J. Mater. Sci. Technol. ›› 2021, Vol. 70: 233-249.DOI: 10.1016/j.jmst.2020.08.038
• Research Article • Previous Articles Next Articles
R. Liu, P. Zhang*(), Z.J. Zhang, B. Wang, Z.F. Zhang*(
)
Received:
2020-08-16
Accepted:
2020-08-24
Published:
2021-04-20
Online:
2021-04-15
Contact:
P. Zhang,Z.F. Zhang
About author:
zhfzhang@imr.ac.cn(Z.F. Zhang).R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: I. Model building and fatigue strength prediction[J]. J. Mater. Sci. Technol., 2021, 70: 233-249.
Fig. 1. Deviation from the linear trend of the tensile strength--fatigue strength relation and possible underlying mechanisms. (a) Typical tensile strength--fatigue strength relation of steels [9]. (b) Tensile strength--fatigue strength relations of various metallic materials with different fatigue damage mechanism transitions: (b1) 40CrNiMo [7]; (b2) Cu-5Al [6,28,29]; (b3) Cu-15Al [6,28,29]; (b4) QBe2 [7,41]. (c) Influences of strength and plasticity restrictions to the fatigue strength and the non-monotonic changing trend of tensile strength--fatigue strength relation caused by the transition of dominant restrictions.
Materials | Microstructures | Yield strength, σy (MPa) | Tensile strength, σb (MPa) | Hardening capacity, (σb-σy)/σb | Fatigue strength, σw (MPa) | Source/Ref. |
---|---|---|---|---|---|---|
Cu | CG | 43 | 210 | 0.795 | 50 | [ |
UFG-FSP | 302 | 333 | 0.093 | 120 | [ | |
UFG-ECAP | 374 | 422 | 0.114 | 100 | [ | |
UFG-HPT | 391 | 481 | 0.187 | 100 | [ | |
Cu-5at.%Al | CG | 66 | 257 | 0.743 | 75 | [ |
FG-CR + A500 | 150 | 296 | 0.493 | 120 | [ | |
UFG-CR + A425 | 213 | 321 | 0.336 | 155 | [ | |
MG-CR + A350 | 295 | 361 | 0.183 | 160 | [ | |
MG-CR + A325 | 356 | 418 | 0.148 | 160 | [ | |
MG-CR + A300 | 533 | 595 | 0.104 | 170 | [ | |
NG-CR | 612 | 675 | 0.093 | 210 | [ | |
NG-ECAP | 467 | 573 | 0.185 | 170 | [ | |
NG-HPT | 613 | 776 | 0.210 | 150 | [ | |
Cu-11at.%Al | CG | 82 | 337 | 0.757 | 100 | [ |
FG-CR + A500 | 226 | 448 | 0.496 | 190 | [ | |
UFG-CR + A400 | 302 | 482 | 0.373 | 210 | [ | |
NG-ECAP | 619 | 770 | 0.196 | 190 | [ | |
Cu-15at.%Al | CG | 90 | 396 | 0.773 | 110 | [ |
FG-CR + A500 | 310 | 547 | 0.433 | 250 | [ | |
UFG-CR + A400 | 395 | 592 | 0.333 | 280 | [ | |
NG-HPT | 734 | 942 | 0.221 | 200 | [ |
Table 1 Tensile and fatigue properties of pure Cu and Cu-Al alloys with different microstructures.
Materials | Microstructures | Yield strength, σy (MPa) | Tensile strength, σb (MPa) | Hardening capacity, (σb-σy)/σb | Fatigue strength, σw (MPa) | Source/Ref. |
---|---|---|---|---|---|---|
Cu | CG | 43 | 210 | 0.795 | 50 | [ |
UFG-FSP | 302 | 333 | 0.093 | 120 | [ | |
UFG-ECAP | 374 | 422 | 0.114 | 100 | [ | |
UFG-HPT | 391 | 481 | 0.187 | 100 | [ | |
Cu-5at.%Al | CG | 66 | 257 | 0.743 | 75 | [ |
FG-CR + A500 | 150 | 296 | 0.493 | 120 | [ | |
UFG-CR + A425 | 213 | 321 | 0.336 | 155 | [ | |
MG-CR + A350 | 295 | 361 | 0.183 | 160 | [ | |
MG-CR + A325 | 356 | 418 | 0.148 | 160 | [ | |
MG-CR + A300 | 533 | 595 | 0.104 | 170 | [ | |
NG-CR | 612 | 675 | 0.093 | 210 | [ | |
NG-ECAP | 467 | 573 | 0.185 | 170 | [ | |
NG-HPT | 613 | 776 | 0.210 | 150 | [ | |
Cu-11at.%Al | CG | 82 | 337 | 0.757 | 100 | [ |
FG-CR + A500 | 226 | 448 | 0.496 | 190 | [ | |
UFG-CR + A400 | 302 | 482 | 0.373 | 210 | [ | |
NG-ECAP | 619 | 770 | 0.196 | 190 | [ | |
Cu-15at.%Al | CG | 90 | 396 | 0.773 | 110 | [ |
FG-CR + A500 | 310 | 547 | 0.433 | 250 | [ | |
UFG-CR + A400 | 395 | 592 | 0.333 | 280 | [ | |
NG-HPT | 734 | 942 | 0.221 | 200 | [ |
Fig. 2. Preliminary model construction in Cu and Cu-Al alloys. (a) Fatigue strength of Cu and Cu-Al alloys (Cu-5Al, Cu-11Al and Cu-15Al) changing with the average grain size (CG, FG, NG). (b) Trade-off relation between σy and (σb-σy)/σb, corresponding to strength and plasticity respectively. (c) The linear σw/σy--σy/σb relation of Cu and Cu-Al alloys, within an error about ±10 %. Details of the experimental results are in Ref. [6,28,29].
Fig. 3. Illustration of a restrictive relation between the two ratios of the Y-T-F model: σw /σy, which reflects the extent of fatigue damage localization; σy /σb, which reflects the resistance to deformation localization.
Fig. 4. Generality verification of the Y-T-F model: the σw/σy--σy/σb relation in different metallic materials. (a) Steels [9,[31], [32], [33], [34], [35], [36], [37], [38]]; (b) copper alloys [6,9,18,[28], [29], [30],[39], [40], [41]]; (c) aluminum alloys [9,42,43]; (d) magnesium alloys [9]; the data generally show good linear relations.
Fig. 5. Generality verification of the Y-T-F model: the σw/σy--σy/σb relation in different loading conditions. (a) Different fatigue lives Nf (105,106,107) [9,42]; (b) different loading ratios R (-1,0) [34,36,38]; (c) different loading directions (R.B.: rotating bending; Ax.: tension-compression) [9,31]; the data generally keep good linear relations despite the changing conditions.
Type | Materials | Loading condition | ω | C | R-square | Source/Ref. |
---|---|---|---|---|---|---|
Carbon Steel | Low carbon steels | R.B., R=-1, fatigue limit | 0.30 | 0.91 | 0.96 | [ |
Medium & high carbon steels | R.B., R=-1, fatigue limit | 1.31 | 1.61 | 0.89 | [ | |
Alloy Steel | SPCC&SPRC-YJ Chang | Ax., R = 0, Nf=107 | 0.63 | 1.50 | 0.99 | [ |
Si-Mn steel-Hankins | R.B., R=-1, Nf =107 | 1.08 | 1.50 | 0.81 | [ | |
En24& En36-Bardgett | 0.76 | 1.33 | 0.94 | [ | ||
En56~ En58-Firth | 0.94 | 1.38 | 0.83 | [ | ||
Pre-strained Steel | TWIP Steel-B Wang | Ax., R=-1, Nf =107 | 1.28 | 1.28 | 0.99 | [ |
TWIP Steel-YW Kim | Ax., R = 0.1, Nf = 2 × 106 | 0.74 | 1.37 | 0.98 | [ | |
SAE 1010 steel-MT Yu | Ax., R=-1, Nf = 4 × 106 | 1.12 | 1.49 | 0.81 | [ | |
Cu Alloy | Cu-Al-XH An & R Liu & P. Xue | Ax., R=-1, Nf =107 | 0.83 | 1.22 | 0.98 | [ |
Cu-Zn-ZJ Zhang | 0.34 | 0.75 | 0.91 | [ | ||
Phosphor bronze-Anderson | 0.50 | 1.14 | 0.96 | [ | ||
QBe2-JC Pang | Ax., R=-1, Nf =107 | 0.56 | 0.99 | 0.93 | [ | |
Al Alloy | Wrought Al-Banbury | R.B., R=-1, Nf =107 | 0.55 | 1.09 | 0.83 | [ |
Wrought Al-Bucks | 0.56 | 1.03 | 0.82 | [ | ||
Wrought Al-ASM | R.B., R=-1, Nf = 5 × 108 | 0.58 | 1.17 | 0.96 | [ | |
Cast Al-Bucks | R.B., R=-1, Nf =107 | 0.74 | 1.13 | 0.46 | [ | |
Mg Alloy | Mg 1-Magnesium Elektron | R.B., R=-1, Nf = 5 × 107 | 0.84 | 1.13 | 0.78 | [ |
Mg 2-Magnesium Elektron | 1.31 | 1.64 | 0.84 | [ | ||
Mg 3-J Stone | 0.70 | 1.09 | 0.34 | [ |
Table 2 The parameter values of the Y-T-F model for some metallic materials.
Type | Materials | Loading condition | ω | C | R-square | Source/Ref. |
---|---|---|---|---|---|---|
Carbon Steel | Low carbon steels | R.B., R=-1, fatigue limit | 0.30 | 0.91 | 0.96 | [ |
Medium & high carbon steels | R.B., R=-1, fatigue limit | 1.31 | 1.61 | 0.89 | [ | |
Alloy Steel | SPCC&SPRC-YJ Chang | Ax., R = 0, Nf=107 | 0.63 | 1.50 | 0.99 | [ |
Si-Mn steel-Hankins | R.B., R=-1, Nf =107 | 1.08 | 1.50 | 0.81 | [ | |
En24& En36-Bardgett | 0.76 | 1.33 | 0.94 | [ | ||
En56~ En58-Firth | 0.94 | 1.38 | 0.83 | [ | ||
Pre-strained Steel | TWIP Steel-B Wang | Ax., R=-1, Nf =107 | 1.28 | 1.28 | 0.99 | [ |
TWIP Steel-YW Kim | Ax., R = 0.1, Nf = 2 × 106 | 0.74 | 1.37 | 0.98 | [ | |
SAE 1010 steel-MT Yu | Ax., R=-1, Nf = 4 × 106 | 1.12 | 1.49 | 0.81 | [ | |
Cu Alloy | Cu-Al-XH An & R Liu & P. Xue | Ax., R=-1, Nf =107 | 0.83 | 1.22 | 0.98 | [ |
Cu-Zn-ZJ Zhang | 0.34 | 0.75 | 0.91 | [ | ||
Phosphor bronze-Anderson | 0.50 | 1.14 | 0.96 | [ | ||
QBe2-JC Pang | Ax., R=-1, Nf =107 | 0.56 | 0.99 | 0.93 | [ | |
Al Alloy | Wrought Al-Banbury | R.B., R=-1, Nf =107 | 0.55 | 1.09 | 0.83 | [ |
Wrought Al-Bucks | 0.56 | 1.03 | 0.82 | [ | ||
Wrought Al-ASM | R.B., R=-1, Nf = 5 × 108 | 0.58 | 1.17 | 0.96 | [ | |
Cast Al-Bucks | R.B., R=-1, Nf =107 | 0.74 | 1.13 | 0.46 | [ | |
Mg Alloy | Mg 1-Magnesium Elektron | R.B., R=-1, Nf = 5 × 107 | 0.84 | 1.13 | 0.78 | [ |
Mg 2-Magnesium Elektron | 1.31 | 1.64 | 0.84 | [ | ||
Mg 3-J Stone | 0.70 | 1.09 | 0.34 | [ |
Fig. 6. Accuracy verification of the Y-T-F model: comparisons between the experimental tested fatigue strength (σw-experimental) and corresponding calculated value (σw-calculated) predicted by (a) Model-1 (Eq. (3)) [19]; (b) Model-2 (Eq. (4)) [20]; (c) Model-3 (Eq. (5)) [20]; (d) Y-T-F model (Eq. (2)). All the comparisons are based on the same group of experimental data for SAE-1141 steel, with the error bands of ±10 % displayed as dashed lines.
States | σy (MPa) | σb (MPa) | σw-Exp (MPa) | σw-Mod1 (MPa) | Error-Mod1 (%) | σw-Mod2 (MPa) | Error-Mod2 (%) | σw-Mod3 (MPa) | Error-Mod2 (%) | σw-YTF (MPa) | Error-YTF (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 457 | 771 | 286 | 358 | 25.17 | 262 | -8.39 | 281 | -1.75 | 299 | 4.55 |
A2 | 814 | 925 | 433 | 420 | -3.00 | 353 | -18.48 | 332 | -23.33 | 421 | -2.77 |
A3 | 418 | 695 | 276 | 324 | 17.39 | 251 | -9.06 | 254 | -7.97 | 272 | -1.45 |
A4 | 602 | 802 | 342 | 367 | 7.31 | 293 | -14.33 | 289 | -15.50 | 348 | 1.75 |
A5 | 450 | 725 | 287 | 332 | 15.68 | 274 | -4.53 | 262 | -8.71 | 288 | 0.35 |
A6 | 610 | 797 | 332 | 369 | 11.14 | 296 | -10.84 | 290 | -12.65 | 349 | 5.12 |
A7 | 493 | 789 | 296 | 355 | 19.93 | 293 | -1.01 | 281 | -5.07 | 315 | 6.42 |
Table 3 Comparisons of the fatigue strength calculation results based on the Y-T-F model and another three models (Data of SAE-1141 steel).
States | σy (MPa) | σb (MPa) | σw-Exp (MPa) | σw-Mod1 (MPa) | Error-Mod1 (%) | σw-Mod2 (MPa) | Error-Mod2 (%) | σw-Mod3 (MPa) | Error-Mod2 (%) | σw-YTF (MPa) | Error-YTF (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 457 | 771 | 286 | 358 | 25.17 | 262 | -8.39 | 281 | -1.75 | 299 | 4.55 |
A2 | 814 | 925 | 433 | 420 | -3.00 | 353 | -18.48 | 332 | -23.33 | 421 | -2.77 |
A3 | 418 | 695 | 276 | 324 | 17.39 | 251 | -9.06 | 254 | -7.97 | 272 | -1.45 |
A4 | 602 | 802 | 342 | 367 | 7.31 | 293 | -14.33 | 289 | -15.50 | 348 | 1.75 |
A5 | 450 | 725 | 287 | 332 | 15.68 | 274 | -4.53 | 262 | -8.71 | 288 | 0.35 |
A6 | 610 | 797 | 332 | 369 | 11.14 | 296 | -10.84 | 290 | -12.65 | 349 | 5.12 |
A7 | 493 | 789 | 296 | 355 | 19.93 | 293 | -1.01 | 281 | -5.07 | 315 | 6.42 |
Fig. 7. Accuracy verification of the Y-T-F model: comparisons between the experimental tested fatigue strength (σw-experimental) [6,9,18,[31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43]] and the Y-T-F model predicted results (σw-calculated), which covers various metallic materials and loading conditions; the error bands of ±10% displayed as dashed lines.
Fig. 8. Illustration of the main steps of fatigue strength prediction by the Y-T-F model. (a) Step 1. tensile test; (b) step 2. selective fatigue test; (c) step 3. linear fitting; (d) step 4. fatigue strength calculation.
Fig. 9. Examples for fatigue strength prediction by the Y-T-F model. (a) Pre-stretched TWIP steel [36]; (b) P/M diffusion alloyed-steel [43]; (c) 1060-H1x Al alloy [43]; (d) 5052-H3x Al alloy [43]. (a1, b1, c1, d1) the σw/σy--σy/σb relations; (a2, b2, c2, d2) comparisons between the experimental tested fatigue strength (σw-experimental) and corresponding calculated data (σw-calculated), with the error bands of ±10 %. Filled points: experimental data; hollow points: calculated data; half-filled points: verified data.
Materials | States | σy (MPa) | σb (MPa) | σw-Exp (MPa) | YTF parameters | σw-YTF (MPa) | Error (%) |
---|---|---|---|---|---|---|---|
Fe-30Mn-0.9C TWIP steel [ | Pre-0% | 350 | 960 | 250 | C = 1.27, ω = 1.27 | 250 | -- |
Pre-30 % | 940 | 1200 | 350 | 361 | 3.26 | ||
Pre-60 % | 1370 | 1460 | 360 | 360 | -- | ||
Pre-70 % | 1570 | 1610 | 380 | 367 | -3.51 | ||
P/M diffusion alloyed-steel [ | FD-0205-45 | 360 | 470 | 170 | C = 1.33, ω = 0.94 | 170 | -- |
FD-0205-50 | 390 | 540 | 200 | 200 | 0.07 | ||
FD-0205-55 | 420 | 610 | 220 | 229 | 4.00 | ||
FD-0205-60 | 460 | 690 | 260 | 260 | -- | ||
1060 Al alloy [ | 1060-O | 30 | 70 | 20 | C = 1.67, ω=1.87 | 20 | -- |
1060-H12 | 75 | 85 | 30 | 32 | 5.93 | ||
1060-H14 | 90 | 95 | 35 | 35 | -- | ||
1060-H16 | 105 | 110 | 45 | 40 | -10.16 | ||
1060-H18 | 125 | 130 | 45 | 48 | 5.92 | ||
5052 Al alloy [ | 5052-O | 90 | 195 | 110 | C = 1.20, ω = 0.60 | 110 | -- |
5052-H32 | 195 | 230 | 115 | 114 | -1.13 | ||
5052-H34 | 215 | 260 | 125 | 133 | 6.24 | ||
5052-H36 | 240 | 275 | 130 | 130 | -- | ||
5052-H38 | 255 | 290 | 140 | 135 | -3.29 |
Table 4 Cases of fatigue strength prediction based on the Y-T-F model.
Materials | States | σy (MPa) | σb (MPa) | σw-Exp (MPa) | YTF parameters | σw-YTF (MPa) | Error (%) |
---|---|---|---|---|---|---|---|
Fe-30Mn-0.9C TWIP steel [ | Pre-0% | 350 | 960 | 250 | C = 1.27, ω = 1.27 | 250 | -- |
Pre-30 % | 940 | 1200 | 350 | 361 | 3.26 | ||
Pre-60 % | 1370 | 1460 | 360 | 360 | -- | ||
Pre-70 % | 1570 | 1610 | 380 | 367 | -3.51 | ||
P/M diffusion alloyed-steel [ | FD-0205-45 | 360 | 470 | 170 | C = 1.33, ω = 0.94 | 170 | -- |
FD-0205-50 | 390 | 540 | 200 | 200 | 0.07 | ||
FD-0205-55 | 420 | 610 | 220 | 229 | 4.00 | ||
FD-0205-60 | 460 | 690 | 260 | 260 | -- | ||
1060 Al alloy [ | 1060-O | 30 | 70 | 20 | C = 1.67, ω=1.87 | 20 | -- |
1060-H12 | 75 | 85 | 30 | 32 | 5.93 | ||
1060-H14 | 90 | 95 | 35 | 35 | -- | ||
1060-H16 | 105 | 110 | 45 | 40 | -10.16 | ||
1060-H18 | 125 | 130 | 45 | 48 | 5.92 | ||
5052 Al alloy [ | 5052-O | 90 | 195 | 110 | C = 1.20, ω = 0.60 | 110 | -- |
5052-H32 | 195 | 230 | 115 | 114 | -1.13 | ||
5052-H34 | 215 | 260 | 125 | 133 | 6.24 | ||
5052-H36 | 240 | 275 | 130 | 130 | -- | ||
5052-H38 | 255 | 290 | 140 | 135 | -3.29 |
Fig. 10. Linear relations between tensile strength σb and yield strength σy. (a) Cu and Cu-Al alloys [6,51]; (b) engineering materials including 304 stainless steel [52], Cu-Nb alloy [53] and SAE 1010 steel [38].
Fig. 11. Examples of the Y-T-F model derived Y-F relation. (a) QBe alloy [41] with a?C<1; (b) Al alloy [9,42] with a?C≈1; (c) SPCC steel [34] with a?C>1. (a1, b1, c1) the linear σw/σy--σy/σb relations; (a2, b2, c2) the linear σb--σy relations; (a3, b3, c3) the σw--σy trends.
Fig. 12. Different changing trends of the Y-F relation with the value of a?C. (a) Y-F tendency changing with the value of C; (b) Y-F tendency changing with the value of a; (c) values of C, a and a?C changing with Al content in Cu and Cu-Al alloys; (d) Y-F relations of Cu and Cu-Al alloys (a?C<1), and the virtual trends when a?C=1 and a?C>1.
Fig. 13. Illustrations of the formation of different Y-F trends. (a) a?C<1, the rise and fall trend; (b) a?C=1, rise up to the horizontal asymptote; (c) a?C>1, rise monotonically till the up limit strength.
Fig. 14. Examples for fatigue strength prediction through the Y-F relation. (a) SAE-1141 steel [49]; (b) P/M Fe-Ni and Ni-steel [43]; (c) 202x-Tx Al alloy [43]; (d) 3004-H3x Al alloy [43]. (a1, b1, c1) the linear σw/σy--σy/σb relations; (a2, b2, c2) the linear σb--σy relations; (a3, b3, c3) the σw--σy trends, with the error bands of ±10 %. Filled points: experimental data; hollow points: calculated data; half-filled points: verified data.
Materials | States | σy (MPa) | σb (MPa) | σw-Exp (MPa) | YF parameters | σw-YF (MPa) | Error (%) |
---|---|---|---|---|---|---|---|
SAE-1141 steel [ | A1 | 457 | 771 | 286 | C = 1.96, ω = 2.09, a = 0.58, σ0 = 449 MPa | 289 | 0.95 |
A2 | 814 | 925 | 433 | 419 | -3.12 | ||
A3 | 418 | 695 | 276 | 271 | -1.75 | ||
A4 | 602 | 802 | 342 | 347 | 1.60 | ||
A5 | 450 | 725 | 287 | 286 | -0.48 | ||
A6 | 610 | 797 | 332 | 350 | 5.56 | ||
A7 | 493 | 789 | 296 | 304 | 2.77 | ||
P/M Fe-Ni / Ni-steel [ | FN-0208-30 | 240 | 310 | 110 | C = 1.49, ω = 1.55, a = 2.40, σ0 = 266 MPa | -- | -- |
FN-0208-35 | 280 | 380 | 140 | 144 | 2.56 | ||
FN-0208-40 | 310 | 480 | 170 | 167 | -1.66 | ||
FN-0208-45 | 340 | 550 | 190 | -- | -- | ||
FN-0208-50 | 380 | 620 | 220 | 220 | -0.14 | ||
2024/2025 Al alloy [ | 2024-O | 75 | 185 | 90 | C = 0.85, ω = 0.37, a = 1.14, σ0 = 99.5 MPa | -- | -- |
2024-T3 | 345 | 485 | 140 | 141 | 0.46 | ||
2024-T4 | 325 | 470 | 140 | -- | -- | ||
2024-T361 | 395 | 495 | 125 | 142 | 13.22 | ||
2025-T6 | 255 | 400 | 125 | 136 | 8.71 | ||
3004 Al alloy [ | 3004-H32 | 170 | 215 | 105 | C = 1.21, ω = 0.67, a = 0.75, σ0 = 87.5 MPa | -- | -- |
3004-H34 | 200 | 240 | 105 | 108 | 3.12 | ||
3004-H36 | 230 | 260 | 110 | -- | -- | ||
3004-H38 | 250 | 285 | 110 | 110 | 0.44 |
Table 5 Cases of fatigue strength prediction based on the Y-F model.
Materials | States | σy (MPa) | σb (MPa) | σw-Exp (MPa) | YF parameters | σw-YF (MPa) | Error (%) |
---|---|---|---|---|---|---|---|
SAE-1141 steel [ | A1 | 457 | 771 | 286 | C = 1.96, ω = 2.09, a = 0.58, σ0 = 449 MPa | 289 | 0.95 |
A2 | 814 | 925 | 433 | 419 | -3.12 | ||
A3 | 418 | 695 | 276 | 271 | -1.75 | ||
A4 | 602 | 802 | 342 | 347 | 1.60 | ||
A5 | 450 | 725 | 287 | 286 | -0.48 | ||
A6 | 610 | 797 | 332 | 350 | 5.56 | ||
A7 | 493 | 789 | 296 | 304 | 2.77 | ||
P/M Fe-Ni / Ni-steel [ | FN-0208-30 | 240 | 310 | 110 | C = 1.49, ω = 1.55, a = 2.40, σ0 = 266 MPa | -- | -- |
FN-0208-35 | 280 | 380 | 140 | 144 | 2.56 | ||
FN-0208-40 | 310 | 480 | 170 | 167 | -1.66 | ||
FN-0208-45 | 340 | 550 | 190 | -- | -- | ||
FN-0208-50 | 380 | 620 | 220 | 220 | -0.14 | ||
2024/2025 Al alloy [ | 2024-O | 75 | 185 | 90 | C = 0.85, ω = 0.37, a = 1.14, σ0 = 99.5 MPa | -- | -- |
2024-T3 | 345 | 485 | 140 | 141 | 0.46 | ||
2024-T4 | 325 | 470 | 140 | -- | -- | ||
2024-T361 | 395 | 495 | 125 | 142 | 13.22 | ||
2025-T6 | 255 | 400 | 125 | 136 | 8.71 | ||
3004 Al alloy [ | 3004-H32 | 170 | 215 | 105 | C = 1.21, ω = 0.67, a = 0.75, σ0 = 87.5 MPa | -- | -- |
3004-H34 | 200 | 240 | 105 | 108 | 3.12 | ||
3004-H36 | 230 | 260 | 110 | -- | -- | ||
3004-H38 | 250 | 285 | 110 | 110 | 0.44 |
Fig. 15. Examples for the maximum fatigue strength prediction through the Y-F relation (a?C<1). Red line: the predicted Y-T relation; blue line: the trade-off σy--(σb-σy)/σb relation; yellow point: the maximum value of fatigue strength σwmax (point on red line) and corresponding critical yield strength σycri (point on blue line). (a) Cu; (b) Cu-5at.%Al; (c) Cu-11at.%Al; (d) Cu-15at.%Al; detailed information of the data are in Ref. [6,30,51].
[1] | S. Suresh, Fatigue of Materials, Cambridge University Press 1998. |
[2] | S.B. Zhao, Anti-Fatigue Design Manual, China Machine Press, Beijing 2015. |
[3] | A.S. Argon, Strengthening Mechanisms in Crystal Plasticity, Oxford University Press, New York 2008. |
[4] |
A.P. Zhilyaev, T.G. Langdon, Prog. Mater. Sci., 53(2008), pp. 893-979.
DOI URL |
[5] |
L. Lu, X. Chen, X. Huang, K. Lu, Science, 323(2009), pp. 607-610.
DOI URL |
[6] |
R. Liu, et al., Acta Mater., 144(2018), pp. 613-626.
DOI URL |
[7] |
J.C. Pang, S.X. Li, Z.G. Wang, Z.F. Zhang, Mater. Sci. Eng. A, 564(2013), pp. 331-341.
DOI URL |
[8] | A.Z. Wöhler, Versuche über Biegung und Verdrehung von Eisbahnwagen - Achsen wärend der Fahrt, Z.Bauw., 8(1858), pp. 641-652. |
[9] | P.G. Forrest, Fatigue of Metals, Pergamon Press, Oxford 1962. |
[10] |
S.X. Li, Int. Mater. Rev., 57(2012), pp. 92-114.
DOI URL |
[11] | Y. Murakami, Oxford 2002. |
[12] |
H. Gleiter, Prog. Mater. Sci., 33(1989), pp. 223-315.
DOI URL |
[13] | G. Aggen, et al., ASM Handbook Properties and Selection: Irons, Steels High-Performance Alloys, Vol.1, ASM International, USA 1990. |
[14] |
Y. Furuya, S. Matsuoka, Metall. Mater. Trans. A, 33(2002), pp. 3421-3431.
DOI URL |
[15] |
K. Lu, Science, 345(2014), pp. 1455-1456.
DOI URL |
[16] |
Y. Wang, et al., Nature, 419(2002), pp. 912-915.
DOI URL |
[17] |
Z.F. Zhang, Z.G. Wang, Prog. Mater. Sci., 53(2008), pp. 1025-1099.
DOI URL |
[18] |
R. Liu, Y.Z. Tian, Z.J. Zhang, P. Zhang, Z.F. Zhang, Mater. Sci. Eng. A, 702(2017), pp. 259-264.
DOI URL |
[19] | C. Bathias, J.P. Bailon, Les Presses D’Universite De Montreal 1981. |
[20] |
J. Li, Q. Sun, Z.P. Zhang, C.W. Li, Y.J. Qiao, Mech. Res. Commun., 36(2009), pp. 316-321.
DOI URL |
[21] |
C.K. Lin, P.K. Lai, T.S. Shih, Int. J. Fatigue, 18(1996), pp. 297-307.
DOI URL |
[22] |
J.C. Pang, S.X. Li, Z.G. Wang, Z.F. Zhang, Fatigue Fract. Eng. Mater. Struct., 37(2014), pp. 958-976.
DOI URL |
[23] | C.X. Shi, Q.P. Zhong, C.G. Li, China materials engineering canon, Fundamentals of Materials Engineering, Vol. 1, Chemical Industry Press, Beijing 2005. |
[24] | N.A. Fleck, K.J. Kang, M.F. Ashby, Acta Mater., 42(1994), pp. 365-381. |
[25] | Y.L. Lee, J. Pan, R.B. Hathaway, M.E. Barkey, Heidelberg 2005. |
[26] |
D.Y. Ye, Z.L. Wang, Int. J. Fatigue, 23(2001), pp. 679-687.
DOI URL |
[27] | J.A. Bannantine, J.J. Comer, J.L. Handrock, New Jersey 1990. |
[28] |
X.H. An, S.D. Wu, Z.G. Wang, Z.F. Zhang, Acta Mater., 74(2014), pp. 200-214.
DOI URL |
[29] |
X.H. An, Q.Y. Lin, S.D. Wu, Z.F. Zhang, Mater. Res. Lett., 3(2015), pp. 135-141.
DOI URL |
[30] |
P. Xue, et al., Sci. China Mater., 59(2016), pp. 531-537.
DOI URL |
[31] | H.J. Gough, London 1924. |
[32] | H.J. Gough, H.V. Pollard, W.J. Clenshaw, Aero. Res. Council R.( 1951), p. 2522. |
[33] | G.A. Hankins, D. Hanson, G.W. Ford, J. Iron Steel Inst., 114(1926), p. 265. |
[34] |
Y.J. Chang, Mater. Trans., 54(2013), pp. 2037-2043.
DOI URL |
[35] | W.E. Bardgett, Iron Steel, 29(1956), p. 392. |
[36] |
B. Wang, et al., Mater. Sci. Eng. A, 679(2017), pp. 258-271.
DOI URL |
[37] |
Y.W. Kim, Mater. Sci. Eng. A, 528(2011), pp. 4696-4702.
DOI URL |
[38] |
M.T. Yu, Int. J. Fatigue, 12(1990), pp. 433-439.
DOI URL |
[39] |
Z.J. Zhang, et al., Scripta Mater., 68(2013), pp. 389-392.
DOI URL |
[40] | A.R. Anderson, E.F. Swan, E.W. Palmer, Proc. Amer. Soc. Test. Mat., 46(1946), p. 678. |
[41] |
J.C. Pang, Q.Q. Duan, S.D. Wu, S.X. Li, Z.F. Zhang, Scripta Mater., 63(2010), pp. 1085-1088.
DOI URL |
[42] | Anon, Fatigue Properties of Some Noral Wrought Aluminium Alloys, Aluminium Labs. Ltd. (1952), Research Bulletin No. 1. |
[43] | J.R. Davis, USA 1998. |
[44] |
M.D. Sangid, Int. J. Fatigue, 57(2013), pp. 58-72.
DOI URL |
[45] |
X.Y. Li, K. Lu, Nature Mater., 16(2017), pp. 700-701.
DOI URL |
[46] |
U.F. Kocks, H. Mecking, Prog. Mater. Sci., 48(2003), pp. 171-273.
DOI URL |
[47] |
R. Liu, Z.J. Zhang, L.L. Li, X.H. An, Z.F. Zhang, Sci. Rep., 5(2015), p. 9550.
DOI URL |
[48] |
H. Mughrabi, Metall. Mater. Trans. A, 40(2009), pp. 1257-1279.
DOI URL |
[49] |
M.L. Roessle, A. Fatemi, Int. J. Fatigue, 22(2000), pp. 495-511.
DOI URL |
[50] | L.E. Tucker, R.W. Landgraf, W.R. Brose, Technical Report on Fatigue Properties, SAE(1979), J1099. |
[51] |
Y.Z. Tian, L.J. Zhao, N. Park, R. Liu, P. Zhang, Z.J. Zhang, A. Shibata, Z.F. Zhang, N. Tsuji, Acta Mater., 110(2016), pp. 61-72.
DOI URL |
[52] |
M. Milad, V. Zreiba, F. Elhalouani, C. Baradai, J. Mater. Process. Tech., 203(2008), pp. 80-85.
DOI URL |
[53] |
S.C. Jha, R.G. Delagi, J.A. Forster, P.D. Krotz, Metall. Mater. Trans. A, 24(1993), pp. 15-20.
DOI URL |
[1] | Lingling Liu, Yeqiang Bu, Yue Sun, Jianfeng Pan, Jiabin Liu, Jien Ma, Lin Qiu, Youtong Fang. Trace bis-(3-sulfopropyl)-disulfide enhanced electrodeposited copper foils [J]. J. Mater. Sci. Technol., 2021, 74(0): 237-245. |
[2] | Baoguo Yuan, Xing Liu, Jiangfei Du, Qiang Chen, Yuanyuan Wan, Yunliang Xiang, Yan Tang, Xiaoxue Zhang, Zhongyue Huang. Effects of hydrogenation temperature on room-temperature compressive properties of CMHT-treated Ti6Al4V alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 132-143. |
[3] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: II. Parameter analysis and fatigue strength improvement [J]. J. Mater. Sci. Technol., 2021, 70(0): 250-267. |
[4] | Kunlei Hou, Min Wang, Meiqiong Ou, Haoze Li, Xianchao Hao, Yingche Ma, Kui Liu. Effects of microstructure evolution on the deformation mechanisms and tensile properties of a new Ni-base superalloy during aging at 800 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 40-52. |
[5] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
[6] | Jing Zhou, Siyi Di, Baoan Sun, Qiaoshi Zeng, Baolong Shen. Correlation between deformation behavior and atomic-scale heterogeneity in Fe-based bulk metallic glasses [J]. J. Mater. Sci. Technol., 2021, 65(0): 54-60. |
[7] | Jing Zhou, Qianqian Wang, Qiaoshim Zeng, Kuibo Yin, Anding Wang, Junhua Luan, Litao Sun, Baolong Shen. A plastic FeNi-based bulk metallic glass and its deformation behavior [J]. J. Mater. Sci. Technol., 2021, 76(0): 20-32. |
[8] | Hui Wang, Cheng Lu, Kiet Tieu, Yu Liu. A crystal plasticity FE study of macro- and micro-subdivision in aluminium single crystals {001}<110> multi-pass rolled to a high reduction [J]. J. Mater. Sci. Technol., 2021, 76(0): 231-246. |
[9] | Zhuwei Lv, Chenchen Yuan, Haibo Ke, Baolong Shen. Defects activation in CoFe-based metallic glasses during creep deformation [J]. J. Mater. Sci. Technol., 2021, 69(0): 42-47. |
[10] | Mattia Biesuz, Theo Saunders, Daoyao Ke, Michael J. Reece, Chungfeng Hu, Salvatore Grasso. A review of electromagnetic processing of materials (EPM): Heating, sintering, joining and forming [J]. J. Mater. Sci. Technol., 2021, 69(0): 239-272. |
[11] | Haiwen Luo, Xiaohui Wang, Zhenbao Liu, Zhiyong Yang. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel [J]. J. Mater. Sci. Technol., 2020, 51(0): 130-136. |
[12] | Dong Wang, Guo He, Ye Tian, Ning Ren, Jiahua Ni, Wei Liu, Xianlong Zhang. Evaluation of channel-like porous-structured titanium in mechanical properties and osseointegration [J]. J. Mater. Sci. Technol., 2020, 44(0): 160-170. |
[13] | Xiaohui Zhang, Yi Zhang, Baohong Tian, Yanlin Jia, Ming Fu, Yong Liu, Kexing Song, Alex.A. Volinsky, Xiao Yang, Hang Sun. Graphene oxide effects on the properties of Al2O3-Cu/35W5Cr composite [J]. J. Mater. Sci. Technol., 2020, 37(0): 185-199. |
[14] | Guang-Jian Yuan, Xian-Cheng Zhang, Bo Chen, Shan-Tung Tu, Cheng-Cheng Zhang. Low-cycle fatigue life prediction of a polycrystalline nickel-base superalloy using crystal plasticity modelling approach [J]. J. Mater. Sci. Technol., 2020, 38(0): 28-38. |
[15] | Zhao Jie, Lv Liangxing, Wang Kehuan, Liu Gang. Effects of strain state and slip mode on the texture evolution of a near-α TA15 titanium alloy during hot deformation based on crystal plasticity method [J]. J. Mater. Sci. Technol., 2020, 38(0): 125-134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||