1}{4}\text{O}_{\text{O}}^{\times }\leftrightarrow \frac{1}{4}{{A}_{2}}{{B}_{2}}{{\text{O}}_{7}}+\frac{1}{4}\text{V}_{\text{O}}^{\cdot \cdot }+\frac{1}{2}A_{B}^{'}$ (R5) |
$\frac{1}{2}{{A}_{2}}{{\text{O}}_{3}}+\frac{3}{7}B_{B}^{\times }\leftrightarrow \frac{3}{14}{{A}_{2}}{{B}_{2}}{{\text{O}}_{7}}+\frac{3}{7}A_{B}^{'}+\frac{1}{7}A_{i}^{\cdot \cdot \cdot }$ (R6) |
$\frac{1}{2}{{A}_{2}}{{\text{O}}_{3}}+B_{B}^{\times }+2\text{O}_{\text{O}}^{\times }\leftrightarrow \frac{1}{2}{{A}_{2}}{{B}_{2}}{{\text{O}}_{7}}+\text{V}_{B}^{''''}+2\text{V}_{\text{O}}^{\cdot \cdot }$ (R7) |
$\frac{1}{2}{{A}_{2}}{{\text{O}}_{3}}+\frac{3}{7}B_{B}^{\times }\leftrightarrow \frac{3}{14}{{A}_{2}}{{B}_{2}}{{\text{O}}_{7}}+\frac{3}{7}\text{V}_{B}^{''''}+\frac{4}{7}A_{i}^{\cdot \cdot \cdot }$ (R8) |
[1] | M. Lang, F. Zhang, J. Zhang, J. Wang, J. Lian, W.J. Weber, B. Schuster, C. Trautmann, R. Neumann, R.C. Ewing, Nucl Instrum. Methods Phys. Res., Sect. B 268 (2010) 2951-2959. |
[2] |
D.P. Cann, C.A. Randall, T.R. Shrout, Solid State Commun. 7 (1996) 529-534.
DOI URL |
[3] |
M. Valant, P.K. Davies, J. Am. Ceram. Soc. 83 (2000) 147-153.
DOI URL |
[4] |
J.B. Goodenough, R.N. Castellano, J. Solid State Chem. 44 (1982) 108-112.
DOI URL |
[5] |
J. Xu, Y. Zhang, X. Xu, X. Fang, R. Xi, Y. Liu, R. Zheng, X. Wang, ACS Catal. 9 (2019) 4030-4045.
DOI URL |
[6] | A.V. Shlyakhtina, L.G. Shcherbakova, Russ. J. Electrochem. 248 (2012) 1-25. |
[7] |
N.P. Padture, Nat. Mater. 15 (2016) 804-809.
DOI PMID |
[8] |
Z. Li, Y. Xing, S. Watanabe, W. Pan, Ceram. Int. 46 (2020) 9947-9951.
DOI URL |
[9] |
B. Liu, Y. Liu, C. Zhu, H. Xiang, H. Chen, L. Sun, Y. Gao, Y. Zhou, J. Mater. Sci. Technol. 35 (2019) 833-851.
DOI URL |
[10] |
M. Abdou, S.K. Gupta, J.P. Zuniga, Y. Mao, Mater. Chem. Front. 2 (2018) 2201-2211.
DOI URL |
[11] |
V. Sadykov, A. Shlyakhtina, N. Lyskov, E. Sadovskaya, S. Cherepanova, N. Eremeev, V. Skazka, V. Goncharov, E. Kharitonova, Ionics 26 (2020) 4621-4633.
DOI URL |
[12] |
K.E. Sickafus, L. Minervini, R.W. Grimes, J.A. Valdez, M. Ishimaru, F. Li, K.J. McClellan, T. Hartmann, Science 289 (2000) 748-751.
DOI URL |
[13] |
J.P. Zuniga, S.K. Gupta, M. Abdou, H.A. De Santiago, A.A. Puretzky, M.P. Thomas, B.S. Guiton, J. Liu, Y. Mao, J. Mater. Sci. 54 (2019) 12411-12423.
DOI |
[14] |
Y. Li, P.M. Kowalski, G. Beridze, A.R. Birnie, S. Finkeldei, D. Bosbach, Scr. Mater. 107 (2015) 18-21.
DOI URL |
[15] | T. Liao, T. Sasaki, S. Suehara, Z. Sun, J. Mater. Chem. 21 (2011) 3234-3242. |
[16] |
M. Zhao, W. Pan, C. Wan, Z. Qu, Z. Li, J. Yang, J. Eur. Ceram. Soc. 37 (2017) 1-13.
DOI URL |
[17] |
Y. Li, B.P. Uberuaga, C. Jiang, S. Choudhury, J.A. Valdez, M.K. Patel, J. Won, Y.-Q Wang, M Tang, D.J Safarik, D.D Byler, K.J McClellan, I.O Usov, T Hartmann, G Baldinozzi, K.E Sickafus, Phys. Rev. Lett. 108 (2012), 195504.
DOI URL |
[18] |
G. Lan, P. Ou, C. Chen, J. Song, J. Alloys Compd. 826 (2020), 154224.
DOI URL |
[19] |
T. Liao, T. Sasaki, Z. Sun, Phys. Chem. Chem. Phys. 15 (2013) 17553-17559.
DOI URL |
[20] |
Y. Liu, Y. Zhou, D. Jia, J. Zhao, B. Wang, Y. Cui, Q. Li, B. Liu, J. Mater. Sci. Technol. 42 (2020) 212-219.
DOI URL |
[21] |
T. Liao, J. Wang, Y. Zhou, Scr. Mater. 59 (2008) 854-857.
DOI URL |
[22] |
X. Wang, L. Guo, H. Zhang, S. Gong, H. Guo, Ceram. Int. 41 (2015) 12621-12625.
DOI URL |
[23] |
C.R. Stanek, L. Minervini, R.W. Grimes, J. Am. Ceram. Soc. 85 (2002) 2792-2798.
DOI URL |
[24] |
B. Liu, H. Xiao, Y. Zhang, D.S. Aidhy, W.J. Weber, J. Phys. Condens. Matter 25 (2013), 485003.
DOI PMID |
[25] |
W.P. Panero, L. Stixrude, Phys. Rev. B 70 (2004), 054110.
DOI URL |
[26] |
M. Pirzada, R.W. Grimes, L. Minervini, J.F. Maguire, K.E. Sickafus, Solid State Ionics 140 (2001) 201-208.
DOI URL |
[27] |
D.S.D. Gunn, N.L. Allan, H. Foxhall, J.H. Harding, J.A. Purton, W. Smith, M.J. Stein, I.T. Todorova, K.P. Travis, J. Mater. Chem. 22 (2012) 4675-4680.
DOI URL |
[28] |
Y. Li, P.M. Kowalski, J. Nucl. Mater. 505 (2018) 255-261.
DOI URL |
[29] |
P.E. Blöchl, Phys. Rev. B 50 (1994) 17953-17979.
DOI URL |
[30] |
G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758.
DOI URL |
[31] |
G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15-50.
DOI URL |
[32] |
J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100 (2008), 136406.
PMID |
[33] | G. Henkelman, B.P. Uberuaga, H. Jónsson, J. Chem. Phys. 113 (2000) 9901-9904. |
[34] |
N.A. Dhas, K.C. Patil, J. Mater. Chem. 3 (1993) 1289-1294.
DOI URL |
[35] |
B.J. Kennedy, B.A. Hunter, C.J. Howard, J. Solid State Chem. 130 (1997) 58-65.
DOI URL |
[36] |
M. Powell, L.D. Sanjeewa C.D. McMillen, K.A. Ross, C.L. Sarkis, J.W. Kolis, Cryst. Growth Des. 19 (2019) 4920-4926.
DOI URL |
[37] |
B. Liu, J. Wang, F. Li, Y. Zhou, Acta Mater. 58 (2010) 4369-4377.
DOI URL |
[38] |
F.A. Kröger, H.J. Vink, Solid State Phys. 3 (1956) 307-435.
DOI URL |
[39] |
B. Liu, V.R. Cooper, Y. Zhang, W.J. Weber, Acta Mater. 90 (2015) 394-399.
DOI URL |
[40] |
J. Feng, B. Xiao, C. Wan, Z. Qu, Z. Huang, J. Chen, R. Zhou, W. Pan, Acta Mater. 59 (2011) 1742-1760.
DOI URL |
[41] |
L. Yang, C. Zhu, Y. Sheng, H. Nian, Q. Li, P. Song, W. Lu, J. Yang, B. Liu, J. Am. Ceram. Soc. 102 (2019) 2830-2840.
DOI |
[42] |
J. Feng, B. Xiao, R. Zhou, W. Pan, Scr. Mater. 69 (2013) 401-404.
DOI URL |
[43] |
J. Xi, H. Xu, Y. Zhang, W.J. Weber, Phys. Chem. Chem. Phys. 19 (2017) 6264-6273.
DOI URL |
[44] | M.P. van Dijk, K.J. de Vries, A.J. Burggraaf, Solid State Ionics 9 (1983) 913-919. |
[45] |
A.J. Burggraaf, T. van Dijk, M.J. Veerkerk, Solid State Ionics 5 (1981) 519-522.
DOI URL |
[46] |
B. Liu, H. Xiao, Y. Zhang, D.S. Aidhy, W.J. Weber, Comput. Mater. Sci. 92 (2014) 22-27.
DOI URL |
[47] |
R. Krishnamurthy, Y.-G Yoon, D.J Srolovitz, R Car, J. Am. Ceram. Soc. 87 (2004) 1821-1830.
DOI URL |
[48] | B. Liu, J. Wang, F. Li, J. Wang, Y. Zhou, J. Am. Ceram. Soc. 95 (2012) 1093-1099. |
[49] |
B. Liu, J. Wang, F. Li, L. Sun, J. Wang, Y. Zhou, J. Am. Ceram. Soc. 96 (2013) 3304-3311.
DOI URL |
[50] | Z. Sun, M. Li, Y. Zhou, J. Am. Ceram. Soc. 29 (2009) 551-557. |
[51] |
Z. Sun, M. Li, Y. Zhou, Int. Mater. Rev. 59 (2014) 357-383.
DOI URL |
[52] |
M. Kumar, I.A. Raj, R. Pattabiraman, Mater. Chem. Phys. 108 (2008) 102-108.
DOI URL |
[53] |
F. Zhong, J. Zhao, L. Shi, G. Cai, Y. Zheng, Y. Zheng, Y. Xiao, L. Jiang, Electrochim. Acta 293 (2019) 338-347.
DOI URL |
[1] | Chun Li, Chaolong Ren, Yue Ma, Jian He, Hongbo Guo. Effects of rare earth oxides on microstructures and thermo-physical properties of hafnia ceramics [J]. J. Mater. Sci. Technol., 2021, 72(0): 144-153. |
[2] | Hao Liu, Baomin Fan, Guifeng Fan, Yucong Ma, Hua Hao, Wen Zhang. Anti-corrosive mechanism of poly (N-ethylaniline)/sodium silicate electrochemical composites for copper: Correlated experimental and in-silico studies [J]. J. Mater. Sci. Technol., 2021, 72(0): 202-216. |
[3] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: II. Parameter analysis and fatigue strength improvement [J]. J. Mater. Sci. Technol., 2021, 70(0): 250-267. |
[4] | Huhu Su, Xinzhe Zhou, Shijian Zheng, Hengqiang Ye, Zhiqing Yang. Atomic-resolution studies on reactions between basal dislocations and $\left\{ 10\bar{1}2 \right\}$ coherent twin boundaries in a Mg alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 28-35. |
[5] | Kaiming Cheng, Jiaxing Sun, Huixia Xu, Jin Wang, Chengwei Zhan, Reza Ghomashchi, Jixue Zhou, Shouqiu Tang, Lijun Zhang, Yong Du. Diffusion growth of ϕ ternary intermetallic compound in the Mg-Al-Zn alloy system: In-situ observation and modeling [J]. J. Mater. Sci. Technol., 2021, 60(0): 222-229. |
[6] | Tong Yang, Yi Kong, Jiangbo Lu, Zhenjun Zhang, Mingjun Yang, Ning Yan, Kai Li, Yong Du. Self-accommodated defect structures modifying the growth of Laves phase [J]. J. Mater. Sci. Technol., 2021, 62(0): 203-213. |
[7] | J.X. Hou, X.Y. Li, K. Lu. Orientation dependence of mechanically induced grain boundary migration in nano-grained copper [J]. J. Mater. Sci. Technol., 2021, 68(0): 30-34. |
[8] | Huabei Peng, Dian Wang, Qi Liao, Yuhua Wen. Degeneration and rejuvenation of shape memory effect associated with the precipitation of coherent nano-particles in a Co-Ni-Si shape memory alloy [J]. J. Mater. Sci. Technol., 2021, 76(0): 150-155. |
[9] | Shijun Zhao. Defect properties in a VTaCrW equiatomic high entropy alloy (HEA) with the body centered cubic (bcc) structure [J]. J. Mater. Sci. Technol., 2020, 44(0): 133-139. |
[10] | Jing Xu, Zhouping Wang, Yongfa Zhu. Highly efficient visible photocatalytic disinfection and degradation performances of microtubular nanoporous g-C3N4 via hierarchical construction and defects engineering [J]. J. Mater. Sci. Technol., 2020, 49(0): 133-143. |
[11] | Zhuowei Tan, Liuyang Yang, Dalei Zhang, Zhenbo Wang, Frank Cheng, Mingyang Zhang, Youhai Jin. Development mechanism of internal local corrosion of X80 pipeline steel [J]. J. Mater. Sci. Technol., 2020, 49(0): 186-201. |
[12] | Zhu Hui, Guo Dagang, Zang Hang, A.H. Hanaor Dorian, Yu Sen, Schmidt Franziska, Xu Kewei. Enhancement of hydroxyapatite dissolution through structure modification by Krypton ion irradiation [J]. J. Mater. Sci. Technol., 2020, 38(0): 148-158. |
[13] | Zhang Hui, Hu Tao, Wang Xiaohui, Zhou Yanchun. Structural defects in MAX phases and their derivative MXenes: A look forward [J]. J. Mater. Sci. Technol., 2020, 38(0): 205-220. |
[14] | Hongyu Wu, Dong Zhang, Biaobiao Yang, Chao Chen, Yunping Li, Kechao Zhou, Liang Jiang, Ruiping Liu. Microstructural evolution and defect formation in a powder metallurgy nickel-based superalloy processed by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 36(0): 7-17. |
[15] | Shihao Li, Ning Gao, Weizhong Han. In-situ study of initiation and extension of nano-thick defect-free channels in irradiated nickel [J]. J. Mater. Sci. Technol., 2020, 58(0): 114-119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||