J. Mater. Sci. Technol. ›› 2021, Vol. 67: 254-264.DOI: 10.1016/j.jmst.2020.08.028
• Research article • Previous Articles Next Articles
S.J. Wua,b, Z.Q. Liua,b, R.T. Qua,b,*(), Z.F. Zhanga,b,*(
)
Received:
2020-05-27
Revised:
2020-07-03
Accepted:
2020-07-06
Published:
2021-03-20
Online:
2021-04-15
Contact:
R.T. Qu,Z.F. Zhang
About author:
zhfzhang@imr.ac.cn (Z.F. Zhang).S.J. Wu, Z.Q. Liu, R.T. Qu, Z.F. Zhang. Designing metallic glasses with optimal combinations of glass-forming ability and mechanical properties[J]. J. Mater. Sci. Technol., 2021, 67: 254-264.
Fig. 1. Schematic illustration to show the relations among compositions, elastic constants, glass-forming ability (GFA) and mechanical properties in MGs, as well as the strategy to design the large-size, high-strength or high-toughness BMGs.
Metallic glass | a | b | c | d | k1 | k2 |
---|---|---|---|---|---|---|
Zr (fBe < 15 at. %) | 3.1599 | 0.3435 | 2.8291 | 0.2809 | 0.85 | 1.00 |
Zr (fBe ≥ 15 at. %) | 3.2553 | 0.3340 | 3.1328 | 0.3163 | 0.85 | 1.00 |
Cu | 2.6686 | 0.2580 | 2.4942 | 0.2296 | 1.00 | 1.00 |
Mg | 2.1520 | 0.2477 | 2.9517 | 0.3896 | 1.00 | 0.63 |
Ni | 2.2876 | 0.1875 | 1.5255 | 0.0927 | 0.80 | 1.00 |
Ca | 2.2215 | 0.4102 | 3.0734 | 0.5972 | 1.00 | 1.00 |
Sr | 2.0131 | 0.3743 | 2.4093 | 0.4837 | 1.00 | 1.00 |
La | 3.1457 | 0.5101 | 1.5232 | 0.1546 | 1.00 | 1.00 |
Ce | 3.0636 | 0.4870 | 2.1652 | 0.3246 | 0.90 | 0.95 |
Pr | 3.0492 | 0.4654 | 2.7942 | 0.4196 | 0.85 | 0.90 |
Tm | 3.0999 | 0.3539 | 2.1500 | 0.2402 | 1.00 | 1.00 |
Table 1 Fitted values for the parameters a, b, c, d, k1 and k2 in different alloy systems of MGs. The values of a, b, c and d were obtained from Ref [40].
Metallic glass | a | b | c | d | k1 | k2 |
---|---|---|---|---|---|---|
Zr (fBe < 15 at. %) | 3.1599 | 0.3435 | 2.8291 | 0.2809 | 0.85 | 1.00 |
Zr (fBe ≥ 15 at. %) | 3.2553 | 0.3340 | 3.1328 | 0.3163 | 0.85 | 1.00 |
Cu | 2.6686 | 0.2580 | 2.4942 | 0.2296 | 1.00 | 1.00 |
Mg | 2.1520 | 0.2477 | 2.9517 | 0.3896 | 1.00 | 0.63 |
Ni | 2.2876 | 0.1875 | 1.5255 | 0.0927 | 0.80 | 1.00 |
Ca | 2.2215 | 0.4102 | 3.0734 | 0.5972 | 1.00 | 1.00 |
Sr | 2.0131 | 0.3743 | 2.4093 | 0.4837 | 1.00 | 1.00 |
La | 3.1457 | 0.5101 | 1.5232 | 0.1546 | 1.00 | 1.00 |
Ce | 3.0636 | 0.4870 | 2.1652 | 0.3246 | 0.90 | 0.95 |
Pr | 3.0492 | 0.4654 | 2.7942 | 0.4196 | 0.85 | 0.90 |
Tm | 3.0999 | 0.3539 | 2.1500 | 0.2402 | 1.00 | 1.00 |
Fig. 2. Summarization of the comparisons between the experimental elastic constants [33,41,42] and the predicted elastic constants: (a) shear modulus and (b) bulk modulus. The full lines represent the ideal tendency while the dashed lines represent the error of ± 10%.
Fig. 3. Correlations of the characteristic temperatures with the elastic constants for various different MGs. (a) The relation between glass transition temperature (Tg) and Young’s modulus (E) [33]. (b) The relation between crystallization temperature (Tx) and bulk modulus (K). (c) The relation between liquidus temperature (Tl) and E. The experimental values of elastic constants and characteristic temperatures were obtained from Ref [33,50,52,53]. (a) is adapted with permission from Ref [33].
Fig. 4. Summarization of the comparisons between the experimental data [33,42,45,62] and the predicted properties: (a) parameter $\gamma ={{T}_{\text{x}}}/({{T}_{\text{g}}}+{{T}_{\text{l}}})$, (b) facture strength and (c) Poisson’s ratio (ν). The solid lines and the dashed lines indicate the ideal tendency and ± 10% error, respectively.
Fig. 5. Failure surfaces predicted by the proposed approach and the verification by experimental data [58,64,65]. (a) Failure surface of Zr41Ti14Cu12.5Ni10Be22.5 in ${{\sigma }_{\text{xx}}}$- ${{\sigma }_{\text{yy}}}$ principal stress space. (b) Failure surface of Zr52.5Ni14.6Al10Cu17.9Ti5 in σ - τ stress space. The red solid lines and blue dots represent the predicted failure surfaces and experimental data, respectively. The blue, purple and green dashed lines indicate the Mohr’s circles under compression, shear and tension, respectively.
Fig. 6. Comparisons of composition-property maps between the experimental results [24,52] and the predictions. (a1) The calculated parameter $\gamma ={{T}_{\text{x}}}/({{T}_{\text{g}}}+{{T}_{\text{l}}})$ map of Ca-Mg-Cu alloys. (b1)-(c1) The calculated (b1) strength and (c1) Poisson’s ratio (ν) maps of Cu-Zr-Ag alloys. (a2) The experimental GFA map of Ca-Mg-Cu alloys. (b2)-(c2) The experimental (b2) strength and (c2) plasticity of Cu-Zr-Ag alloys. The measured experimental maximum and minimum values are indicated by arrows.
Fig. 7. Comparisons between the experimental data [24] and the predicted results. (a) The dependence of experimental and calculated compressive fracture strength on Ag content for the (Cu0.5Zr0.5)100-xAgx MGs. (b) The variations of experimental plasticity and calculated Poisson’s ratio with increasing Ag content for the (Cu0.5Zr0.5)100-xAgx MGs.
Fig. 8. Calculated property maps of a new designed Zr-Cu-Mg alloy system: (a) compressive fracture strength, (b) tensile fracture angle, (c) Poisson’s ratio and (d) parameter $\gamma ={{T}_{\text{x}}}/({{T}_{\text{g}}}+{{T}_{\text{l}}})$. The compositions of the highest strength, lowest tensile fracture angle, highest Poisson’s ratio and best γ are indicated by arrows, respectively.
Fig. 9. Relations among compressive fracture strength, tensile fracture angle, Poisson’s ratio and parameter $\gamma ={{T}_{\text{x}}}/({{T}_{\text{g}}}+{{T}_{\text{l}}})$ in a new designed Zr-Cu-Mg alloy system.
[1] | W.L. Johnson, Bulk amorphous metal—an emerging engineering material, JOM 54(2002) 40-43. |
[2] | C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Mechanical behavior of amorphousalloys, Acta Mater. 55(2007) 4067-4109. |
[3] | J.T. Kim, S.H. Hong, J.M. Park, J. Eckert, K.B. Kim, New para-magnetic(CoFeNi)50(CrMo)50-(CB) (x = 20, 25, 30) non-equiatomic high entropymetallic glasses with wide supercooled liquid region and excellentmechanical properties, J. Mater. Sci. Technol. 43(2020) 135-143. |
[4] |
Y.L. Li, S.F. Zhao, Y.H. Liu, P. Gong, J. Schroers, How many bulk metallic glassesare there? ACS Comb. Sci. 19(2017) 687-693.
DOI URL PMID |
[5] | H. Ma, L.L. Shi, J. Xu, Y. Li, E. Ma, Discovering inch-diameter metallic glasses inthree-dimensional composition space, Appl.Phys. Lett. 87(2005), 181915. |
[6] | W.H. Wang, Roles of minor additions in formation and properties of bulkmetallic glasses, Prog. Mater Sci. 52(2007) 540-596. |
[7] | J. Xu, U. Ramamurty, E. Ma, The fracture toughness of bulk metallic glasses, JOM 62 (2010) 10-18. |
[8] | B.A. Sun, W.H. Wang, The fracture of bulk metallic glasses, Prog.Mater Sci. 74(2015) 211-307. |
[9] | W. Zhou, W.P. Weng, J.X. Hou, Glass-forming Ability and Corrosion Resistanceof ZrCuAlCo Bulk Metallic Glass, J.Mater. Sci. Technol. 32(2016) 349-354. |
[10] | M.D. Demetriou, M.E. Launey, G. Garrett, J.P. Schramm, D.C. Hofmann, W. L.Johnson, R.O. Ritchie, A damage-tolerant glass, Nat.Mater. 10(2011) 123-128. |
[11] | A.L. Greer, Materials science-confusion by design, Nature 366 (1993) 303-304. |
[12] | A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphousalloys, Acta Mater. 48(2000) 279-306. |
[13] | T. Egami, Atomistic mechanism of bulk metallic glass formation, J. Non-Cryst.Solids 317 (2003) 30-33. |
[14] | Y.K. Yoo, Q.Z. Xue, Y.S. Chu, S. Xu, U. Hangen, H.C. Lee, W. Stein, X.D. Xiang, Identification of amorphous phases in the Fe-Ni-Co ternary alloy system usingcontinuous phase diagram material chips, Intermetallics 14 (2006) 241-247. |
[15] | S.Y. Ding, Y.H. Liu, Y.L. Li, Z. Liu, S. Sohn, F.J. Walker, J. Schroers, Combinatorialdevelopment of bulk metallic glasses, Nat.Mater. 13(2014) 494-500. |
[16] | P. Tsai, K.M. Flores, High-throughput discovery and characterization ofmulticomponent bulk metallic glass alloys, Acta Mater. 120(2016) 426-434. |
[17] | F. Ren, L. Ward, T. Williams, K.J. Laws, C. Wolverton, J. Hattrick-Simpers A. Mehta, Accelerated discovery of metallic glasses through iteration of machinelearning and high-throughput experiments, Sci.Adv. 4(2018) 1566. |
[18] | J. Wang, A. Agrawal, K. Flores, Are hints about glass forming ability hidden inthe liquid structure? Acta Mater. 171(2019) 163-169. |
[19] |
M.X. Li, S.F. Zhao, Z. Lu, A. Hirata, P. Wen, H.Y. Bai, M.W. Chen, J. Schroers, Y. H.Liu, W.H. Wang, High-temperature bulk metallic glasses developed bycombinatorial methods, Nature 569 (2019) 99-103.
DOI URL PMID |
[20] | Y.Q. Cheng, E. Ma, Atomic-level structure and structure-property relationshipin metallic glasses, Prog.Mater Sci. 56(2011) 379-473. |
[21] | J. Ding, Y.Q. Cheng, H. Sheng, M. Asta, R.O. Ritchie, E. Ma, Universal structuralparameter to quantitatively predict metallic glass properties, Nat.Commun. 7(2016) 13733. |
[22] | J.C. Qiao, Q. Wang, J.M. Pelletier, H. Kato, R. Casalini, D. Crespo, E. Pineda, Y. Yao, Y. Yang, Structural heterogeneities and mechanical behavior ofamorphous alloys, Prog.Mater Sci. 104(2019) 250-329. |
[23] | F. Zhu, S. Song, K.M. Reddy, A. Hirata, M. Chen, Spatial heterogeneity as thestructure feature for structure-property relationship of metallic glasses, Nat.Commun. 9(2018) 3965. |
[24] | H.K. Kim, J.P. Ahn, B.J. Lee, K.W. Park, J.C. Lee, Role of atomic-scale chemicalheterogeneities in improving the plasticity of Cu-Zr-Ag bulk amorphousalloys, Acta Mater. 157(2018) 209-217. |
[25] | M. Wakeda, Y. Shibutani, Icosahedral clustering with medium-range orderand local elastic properties of amorphous metals, Acta Mater. 58(2010) 3963-3969. |
[26] | F. Spaepen, A microscopic mechanism for steady state inhomogeneous flow inmetallic glasses, Acta Metall. 25(1977) 407-415. |
[27] | A.S. Argon, Plastic deformation in metallic glasses, Acta Metall. 27(1979) 47-58. |
[28] | S.V. Ketov, Y.H. Sun, S. Nachum, Z. Lu, A. Checchi, A.R. Beraldin, H.Y. Bai, W. H.Wang, D.V. Louzguine-Luzgin, M.A. Carpenter, A.L. Greer, Rejuvenation ofmetallic glasses by non-affine thermal strain, Nature 524 (2015) 200-203. |
[29] | X.L. Bian, G. Wang, H.C. Chen, L. Yan, J.G. Wang, Q. Wang, P.F. Hu, J.L. Ren, K. C.Chan, N. Zheng, A. Teresiak, Y.L. Gao, Q.J. Zhai, J. Eckert, J. Beadsworth, K. A.Dahmen, P.K. Liaw, Manipulation of free volumes in a metallic glass throughXe-ion irradiation, Acta Mater. 106(2016) 66-77. |
[30] | X.D. Wang, R.T. Qu, S.J. Wu, Z.W. Zhu, H.F. Zhang, Z.F. Zhang, Improvingfatigue property of metallic glass by tailoring the microstructure to suppressshear band formation, Materialia 7 (2019), 100407. |
[31] |
J. Pan, Y.P. Ivanov, W.H. Zhou, Y. Li, A.L. Greer, Strain-hardening andsuppression of shear-banding in rejuvenated bulk metallic glass, Nature 578(2020) 559-562.
DOI URL PMID |
[32] | L. Zhang, Y. Wu, S. Feng, W. Li, H. Zhang, H. Fu, H. Li, Z. Zhu, H. Zhang, Rejuvenated metallic glass strips produced via twin-roll casting, J.Mater. Sci. Technol. 38(2020) 73-79. |
[33] | W.H. Wang, The elastic properties, elastic models and elastic perspectives ofmetallic glasses, Prog. Mater Sci. 57(2012) 487-656. |
[34] | H.S. Chen, J.T. Krause, E. Coleman, Elastic-constants, hardness and theirimplications to flow properties of metallic glasses, J. Non-Cryst. Solids 18(1975) 157-171. |
[35] | J.J. Lewandowski, W.H. Wang, A.L. Greer, Intrinsic plasticity or brittleness ofmetallic glasses, Philos. Mag. Lett. 85(2005) 77-87. |
[36] | J.J. Lewandowski, M. Shazly, A. Shamimi Nouri, Intrinsic and extrinsictoughening of metallic glasses, Scr. Mater. 54(2006) 337-341. |
[37] | W.H. Wang, Correlations between elastic moduli and properties in bulkmetallic glasses, J. Appl. Phys. 99(2006), 093506. |
[38] | B. Zhang, H.Y. Bai, R.J. Wang, Y. Wu, W.H. Wang, Shear modulus as a dominantparameter in glass transitions: ultrasonic measurement of the temperaturedependence of elastic properties of glasses, Phys. Rev. B 76 (2007), 012201. |
[39] | Y. Zhang, A.L. Greer, Correlations for predicting plasticity or brittleness ofmetallic glasses, J. Alloys Compd. 434(2007) 2-5. |
[40] | Z.Q. Liu, R.F. Wang, R.T. Qu, Z.F. Zhang, Precisely predicting and designing theelasticity of metallic glasses, J. Appl. Phys. 115(2014), 203513. |
[41] | Z.Q. Liu, Z.F. Zhang, Strengthening and toughening metallic glasses: Theelastic perspectives and opportunities, J. Appl. Phys. 115(2014), 163505. |
[42] | R.T. Qu, Z.Q. Liu, R.F. Wang, Z.F. Zhang, Yield strength and yield strain ofmetallic glasses and their correlations with glass transition temperature, J. Alloys Compd. 637(2015) 44-54. |
[43] | M.A. Meyers, K.K. Chawla, Mechanical Behavior of Materials, second ed.,Cambridge University Press, New York, 2009. |
[44] | D. Turnbull, Under what conditions can a glass be formed, Contemp. Phys. 10(1969) 473-488. |
[45] | Z.P. Lu, C.T. Liu, A new glass-forming ability criterion for bulk metallic glasses, Acta Mater. 50(2002) 3501-3512. |
[46] | Z.P. Lu, C.T. Liu, Glass formation criterion for various glass-forming systems,Phys.Rev. Lett. 91(2003), 115505. |
[47] | X.S. Xiao, F. Shoushi, G.M. Wang, H. Qin, Y. Dong, Influence of beryllium onthermal stability and glass-forming ability of Zr-Al-Ni-Cu bulk amorphousalloys, J.Alloys Compd. 376(2004) 145-148. |
[48] | K. Mondal, B.S. Murty, On the parameters to assess the glass forming ability ofliquids, J. Non-Cryst. Solids 351 (2005) 1366-1371. |
[49] |
P.G. Debenedetti, F.H. Stillinger, Supercooled liquids and the glass transition,Nature 410 (2001) 259-267.
DOI URL PMID |
[50] | X.D. Deng, S.S. Chen, Q. Hu, S.H. Xie, J.Z. Zou, M.A.Z.G. Sial, X.R. Zeng, Excellentroom-temperature mechanical properties in the high glass-formingZr-Cu-Ni-Al-Nb alloy system, Mater. Res. Express 6 (2019), 086551. |
[51] | S. Yamanaka, T. Maekawa, H. Muta, T. Matsuda, S.-i. Kobayashi, K. Kurosaki, Thermal and mechanical properties of SrHfO3, J. Alloys Compd. 381(2004) 295-300. |
[52] | O.N. Senkov, J.M. Scott, D.B. Miracle, Composition range and glass formingability of ternary Ca-Mg-Cu bulk metallic glasses, J. Alloys Compd. 424(2006) 394-399. |
[53] | X.K. Xi, S. Li, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang, Bulk scandium-basedmetallic glasses, J. Mater. Res. 20(2011) 2243-2247. |
[54] | Z.F. Zhang, J. Eckert, L. Schultz, Difference in compressive and tensile fracturemechanisms of Zr59CU20Al10Ni8Ti3 bulk metallic glass, Acta Mater. 51(2003) 1167-1179. |
[55] |
Z.F. Zhang, G. He, J. Eckert, L. Schultz, Fracture mechanisms in bulk metallicglassy materials, Phys. Rev. Lett. 91(2003), 045505.
DOI URL PMID |
[56] |
C.A. Schuh, A.C. Lund, Atomistic basis for the plastic yield criterion of metallicglass, Nat. Mater. 2(2003) 449-452.
DOI URL PMID |
[57] |
Z.F. Zhang, J. Eckert, Unified tensile fracture criterion, Phys. Rev. Lett. 94(2005), 094301.
DOI URL PMID |
[58] | R.T. Qu, Z.F. Zhang, A universal fracture criterion for high-strength materials,Sci. Rep. 3(2013) 1117. |
[59] | R.T. Qu, Z.F. Zhang, Failure surfaces of high-strength materials predicted by auniversal failure criterion, Int.J. Fract. 211(2018) 1-16. |
[60] | Z.Q. Song, E. Ma, J. Xu, Failure of Zr61Ti2Cu25Al12 bulk metallic glass undertorsional loading, Intermetallics 86 (2017) 25-32. |
[61] | W.L. Johnson, K. Samwer, A universal criterion for plastic yielding of metallicglasses with a (T/Tg)(2/3) temperature dependence, Phys.Rev. Lett. 95(2005) 195501. |
[62] | Z.Q. Liu, R.T. Qu, Z.F. Zhang, Elasticity dominates strength and failure inmetallic glasses, J.Appl. Phys. 117(2015), 014901. |
[63] | P. Zhang, S.X. Li, Z.F. Zhang, General relationship between strength andhardness, Mater. Sci. Eng. A 529 (2011) 62-73. |
[64] | X.Q. Lei, Y.J. Wei, B.C. Wei, W.H. Wang, Spiral fracture in metallic glasses andits correlation with failure criterion, Acta Mater. 99(2015) 206-212. |
[65] | C. Chen, M. Gao, C. Wang, W.H. Wang, T.C. Wang, Fracture behaviors underpure shear loading in bulk metallic glasses, Sci.Rep. 6(2016) 39522. |
[66] | Q. He, J.K. Shang, E. Ma, J. Xu, Crack-resistance curve of a Zr-Ti-Cu-Al bulkmetallic glass with extraordinary fracture toughness, Acta Mater. 60(2012) 4940-4949. |
[1] | Yuankui Cao, Weidong Zhang, Bin Liu, Yong Liu, Meng Du, Ao Fu. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 10-20. |
[2] | Changhong Cai, Marta M. Alves, Renbo Song, Yongjin Wang, Jingyuan Li, M. Fátima Montemor. Non-destructive corrosion study on a magnesium alloy with mechanical properties tailored for biodegradable cardiovascular stent applications [J]. J. Mater. Sci. Technol., 2021, 66(0): 128-138. |
[3] | Zhuwei Lv, Chenchen Yuan, Haibo Ke, Baolong Shen. Defects activation in CoFe-based metallic glasses during creep deformation [J]. J. Mater. Sci. Technol., 2021, 69(0): 42-47. |
[4] | M.C. Ri, D.W. Ding, Y.H. Sun, W.H. Wang. Microstructure change in Fe-based metallic glass and nanocrystalline alloy induced by liquid nitrogen treatment [J]. J. Mater. Sci. Technol., 2021, 69(0): 1-6. |
[5] | Z. Zhen, H. Wang, C.Y. Teng, C.G. Bai, D.S. Xu, R. Yang. Dislocation self-interaction in TiAl: Evolution of super-dislocation dipoles revealed by atomistic simulations [J]. J. Mater. Sci. Technol., 2021, 69(0): 138-147. |
[6] | L. Deng, K. Kosiba, R. Limbach, L. Wondraczek, U. Kühn, S. Pauly. Plastic deformation of a Zr-based bulk metallic glass fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 60(0): 139-146. |
[7] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
[8] | Jing Wang, Li You, Zhibin Li, Xiongjun Liu, Rui Li, Qing Du, Xianzhen Wang, Hui Wang, Yuan Wu, Suihe Jiang, Zhaoping Lu. Self-supporting nanoporous Ni/metallic glass composites with hierarchically porous structure for efficient hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 73(0): 145-150. |
[9] | Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism [J]. J. Mater. Sci. Technol., 2021, 73(0): 151-164. |
[10] | Raymond Kwesi Nutor, Q.P. Cao, X.D. Wang, D.X. Zhang, J.Z. Jiang. Tunability of the mechanical properties of (Fe50Mn27Ni10Cr13)100-xMox high-entropy alloys via secondary phase control [J]. J. Mater. Sci. Technol., 2021, 73(0): 210-217. |
[11] | Chendong Zhao, Jinshan Li, Yudong Liu, William Yi Wang, Hongchao Kou, Eric Beaugnon, Jun Wang. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 83-90. |
[12] | Kun Wang, Xian Tong, Jixing Lin, Aiping Wei, Yuncang Li, Matthew Dargusch, Cuie Wen. Binary Zn-Ti alloys for orthopedic applications: Corrosion and degradation behaviors, friction and wear performance, and cytotoxicity [J]. J. Mater. Sci. Technol., 2021, 74(0): 216-229. |
[13] | Jiang Yang, Honggang Dong, Yueqing Xia, Peng Li, Xiaohu Hao, Yaqiang Wang, Wei Wu, Baosen Wang. Carbide precipitates and mechanical properties of medium Mn steel joint with metal inert gas welding [J]. J. Mater. Sci. Technol., 2021, 75(0): 48-58. |
[14] | D.X. Han, L. Zhao, S.H. Chen, G. Wang, K.C. Chan. Critical transitions in the shape morphing of kirigami metallic glass [J]. J. Mater. Sci. Technol., 2021, 61(0): 204-212. |
[15] | Qiaoyue Zhang, Shun-Xing Liang, Zhe Jia, Wenchang Zhang, Weimin Wang, Lai-Chang Zhang. Efficient nanostructured heterogeneous catalysts by electrochemical etching of partially crystallized Fe-based metallic glass ribbons [J]. J. Mater. Sci. Technol., 2021, 61(0): 159-168. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||