J. Mater. Sci. Technol. ›› 2021, Vol. 70: 224-232.DOI: 10.1016/j.jmst.2020.09.004
• Research Article • Previous Articles Next Articles
Mengyang Wanga, Shichao Bib, Jianhui Panga, Zhongzheng Zhoua, Di Qina, Honglei Wangc, Xiaojie Chenga, Xiguang Chena,b,*()
Received:
2020-06-16
Revised:
2020-07-23
Accepted:
2020-08-05
Published:
2021-04-20
Online:
2021-04-30
Contact:
Xiguang Chen
About author:
* College of Marine Life Science, Ocean University of China, Qingdao 266003, China. E-mail: xgchen@ouc.edu.cn (X. Chen).Mengyang Wang, Shichao Bi, Jianhui Pang, Zhongzheng Zhou, Di Qin, Honglei Wang, Xiaojie Cheng, Xiguang Chen. Precise quantification of the antibacterial activity of chitosan by NB medium neutralizer[J]. J. Mater. Sci. Technol., 2021, 70: 224-232.
Group | Water | Bacteriostat | Neutralizer | Diluted bacterial suspension | Total volume |
---|---|---|---|---|---|
1 | 4900 | 0 | 0 | 100 | 5000 |
2 | 4850 | 50 | 0 | 100 | 5000 |
3 | 350 | 50 | 4500 | 100 | 5000 |
Table 1 Composition of each group in neutralizer identification and evaluation test (μL).
Group | Water | Bacteriostat | Neutralizer | Diluted bacterial suspension | Total volume |
---|---|---|---|---|---|
1 | 4900 | 0 | 0 | 100 | 5000 |
2 | 4850 | 50 | 0 | 100 | 5000 |
3 | 350 | 50 | 4500 | 100 | 5000 |
Fig. 1. Antibacterial rates of 0.01 % (w/v) CSA, CS/Ac, TMC, CMCS and HBC solution against S. aureus and E. coli (a) and the neutralizing rates of NB neutralizers (b). Error bars indicates standard deviation (n = 3 repeats), and different letters above bars indicate significant differences between samples (All results were analyzed using two-way ANOVA followed by a post-hoc Tukey test, p < 0.05).
Fig. 3. Images of S. aureus and E. coli colonies survived on the plates after treatment with different concentrations of CSA. Survived colonies are circled in red.
Fig. 5. Neutralizing rates of NB’s single and combinatorial composition (a) and neutralizing rates of NB neutralizer with different final concentrations of NaCl (b). Results were expressed as mean ± SD (n = 3).
Fig. 7. Fluorescent images of neutralizing product solution reacted by FITC-chitosan acetate and NB neutralizer with 5 g L-1 (a), 7.5 g L-1 (b), 10 g L-1 (c), 15 g L-1 (d), 20 g L-1 (e) and 25 g L-1 (f) of NaCl.
Fig. 9. Bright field and fluorescence micrographs of neutralizing product solution reacted by Calcein-AM stained bacteria, chitosan acetate and NB neutralizer with 5 g L-1, 15 g L-1 and 25 g L-1 of NaCl. Blue arrows indicated free bacteria, red arrows indicated floccules without bacteria and yellow arrows indicated floccules with bacteria adsorption.
Fig. 10. Neutralizing rates of neutralizing product and neutralizing product filtrated by 0.22 μm membrane filter. Number in the brackets means the volume of neutralizer added in the reaction system. Results were expressed as mean ± SD.
[1] |
I. Younes, M. Rinaudo, Mar. Drugs, 13(2015), pp. 1133-1174.
DOI URL |
[2] |
S.M. Ahsan, M. Thomas, K.K. Reddy, S.G. Sooraparaju, A. Asthana, I. Bhatnagar, Int. J. Biol. Macromol., 110(2018), pp. 97-109.
DOI URL |
[3] | V. Zargar, M. Asghari, A. Dashti, ChemBio Eng Rev., 2(2015), pp. 204-226. |
[4] |
P. Sahariah, M. Másson, Biomacromolecules, 18(2017), pp. 3846-3868.
DOI URL |
[5] |
E.M. Costa, S. Silva, C. Pina, F.K. Tavaria, M.M. Pintado, Anaerobe, 18(2012), pp. 305-309.
DOI URL |
[6] |
J. Holappa, M. Hjálmarsdóttir, M. Másson, Ö. Rúnarsson, T. Asplund, P. Soininen, T. Nevalainen, T. Järvinen, Carbohydr. Polym., 65(2006), pp. 114-118.
DOI URL |
[7] |
M.J. Moreno-Vásquez, E.L. Buitimea-Valenzuela, M. Plascencia-Jatomea, J.C. Encinas-Encinas, F. Rodríguez-Félix, S. Sánchez-Valdes, E.C. Rosas-Burgos, V.M. Ocaño-Higuera, A.Z. Graciano-Verdugo, Carbohydr. Polym., 155(2017), pp. 117-127.
DOI URL |
[8] |
H.K. No, N.Y. Park, S.H. Lee, S.P. Meyers, Int. J. Food Microbiol., 74(2002), pp. 65-72.
DOI URL |
[9] |
B. Song, C. Zhang, G. Zeng, J. Gong, Y. Chang, Y. Jiang, Arch. Biochem. Biophys., 604(2016), pp. 167-176.
DOI URL |
[10] |
M. Kong, X.G. Chen, K. Xing, H.J. Park, Int. J. Food Microbiol., 144(2010), pp. 51-63.
DOI URL |
[11] |
S.H. Chang, H.T.V. Lin, G.J. Wu, G.J. Tsai, Carbohydr. Polym., 134(2015), pp. 74-81.
DOI URL |
[12] |
M. Kong, X.G. Chen, C.S. Liu, C.G. Liu, X.H. Meng, L.J. Yu, Colloids Surf. B, 65(2008), pp. 197-202.
DOI URL |
[13] |
S. Tantubay, S.K. Mukhopadhyay, H. Kalita, S. Konar, S. Dey, A. Pathak, P. Pramanik, J. Nanopart. Res., 17(2015), pp. 1-18.
DOI URL |
[14] |
M. Kong, X.G. Chen, Y.P. Xue, C.S. Liu, L.J. Yu, Q.X. Ji, D.S. Cha, H.J. Park, Front. Mater. Sci. China, 2(2008), pp. 214-220.
DOI URL |
[15] |
Y.C. Chung, H.L. Wang, Y.M. Chen, S.L. Li, Bioresour. Technol., 88(2003), pp. 179-184.
DOI URL |
[16] | D.F. Silva, H. Rosa, A.F.A. Carvalho, P. Oliva-Neto, Enzyme Res. 2015. |
[17] |
Y.S. Cheng, Y. Zheng, J.M. Labavitch, J.S. Vandergheynst, Process Biochem., 46(2011), pp. 1927-1933.
DOI URL |
[18] |
G. Rehn, C. Grey, C. Branneby, P. Adlercreutz, J. Biotechnol., 165(2013), pp. 138-144.
DOI URL |
[19] |
N. Rashid, S.U. Rehman, J.I. Han, Process Biochem., 48(2013), pp. 1107-1110.
DOI URL |
[20] |
M.G. Bergeron, P. Simard, P. Provencher, J. Clin. Microbiol., 25(1987), pp. 650-655.
DOI URL |
[21] | H. Choi, S. Chakraborty, R. Liu, S.H. Gellman, J.C. Weisshaar, PLoS One, 9 (2014), Article e104500. |
[22] |
W.L. Du, S.S. Niu, Y.L. Xu, Z.R. Xu, C.L. Fan, Carbohydr. Polym., 75(2009), pp. 385-389.
DOI URL |
[23] |
F. Hu, Z. Zhou, Q. Xu, C. Fan, L. Wang, H. Ren, S. Xu, Q. Ji, X. Chen, Int. J. Biol. Macromol., 129(2019), pp. 1113-1119.
DOI URL |
[24] |
X.G. Chen, H.J. Park, Carbohydr. Polym., 53(2003), pp. 355-359.
DOI URL |
[25] |
Z. Bao, P. Gao, G. Xia, Z. Wang, M. Kong, C. Feng, X. Cheng, Y. Liu, X. Chen, J. Mater. Chem. B, 4(2016), pp. 3936-3944.
DOI URL |
[26] |
E. Espigares, A. Bueno, M. Fernández-Crehuet, M. Espigares, J. Hosp. Infect., 55(2003), pp. 137-140.
DOI URL |
[27] |
Y. Li, X.G. Chen, N. Liu, C.S. Liu, C.G. Liu, X.H. Meng, L.J. Yu, J.F. Kenendy, Carbohydr. Polym., 67(2007), pp. 227-232.
DOI URL |
[28] |
H.K. No, S.H. Kim, S.H. Lee, N.Y. Park, W. Prinyawiwatkul, Carbohydr. Polym., 65(2006), pp. 174-178.
DOI URL |
[29] |
Z.X. Peng, L. Wang, L. Du, S.R. Guo, X.Q. Wang, T.T. Tang, Carbohydr. Polym., 81(2010), pp. 275-283.
DOI URL |
[30] | A. Anitha, V.V. Divya Rani, R.Krishna, V. Sreeja, N. Selvamurugan, S.V. Nair, H. Tamura, R. Jayakumar, Carbohydr. Polym., 78(2009), pp. 672-677. |
[31] |
S. Hu, S. Bi, D. Yan, Z. Zhou, G. Sun, X. Cheng, X. Chen, Carbohydr. Polym., 184(2018), pp. 154-163.
DOI URL |
[32] | H.S. Adhikari, P.N. Yadav, Int. J. Biomater. ( 2018), pp. 27-38. |
[33] |
A. Omar, P. Nadworny, Adv. Drug Delivery Rev., 112(2017), pp. 61-68.
DOI URL |
[34] |
N. Liu, X.G. Chen, H.J. Park, C.G. Liu, C.S. Liu, X.H. Meng, L.J. Yu, Carbohydr. Polym., 64(2006), pp. 60-65.
DOI URL |
[35] |
J. Li, Y. Wu, L. Zhao, Carbohydr. Polym., 148(2016), pp. 200-205.
DOI URL |
[36] |
U.J. Kim, Y.R. Lee, T.H. Kang, J.W. Choi, S. Kimura, M. Wada, Carbohydr. Polym., 163(2017), pp. 34-42.
DOI URL |
[37] |
R. Logithkumar, A. Keshavnarayan, S. Dhivya, A. Chawla, S. Saravanan, N. Selvamurugan, Carbohydr. Polym., 151(2016), pp. 172-188.
DOI URL |
[38] |
Z. Zhong, P. Li, R. Xing, S. Liu, Int. J. Biol. Macromol., 45(2009), pp. 163-168.
DOI URL |
[39] |
M. Kaya, Y.S. Cakmak, T. Baran, M. Asan-Ozusaglam, A. Mentes, K.O. Tozak, Biotechnol. Bioprocess Eng., 19(2014), pp. 58-69.
DOI URL |
[40] |
A. Guo, F. Wang, W. Lin, X. Xu, T. Tang, Y. Shen, S. Guo, Int. J. Biol. Macromol., 67(2014), pp. 163-171.
DOI URL |
[41] |
E.I. Nielsen, A. Viberg, E. Löwdin, O. Cars, M.O. Karlsson, M. Sandström, Antimicrob. Agents Chemother., 51(2007), pp. 128-136.
DOI URL |
[42] |
M. Hosseinnejad, S.M. Jafari, Int. J. Biol. Macromol., 85(2016), pp. 467-475.
DOI URL |
[43] | H. Choi, S. Chakraborty, R. Liu, S.H. Gellman, J.C. Weisshaar, PLoS One, 9 ( 2014), Article 0116241. |
[46] |
S.C. Park, J.W. Nah, Y. Park, Macromol. Res., 19(2011), pp. 853-860.
DOI URL |
[47] |
A. Verlee, S. Mincke, C.V. Stevens, Carbohydr. Polym., 164(2017), pp. 268-283.
DOI URL |
[48] |
D. Raafat, K. von Bargen, A. Haas, H.G. Sahl, Appl. Environ. Microbiol., 74(2008), pp. 3764-3773.
DOI URL |
[49] |
A. Gamage, F. Shahidi, Food Chem., 104(2007), pp. 989-996.
DOI URL |
[50] |
R.C. Goy, D. De Britto, O.B.G. Assis, Polimeros, 19(2009), pp. 241-247.
DOI URL |
[51] |
J. Roussy, M. Van Vooren, B.A. Dempsey, E. Guibal, Water Res., 39(2005), pp. 3247-3258.
DOI URL |
[52] |
L. Ding, Y. Huang, X.X. Cai, S. Wang, Carbohydr. Polym., 208(2019), pp. 133-141.
DOI URL |
[53] |
K. Wei, L. Chen, Y. Qu, Y. Zhang, X. Jin, W. Xue, J. Zhang, Corros. Sci., 143(2018), pp. 129-135.
DOI URL |
[54] | W. Xiong, C. Ren, W. Jin, J. Tian, Y. Wang, B.R. Shah, J. Li, B. Li, Food Hydrocolloids, 61 2016. |
[55] |
Y. Ojima, M. Azuma, M. Taya, World J. Microbiol. Biotechnol., 34(2018), pp. 1-8.
DOI URL |
[56] |
R. Yang, H. Li, M. Huang, H. Yang, A. Li, Water Res., 95(2016), pp. 59-89.
DOI URL |
[57] |
S.P. Strand, T. Nordengen, K. Østgaard, Water Res., 36(2002), pp. 4745-4752.
DOI URL |
[1] | Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity? [J]. J. Mater. Sci. Technol., 2021, 62(0): 44-51. |
[2] | Xiaoxue Yuan, Ran Liu, Wenchang Zhang, Xiaoqiang Song, Lei Xu, Yan Zhao, Lei Shang, Jingsong Zhang. Preparation of carboxylmethylchitosan and alginate blend membrane for diffusion-controlled release of diclofenac diethylamine [J]. J. Mater. Sci. Technol., 2021, 63(0): 210-215. |
[3] | Kai Chen, Changci Tong, Jinge Yang, Peifang Cong, Ying Liu, Xiuyun Shi, Xu Liu, Jun Zhang, Rufei Zou, Keshen Xiao, Yuyang Ni, Lei Xu, Mingxiao Hou, Hongxu Jin, Yunen Liu. Injectable melatonin-loaded carboxymethyl chitosan (CMCS)-based hydrogel accelerates wound healing by reducing inflammation and promoting angiogenesis and collagen deposition [J]. J. Mater. Sci. Technol., 2021, 63(0): 236-245. |
[4] | Yongyong Xue, Na Wang, Zhi Zeng, Jinpeng Huang, Zhiming Xiang, Yan-Qing Guan. Neuroprotective effect of chitosan nanoparticle gene delivery system grafted with acteoside (ACT) in Parkinson’s disease models [J]. J. Mater. Sci. Technol., 2020, 43(0): 197-207. |
[5] | Paulina Kazimierczak, Aleksandra Benko, Krzysztof Palka, Cristina Canal, Dorota Kolodynska, Agata Przekora. Novel synthesis method combining a foaming agent with freeze-drying to obtain hybrid highly macroporous bone scaffolds [J]. J. Mater. Sci. Technol., 2020, 43(0): 52-63. |
[6] | Mingli Lin, Huanhuan Liu, Jingjing Deng, Ran An, Minjuan Shen, Yanqiu Li, Xu Zhang. Carboxymethyl chitosan as a polyampholyte mediating intrafibrillar mineralization of collagen via collagen/ACP self-assembly [J]. J. Mater. Sci. Technol., 2019, 35(9): 1894-1905. |
[7] | Peng Chen, Yunliang Zhao, Tianxing Chen, Tingting Zhang, Shaoxian Song. Synthesis of montmorillonite-chitosan hollow and hierarchical mesoporous spheres with single-template layer-by-layer assembly [J]. J. Mater. Sci. Technol., 2019, 35(10): 2325-2330. |
[8] | Chi Xiao, Liqing Wang, Yuping Ren, Shineng Sun, Erlin Zhang, Chongnan Yan, Qi Liu, Xiaogang Sun, Fenyong Shou, Jingzhu Duan, Huang Wang, Gaowu Qin. Indirectly extruded biodegradable Zn-0.05wt%Mg alloy with improved strength and ductility: In vitro and in vivo studies [J]. J. Mater. Sci. Technol., 2018, 34(9): 1618-1627. |
[9] | Baihao You, Qingtao Li, Hua Dong, Tao Huang, Xiaodong Cao, Hua Liao. Bilayered HA/CS/PEGDA hydrogel with good biocompatibility and self-healing property for potential application in osteochondral defect repair [J]. J. Mater. Sci. Technol., 2018, 34(6): 1016-1025. |
[10] | Dunhua Hong, Guangzhong Cao, Junle Qu, Yuanming Deng, Jiaonin Tang. Antibacterial activity of Cu2O and Ag co-modified rice grains-like ZnO nanocomposites [J]. J. Mater. Sci. Technol., 2018, 34(12): 2359-2367. |
[11] | Zhong Haoxiang, Lu Jidian, He Aiqin, Sun Minghao, He Jiarong, Zhang Lingzhi. Carboxymethyl chitosan/poly(ethylene oxide) water soluble binder: Challenging application for 5 V LiNi0.5Mn1.5O4 cathode [J]. J. Mater. Sci. Technol., 2017, 33(8): 763-767. |
[12] | S. Snega, K. Ravichandran, M. Baneto, S. Vijayakumar. Simultaneous Enhancement of Transparent and Antibacterial Properties of ZnO Films by Suitable F Doping [J]. J. Mater. Sci. Technol., 2015, 31(7): 759-765. |
[13] | Javed Iqbal, Nauman Safdar, Tariq Jan, Muhammad Ismail, S.S. Hussain, Arshad Mahmood, Shaheen Shahzad, Qaisar Mansoor. Facile Synthesis as well as Structural, Raman, Dielectric and Antibacterial Characteristics of Cu Doped ZnO Nanoparticles [J]. J. Mater. Sci. Technol., 2015, 31(3): 300-304. |
[14] | Guobo Lan, Mei Li, Ying Tan, Lihua Li, Xiaoming Yang, Limin Ma, Qingshui Yin, Hong Xia, Yu Zhang, Guoxin Tan, Chengyun Ning. Promoting Bone Mesenchymal Stem Cells and Inhibiting Bacterial Adhesion of Acid-Etched Nanostructured Titanium by Ultraviolet Functionalization [J]. J. Mater. Sci. Technol., 2015, 31(2): 182-190. |
[15] | Weiping Ding, Cheng Liang, Sijie Sun, Liqun He, Dayong Gao. On-Chip Fabrication of Carbon Nanoparticle-Chitosan Composite Membrane [J]. J. Mater. Sci. Technol., 2015, 31(11): 1087-1093. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||