J. Mater. Sci. Technol. ›› 2021, Vol. 67: 243-253.DOI: 10.1016/j.jmst.2020.08.006
• Research article • Previous Articles Next Articles
Received:
2020-04-11
Revised:
2020-07-02
Accepted:
2020-07-06
Published:
2021-03-20
Online:
2021-04-15
Contact:
Dong Wang
About author:
* E-mail address: dong.wang@ntnu.no (D. Wang).Xu Lu, Dong Wang. Effect of hydrogen on deformation behavior of Alloy 725 revealed by in-situ bi-crystalline micropillar compression test[J]. J. Mater. Sci. Technol., 2021, 67: 243-253.
C | Fe | Cr | Nb | Mo | Ti | Al | Mn |
---|---|---|---|---|---|---|---|
<0.01 | 10.1 | 19.7 | 3.6 | 7.3 | 1.4 | <0.1 | <0.02 |
Si | S | P | N | Ni | |||
<0.1 | <0.001 | <0.005 | trace | Balance |
Table 1 Nominal composition of the Alloy 725 specimen wt.%.
C | Fe | Cr | Nb | Mo | Ti | Al | Mn |
---|---|---|---|---|---|---|---|
<0.01 | 10.1 | 19.7 | 3.6 | 7.3 | 1.4 | <0.1 | <0.02 |
Si | S | P | N | Ni | |||
<0.1 | <0.001 | <0.005 | trace | Balance |
Fig. 1. (a) SEM micrograph and (b) the corresponding inverse pole figure (IPF) map and (c) phase map of SA Alloy 725; (d)-(e) schematic of the prepared micropillars with GBs; (f) schematic defining the [112], [259]-oriented twin boundaries (FCC: face-centered cubic).
GB | Grain A | Grain B | Misorientation axis (U V W) | Misorientat-ion angle (θ) | TB orientation, α |
---|---|---|---|---|---|
Euler angles (φ1 Φ φ2) | |||||
TB1 | (211.2 116.5 206.7) | (337.3 33.2 48.1) | (1-1 1) | 59.9° | [ |
TB2 | (109.9 101.4 29.3) | (42.1 78.7 299.2) | (-1 1 -1) | 59.3° | [ |
HAGB1 | (258.8 92.8 191.9) | (350.6 128.5 224.2) | (1 -1-1) | 56.2° | 50.9° |
HAGB2 | (253.3 120.4 303.7) | (118.4 17.3 222.4) | (1 2 0) | 46.5° | 59.3° |
LAGB1 | (208.7 29.7 249.4) | (210.4 21 151.7) | (-1 1 1) | 10.7° | 90° |
LAGB2 | (278.8 129.3 3.1) | (276.9 139.2 184.2) | (-5 1 0) | 10.3° | 71.9° |
Table 2 Crystallographic parameters of the selected GBs (α is the tilt angle between the sample surface and the GB).
GB | Grain A | Grain B | Misorientation axis (U V W) | Misorientat-ion angle (θ) | TB orientation, α |
---|---|---|---|---|---|
Euler angles (φ1 Φ φ2) | |||||
TB1 | (211.2 116.5 206.7) | (337.3 33.2 48.1) | (1-1 1) | 59.9° | [ |
TB2 | (109.9 101.4 29.3) | (42.1 78.7 299.2) | (-1 1 -1) | 59.3° | [ |
HAGB1 | (258.8 92.8 191.9) | (350.6 128.5 224.2) | (1 -1-1) | 56.2° | 50.9° |
HAGB2 | (253.3 120.4 303.7) | (118.4 17.3 222.4) | (1 2 0) | 46.5° | 59.3° |
LAGB1 | (208.7 29.7 249.4) | (210.4 21 151.7) | (-1 1 1) | 10.7° | 90° |
LAGB2 | (278.8 129.3 3.1) | (276.9 139.2 184.2) | (-5 1 0) | 10.3° | 71.9° |
Fig. 2. Engineering stress-strain plots for (a) [112] and (b) [259] TB pillars compressed in hydrogen-free, hydrogen-charged and anodic discharging conditions, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 3. Engineering stress-strain plots for (a) HAGB1, (b) HAGB2, (c) LAGB1, and (d) LAGB2 pillars compressed in hydrogen-free and hydrogen-charged conditions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 4. Effect of hydrogen on (a)-(b) stress at 2.5% strain (σ2.5%), and (c)-(d) ultimate strength (σmax) for pillars containing the selected GBs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 5. Hydrogen effect on the cumulative probability of the strain burst size for micropillars containing (a) [112] TB, (b) [259] TB, (c) HAGBs, and (d) LAGBs, respectively.
Fig. 6. SEM micrographs of BC micropillars deformed in hydrogen-free condition (a1)-(a2) [112] type orientation, and (a3)-(a4) [259] type orientation; and BC micropillars deformed in hydrogen-charged conditions (b1)-(b2) [112] type orientation, and (b3)-(b4) [259] type orientation.
Fig. 7. SEM micrographs of BC micropillars containing (a)-(b) HAGBs and (c)-(d) LAGBs deformed in air; and the corresponding deformation morphologies in the hydrogen-charged condition for (e)-(f) HAGBs and (g)-(h) LAGBs. The magnified slip morphologies are shown in (a1)-(h1).
GB | Active slip system | Schmid factor for full dislocation | ||
---|---|---|---|---|
Grain A | Grain B | Grain A | Grain B | |
TB-[ | (111)[- | (-11-1)[ | 0.42 | 0.44 |
TB-[ | (111)[ (-1-11)[ | (-11-1)[- (111)[ | 0.49 0.42 | 0.49 0.43 |
HAGB1 | (-1-11)[ (111)[ | (-11-1)[ (-11-1)[- (1-1-1)[ | 0.48 0.47 | 0.30 0.29 0.29 |
HAGB2 | (111)[ (1-1-1)[ | (-11-1)[- (1-1-1)[ | 0.38 0.33 | 0.46 0.44 |
LAGB1 | (-1-11)[ (-11-1)[- | (-1-11)[ (-11-1)[- | 0.49 0.43 | 0.49 0.45 |
LAGB2 | (-11-1)[- (-1-11)[ | (1-1-1)[ (111)[- | 0.45 0.43 | 0.45 0.43 |
Table 3 Summary of the activated slip systems and the Schmid factors for each grain at the corresponding GBs (Grain A and Grain B refers to the grain on the left and right side of the GB, respectively).
GB | Active slip system | Schmid factor for full dislocation | ||
---|---|---|---|---|
Grain A | Grain B | Grain A | Grain B | |
TB-[ | (111)[- | (-11-1)[ | 0.42 | 0.44 |
TB-[ | (111)[ (-1-11)[ | (-11-1)[- (111)[ | 0.49 0.42 | 0.49 0.43 |
HAGB1 | (-1-11)[ (111)[ | (-11-1)[ (-11-1)[- (1-1-1)[ | 0.48 0.47 | 0.30 0.29 0.29 |
HAGB2 | (111)[ (1-1-1)[ | (-11-1)[- (1-1-1)[ | 0.38 0.33 | 0.46 0.44 |
LAGB1 | (-1-11)[ (-11-1)[- | (-1-11)[ (-11-1)[- | 0.49 0.43 | 0.49 0.45 |
LAGB2 | (-11-1)[- (-1-11)[ | (1-1-1)[ (111)[- | 0.45 0.43 | 0.45 0.43 |
Fig. 8. (a1) Micrograph of the FIB-subtracted micropillar lamella containing [112]-oriented TB compressed in air, and the corresponding t-EBSD results showing (a2) IPF image, (a3) IQ image, and (a4) KAM image. (b1) Micrograph of [112]-oriented TB compressed in the hydrogen-charged condition, and the corresponding t-EBSD results showing (b2) IPF image, (b3) IQ image, and (b4) KAM image. (Step size: 20 nm).
Fig. 9. (a1) Micrograph of the FIB-subtracted micropillar lamella containing HAGB2 compressed in air, and the corresponding t-EBSD results showing (a2) IPF image, (a3) IQ image, and (a4) KAM image. (b1) Micrograph of HAGB2 compressed in the hydrogen-charged condition, and the corresponding t-EBSD results showing (b2) IPF image, (b3) IQ image, and (b4) KAM image. (Step size: 20 nm).
Fig. 10. (a1) Micrograph of the FIB-subtracted micropillar lamella containing LAGB1 after compression test in air, and the corresponding t-EBSD results showing (a2) IPF image, (a3) IQ image, and (a4) KAM image. (b1) Micrograph of LAGB1 after compression test in the hydrogen-charged condition, and the corresponding t-EBSD results showing (b2) IPF image, (b3) IQ image, and (b4) KAM image. (Step size: 10 nm).
TB-[ | TB-[ | HAGB1 | HAGB2 | LAGB1 | LAGB2 | |
---|---|---|---|---|---|---|
β (°) | 17.9 | 10.7 | 10.8 | 6.7 | 11.1 | 6.1 |
(hakala)/ (hbkblb) | (111)/ (-11-1) | (111)/ (-11-1) | (111)/ (1-1-1) | (111)/ (1-1-1) | (-1-11)/ (-11-1) | (-11-1)/ (111) |
Table 4 The calculated minimum angle β and the corresponding active slip system (hakala)/ (hbkblb).
TB-[ | TB-[ | HAGB1 | HAGB2 | LAGB1 | LAGB2 | |
---|---|---|---|---|---|---|
β (°) | 17.9 | 10.7 | 10.8 | 6.7 | 11.1 | 6.1 |
(hakala)/ (hbkblb) | (111)/ (-11-1) | (111)/ (-11-1) | (111)/ (1-1-1) | (111)/ (1-1-1) | (-1-11)/ (-11-1) | (-11-1)/ (111) |
[1] |
Y. Yao, X.L. Pang, K.W. Gao, Int. J. Hydrog. Energy 36 (2011) 5729-5738.
DOI URL |
[2] |
P.D. Hicks, C.J. Altstetter, Metall. Mater. Trans. A 21 (1990) 365-372.
DOI URL |
[3] |
A.M. Brass, J. Chene, Mater. Sci. Eng. A 242 (1998) 210-221.
DOI URL |
[4] |
J. Chene, A.M. Brass, Metall. Mater. Trans. A 35 (2004) 457-464.
DOI URL |
[5] |
A. Kimura, H.K. Birnbaum, Acta Metall. 36(1988) 757-766.
DOI URL |
[6] |
H.K. Birnbaum, P. Sofronis, Mater. Sci. Eng. A 176 (1994) 191-202.
DOI URL |
[7] | H.K. Birnbaum, Mechanisms of Hydrogen Related Fracture of Metals, IllinoisUniversity at Urbana, 1989. |
[8] |
M.L. Martin, M. Dadfarnia, A. Nagao, S. Wang, P. Sofronis, Acta Mater. 165(2019) 734-750.
DOI URL |
[9] | W.W. Gerberich, Gaseous Hydrogen Embrittlement of Materials in EnergyTechnologies, in: R.P. Gangloff (Ed.), Volume 1, Woodhead Publishing, 2012,pp. 209-246. |
[10] | C.J. McMahon, Eng.Fract. Mech. 68(2001) 773-788. |
[11] |
S.P. Lynch, Metallography 23 (1989) 147-171.
DOI URL |
[12] |
S.P. Lynch, Scr. Mater. 61(2009) 331-334.
DOI URL |
[13] |
S. Lynch, Corros. Rev. 30(2012) 105-123.
DOI URL |
[14] |
M. Nagumo, Mater. Sci. Technol. 20(2013) 940-950.
DOI URL |
[15] |
R. Kirchheim, Acta Mater. 55(2007) 5129-5138.
DOI URL |
[16] |
R. Kirchheim, Acta Mater. 55(2007) 5139-5148.
DOI URL |
[17] |
R. Kirchheim, Scr. Mater. 62(2010) 67-70.
DOI URL |
[18] |
Z. Zhang, G. Obasi, R. Morana, M. Preuss, Acta Mater. 113(2016) 272-283.
DOI URL |
[19] |
I.M. Robertson, H.K. Birnbaum, Acta Metall. 34(1986) 353-366.
DOI URL |
[20] |
S. Jothi, S.V. Merzlikin, T.N. Croft, J. Andersson, S.G.R. Brown, J. Alloy. Compd. 664(2016) 664-681.
DOI URL |
[21] |
Z. Tarzimoghadam, D. Ponge, J. Klower, D. Raabe, Acta Mater. 128(2017) 365-374.
DOI URL |
[22] |
M. Seita, J.P. Hanson, S. Gradecak, M.J. Demkowicz, Nat. Commun. 6(2015) 6164.
DOI URL PMID |
[23] |
J.P. Hanson, A. Bagri, J. Lind, P. Kenesei, R.M. Suter, S. Gradecak M.J. Demkowicz, Nat. Commun. 9(2018) 3386.
DOI URL PMID |
[24] |
T. Watanabe, Mater. Sci. Eng. A 176 (1994) 39-49.
DOI URL |
[25] |
G. Palumbo, K.T. Aust, Can. Metall. Q. 34(1995) 165-173.
DOI URL |
[26] |
A. Oudriss, J. Creus, J. Bouhattate, E. Conforto, C. Berziou, C. Savall, X. Feaugas, Acta Mater. 60(2012) 6814-6828.
DOI URL |
[27] |
A. Oudriss, S. LeGuernic, Z. Wang, B.O. Hoch, J. Bouhattate, E. Conforto, Z. Zhu, D.S. Li, X. Feaugas, Mater. Lett. 165(2016) 217-222.
DOI URL |
[28] |
V. Demetriou, J.D. Robson, M. Preuss, R. Morana, Mater. Sci. Eng. A 684 (2017) 423-434.
DOI URL |
[29] |
V. Demetriou, J.D. Robson, M. Preuss, R. Morana, Int. J. Hydrog. Energy 42(2017) 23856-23870.
DOI URL |
[30] |
A. Turk, D. Bombac, J.J. Rydel, M. Zietara, P.E.J. Rivera-Diaz-del-Castillo, E.I. Galindo-Nava, Mater. Des. 160(2018) 985-998.
DOI URL |
[31] |
A. Metsue, A. Oudriss, X. Feaugas, Comput. Mater. Sci. 151(2018) 144-152.
DOI URL |
[32] |
J.R. Greer, W.D. Nix, Appl. Phys. A 90 (2008), 203-203.
DOI URL |
[33] |
D.M. Dimiduk, M.D. Uchic, T.A. Parthasarathy, Acta Mater. 53(2005) 4065-4077.
DOI URL |
[34] |
J.Y. Zhang, G. Liu, J. Sun, Int. J. Plast. 50(2013) 1-17.
DOI URL |
[35] |
P.J. Imrich, C. Kirchlechner, D. Kiener, G. Dehm, Scr. Mater. 100(2015) 94-97.
DOI URL |
[36] |
N.V. Malyar, J.S. Micha, G. Dehm, C. Kirchlechner, Acta Mater. 129(2017) 91-97.
DOI URL |
[37] |
P.J. Imrich, C. Kirchlechner, C. Motz, G. Dehm, Acta Mater. 73(2014) 240-250.
DOI URL |
[38] |
N.V. Malyar, J.S. Micha, G. Dehm, C. Kirchlechner, Acta Mater. 129(2017) 312-320.
DOI URL |
[39] |
N. Kheradmand, A.F. Knorr, M. Marx, Y. Deng, Acta Mater. 106(2016) 219-228.
DOI URL |
[40] |
M. Deutges, I. Knorr, C. Borchers, C.A. Volkert, R. Kirchheim, Scr. Mater. 68(2013) 71-74.
DOI URL |
[41] |
C.S. Teresi, W.W. Gerberich, Scr. Mater. 144(2018) 56-59.
DOI URL |
[42] |
N. Kheradmand, J. Dake, A. Barnoush, H. Vehoff, Philos. Mag. 92(2012) 3216-3230.
DOI URL |
[43] |
H. Zhang, B.E. Schuster, Q. Wei, K.T. Ramesh, Scr. Mater. 54(2006) 181-186.
DOI URL |
[44] |
D. Wang, X. Lu, Y. Deng, X. Guo, A. Barnoush, Acta Mater. 166(2019) 618-629.
DOI URL |
[45] |
X. Lu, D. Wang, Z. Li, Y. Deng, A. Barnoush, Mater. Sci. Eng. A 762 (2019), 138114.
DOI URL |
[46] |
D. Wang, X. Lu, Y. Deng, D. Wan, Z. Li, A. Barnoush, Intermetallics 114 (2019), 106605.
DOI URL |
[47] |
L. Fournier, D. Delafosse, T. Magnin, Mater. Sci. Eng. A 269 (1999) 111-119.
DOI URL |
[48] |
J. Xu, X.K. Sun, Q.Q. Liu, W.X. Chen, Metall. Mater. Trans. A 25 (1994) 539-544.
DOI URL |
[49] |
J.P. Liebig, S. Krauss, M. Goken, B. Merle, Acta Mater. 154(2018) 261-272.
DOI URL |
[50] |
T. Watanabe, S. Tsurekawa, Acta Mater. 47(1999) 4171-4185.
DOI URL |
[51] |
S. Bechtle, M. Kumar, B.P. Somerday, M.E. Launey, R.O. Ritchie, Acta Mater. 57(2009) 4148-4157.
DOI URL |
[52] |
N. Kheradmand, H. Vehoff, A. Bamoush, Acta Mater. 61(2013) 7454-7465.
DOI URL |
[53] |
J.R. Greer, C.R. Weinberger, W. Cai, Mater. Sci. Eng. A 493 (2008) 21-25.
DOI URL |
[54] | Y. Tang, S.I. Rao, J.A. El-Awady, TMS Annual Meeting & Exibition, San Antonio,TX(US), March 3-7, 2013, pp. 719-726. |
[55] |
Y. Deng, A. Barnoush, Acta Mater. 142(2018) 236-247.
DOI URL |
[56] |
J.D. Hermida, A. Roviglione, Scr. Mater. 39(1998) 1145-1149.
DOI URL |
[57] |
X. Lu, Y. Ma, M. Zamanzade, Y. Deng, D. Wang, W. Bleck, W.W. Song A. Barnoush, Int. J. Hydrog. Energy 44 (2019) 20545-20551.
DOI URL |
[58] |
X. Lu, D. Wang, D. Wan, Z.B. Zhang, N. Kheradmand, A. Barnoush, Acta Mater. 179(2019) 36-48.
DOI URL |
[59] |
W. Schaf, M. Marx, A.F. Knorr, Int. J. Fatigue 57 (2013) 86-92.
DOI URL |
[60] |
K.G. Davis, E. Teghtsoo, A. Lu, Acta Metall. 14(1966) 1677-1684.
DOI URL |
[61] |
J.Q. Li, C. Lu, L.Q. Pei, C. Zhang, K. Tieu, Scr. Mater. 173(2019) 115-119.
DOI URL |
[62] | D. Xie, S. Li, M. Li, Z. Wang, P. Gumbsch, J. Sun, E. Ma, J. Li, Z. Shan, Nat.Commun. 7(2016) 13341. |
[1] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[2] | Jing Wang, Li You, Zhibin Li, Xiongjun Liu, Rui Li, Qing Du, Xianzhen Wang, Hui Wang, Yuan Wu, Suihe Jiang, Zhaoping Lu. Self-supporting nanoporous Ni/metallic glass composites with hierarchically porous structure for efficient hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 73(0): 145-150. |
[3] | Chongyang Yuan, Wei Chen, Zunxian Yang, Zhenguo Huang, Xuebin Yu. The effect of various cations/anions for MgH2 hydrolysis reaction [J]. J. Mater. Sci. Technol., 2021, 73(0): 186-192. |
[4] | Yi Yang, Di Xu, Sheng Cao, Songquan Wu, Zhengwang Zhu, Hao Wang, Lei Li, Shewei Xin, Lei Qu, Aijun Huang. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 52-60. |
[5] | Thanh-Tung Le, Xiao Liu, Peijun Xin, Qing Wang, Chunyan Gao, Ye Wu, Yong Jiang, Zhangjun Hu, Shoushuang Huang, Zhiwen Chen. Phosphorus-doped Fe7S8@C nanowires for efficient electrochemical hydrogen and oxygen evolutions: Controlled synthesis and electronic modulation on active sites [J]. J. Mater. Sci. Technol., 2021, 74(0): 168-175. |
[6] | Shumin Zhang, Hu Dong, Changsheng An, Zhongfu Li, Difa Xu, Kaiqiang Xu, Zhaohui Wu, Jie Shen, Xiaohua Chen, Shiying Zhang. One-pot synthesis of array-like sulfur-doped carbon nitride with covalently crosslinked ultrathin MoS2 cocatalyst for drastically enhanced photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2021, 75(0): 59-67. |
[7] | J.X. Hou, X.Y. Li, K. Lu. Orientation dependence of mechanically induced grain boundary migration in nano-grained copper [J]. J. Mater. Sci. Technol., 2021, 68(0): 30-34. |
[8] | Seung Woo Lee, Bongho Lee, Chaekyung Baik, Tae-Yang Kim, Chanho Pak. Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells [J]. J. Mater. Sci. Technol., 2021, 60(0): 105-112. |
[9] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[10] | Baoguo Yuan, Xing Liu, Jiangfei Du, Qiang Chen, Yuanyuan Wan, Yunliang Xiang, Yan Tang, Xiaoxue Zhang, Zhongyue Huang. Effects of hydrogenation temperature on room-temperature compressive properties of CMHT-treated Ti6Al4V alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 132-143. |
[11] | Man Zhang, Di Hu, Zhenhao Xu, Biying Liu, Mebrouka Boubeche, Zuo Chen, Yuchen Wang, Huixia Luo, Kai Yan. Facile synthesis of Ni-, Co-, Cu-metal organic frameworks electrocatalyst boosting for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 72(0): 172-179. |
[12] | Yanli Lu, Yi Wang, Yifan Wang, Meng Gao, Yao Chen, Zheng Chen. First-principles study on the mechanical, thermal properties and hydrogen behavior of ternary V-Ni-M alloys [J]. J. Mater. Sci. Technol., 2021, 70(0): 83-90. |
[13] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Xiangdong Zha, Yingche Ma, Kui Liu. Microstructure evolution and stress rupture properties of K4750 alloys with various B contents during long-term aging [J]. J. Mater. Sci. Technol., 2021, 73(0): 108-115. |
[14] | Huabao Yang, Liang Wu, Bin Jiang, Wenjun Liu, Jiangfeng Song, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries [J]. J. Mater. Sci. Technol., 2021, 62(0): 128-138. |
[15] | Yong Li, Zhiyong Liu, Endian Fan, Yunhua Huang, Yi Fan, Bojie Zhao. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64(0): 141-152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||