J. Mater. Sci. Technol. ›› 2021, Vol. 67: 265-272.DOI: 10.1016/j.jmst.2020.06.054
• Research article • Previous Articles
Weihua Gua, Xiaoqing Cuia, Jing Zhengb, Jiwen Yua, Yue Zhaoa, Guangbin Jia,*
Received:
2020-05-12
Revised:
2020-06-20
Accepted:
2020-06-26
Published:
2021-03-20
Online:
2021-04-15
Contact:
Guangbin Ji
About author:
* E-mail address: gbji@nuaa.edu.cn (G. Ji).1These authors contributed equally to this work.
Weihua Gu, Xiaoqing Cui, Jing Zheng, Jiwen Yu, Yue Zhao, Guangbin Ji. Heterostructure design of Fe3N alloy/porous carbon nanosheet composites for efficient microwave attenuation[J]. J. Mater. Sci. Technol., 2021, 67: 265-272.
Fig. 1. (a, c, e) SEM images of the precursor; (b, f, g) SEM images of samples H-1.5 (b), H-3 (d) and H-4.5 (f); (g, h, i) TEM images of H-1.5 (g), H-3 (h) and H-4.5 (i); (j) the synthesis diagram of two-dimensional flaky Fe3N alloy/carbon.
Fig. 2. (a) XRD patterns of samples H-1.5, H-3 and H-4.5; (b) XPS survey scan of H-3; (c) Fe 2p XPS spectra of H-3; (d) N 1s XPS spectra of H-3; (e) nitrogen adsorption-desorption isotherms and (f) pore-size distribution plots of H-3.
Fig. 4. (a-c) 3D RL plots of (a) H-1.5, (b) H-3 and (c) H-4.5/paraffin composites; (d, e) the RL values for H-1.5, H-3 and H-4.5/paraffin composites with thicknesses of 2.1 mm (d) and 2.05 mm (e); (f) |Zin/Z0| values of H-1.5, H-3 and H-4.5/paraffin composites with the thickness of 2.1 mm and 2.05 mm.
Fig. 5. (a) Frequency dependence of permeability constant; (b) magnetic loss tangent (tanδm); (c) μ″(μ′)-2f-1 values; (d) real part and (e) imaginary part of dielectric constant; (f) the average conductivity values in S, C, X and Ku bands of H-1.5, H-3 and H-4.5/paraffin composites.
Fig. 6. Cole-Cole plots of (a) H-1.5, (b) H-3 and (c) H-4.5; (d) tanδe values of all samples; (e) schematic illustration of the possible microwave absorption model.
[1] |
H. Chen, B. Zhao, Z. Zhao, H. Xiang, F. Dai, J. Liu, Y. Zhou, J. Mater. Sci. Technol. 47(2020) 216-222.
DOI URL |
[2] |
D. Gopakumar, A. Pai, Y. Pottathara, D. Pasquini, L. Morais, M. Luke, N. Kalarikkal, Y. Grohens, S. Thomas, ACS Appl. Mater. Interfaces 10 (2018), 20032.
DOI URL PMID |
[3] |
N. Gill, V. Gupta, M. Tomar, A.L. Sharma, O.P. Pandey, D.P. Singh, Compos. Sci.Technol. 192(2020), 108113.
DOI URL |
[4] |
G. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang, J. Lipton, K. Maleski, J. Kong, E. Shaulsky, M. Elimelech, Y. Gogotsi, D. Andre, Adv. Funct. Mater. 28(2018), 1803360.
DOI URL |
[5] |
M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao, H.J. Yang, X.Y. Fang, J. Yuan, Adv. Funct. Mater. 29(2019), 1807398.
DOI URL |
[6] |
Y. Ding, L. Zhang, Q.L. Liao, G.J. Zhang, S. Liu, Y. Zhang, Nano Res. 9(2016) 2018-2025.
DOI URL |
[7] | X.L. Liang, Z.M. Man, B. Quan, J. Zheng, W.H. Gu, Z. Zhang, G.B. Ji, Nano-MicroLett. 12(2020) 102. |
[8] |
Z.C. Lou, R. Li, P. Wang, Y. Zhang, B. Chen, C. Huang, C.C. Wang, H. Han, Y.J. Li, Chem. Eng. J. 391(2019), 123571.
DOI URL |
[9] |
X.G. Liu, C.Y. Cui, J.Y. Yu, Y.P. Sun, Mater. Lett. 225(2018) 1-4.
DOI URL |
[10] |
J. Li, D. Zhou, W.F. Liu, J.Z. Su, M.S. Fu, Scr. Mater. 171(2019) 42-46.
DOI URL |
[11] |
J.F. Zhao, Y.C. Weng, S.L. Xu, A. Shebl, X.M. Wen, G. Yang, J. Power Sources 464(2020), 228246.
DOI URL |
[12] |
H. Yin, C. Zhang, F. Liu, Y. Hou, Adv. Funct. Mater. 24(2014) 2930-2937.
DOI URL |
[13] |
K.V. Rohith, P. Saravanan, T.R.K. Suresh, R. Radha, M. Balasubramaniam S. Balakumar, Nanoscale 10 (2018) 12018-12034.
DOI URL PMID |
[14] |
S.Y. Zhang, Q.X. Cao, Y.R. Xue, Y.X. Zhou, J. Magn, Magn. Mater. 374(2015) 755-761.
DOI URL |
[15] |
X.Q. Cui, X.H. Liang, W. Liu, W.H. Gu, G.B. Ji, Y.W. Du, Chem. Eng. J. 381(2020), 122589.
DOI URL |
[16] |
G.Z. Wang, Z. Gao, S.W. Tang, C.Q. Chen, F.F. Duan, S.C. Zhao, S.W. Lin, Y. H.Feng, L. Zhou, Y. Qin, ACS Nano 6 (2012) 11009-11017.
DOI URL PMID |
[17] |
W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang, M.G. Ma, F. Chen, ACS Nano 12 (2018) 4583-4593.
DOI URL PMID |
[18] | H.Q. Zhao, Y. Cheng, H.L. Lv, B.S. Zhang, G.B. Ji, Y.W. Du, ACS Sustain. Chem.Eng. 6(2018) 15850-15857. |
[19] |
X.Q. Cui, X.H. Liang, J.B. Chen, W.H. Gu, G.B. Ji, Y.W. Du, Carbon 156 (2020) 49-57.
DOI URL |
[20] | Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan, W. She, Y.J. Yang, R.C. Che, Adv.Mater. 28(2016) 486-490. |
[21] |
Y. Cheng, J.Z.Y. Seow, H.Q. Zhao, Z.C.J. Xu, G.B. Ji, Nano-Micro Lett. 12(2020) 125.
DOI URL |
[22] |
H. Zhong, C. Deng, Y. Qiu, L. Yao, H. Zhang, J. Mater. Chem. A 2 (2014) 17047-17057.
DOI URL |
[23] |
T.F. Li, M. Li, M.R. Zhang, X. Li, K.H. Liu, M.Y. Zhang, X. Liu, D.M. Sun, L. Xu, Y. W.Zhang, Y.W. Tang, Carbon 153 (2019) 364-371.
DOI URL |
[24] |
P. Wang, G.W. Wang, J.M. Zhang, B.F. Duan, L.H. Zheng, S. Zhang, D.L. He T. Wang, Chem. Eng. J. 382(2020) 122804.
DOI URL |
[25] |
J.F. Löffler, J.P. Meier, B. Doudin, J. Ansermet, Phys. Rev. B 57 (1998) 2915-2924.
DOI URL |
[26] |
R. Lv, F. Kang, J. Gu, X. Gui, J. Wei, K. Wang, D. Wu, Appl. Phys. Lett. 93(2008), 223105.
DOI URL |
[27] |
B. Quan, W.H. Shi, S.J.H. Ong, X.C. Lu, P.L. Wang, G.B. Ji, Y.F. Guo, L.R. Zheng, Z.C.J. Xu, Adv. Funct. Mater. 29(2019), 1901236.
DOI URL |
[28] |
W.H. Gu, B. Quan, X.H. Liang, W. Liu, G.B. Ji, Y.W. Du, ACS Sustain. Chem. Eng. 7(2019) 5543-5552.
DOI URL |
[29] | J. Wang, J. Wang, R. Xu, Y. Sun, B. Zhang, W. Chen, T. Wang, S. Yang, J. AlloysCompd. 653(2015) 14-21. |
[30] | W.H. Gu, J. Zheng, X.H. Liang, X.Q. Cui, J.B. Chen, Z. Zhang, G.B. Ji, Inorg. Chem.Front. 7(2020) 1667-1675. |
[31] | H. Wang, F. Meng, F. Huang, C. Jing, Y. Li, W. Wei, Z. Zhou, ACS Appl. Mater.Interfaces 11 (2019) 12142-12153. |
[32] |
H.Q. Zhao, Y. Cheng, Z. Zhang, J.W. Yu, J. Zheng, M. Zhou, L. Zhou, B.S. Zhang, G.B. Ji, Compos. Part B Eng. 196(2020), 108119.
DOI URL |
[33] |
W. Liu, L. Liu, Z.H. Yang, J.J. Xu, Y.L. Hou, G.B. Ji, ACS Appl. Mater. Interfaces 10(2018) 8965-8975.
DOI URL PMID |
[34] | W.H. Gu, J.W. Tan, J.B. Chen, Z. Zhang, Y. Zhao, J.W. Yu, G.B. Ji, ACS Appl. Mater.Interfaces 12 (2020) 28727-28737. |
[35] | X. Liu, H.Z. Guo, Q.S. Xie, Q. Luo, L.S. Wang, D.L. Peng, J. Alloys Compd. 15(2015) 537-543. |
[36] |
L. Wang, B. Wen, X.Y. Bai, C. Liu, H.B. Yang, J. Colloid Interface Sci. 540(2019) 30-38.
DOI URL PMID |
[37] |
F.S. Wen, H. Hou, J.Y. Xiang, X.Y. Zhang, Z.B. Su, S.J. Yuan, Z.Y. Liu, Carbon 89(2015) 372-377.
DOI URL |
[38] | X.G. Liu, J.Y. Yu, C.Y. Cui, Y.P. Sun, X.L. Li, Z.X. Li, J. Phys. D Appl. Phys. 51(2018) 26. |
[39] |
X. Liu, L.S. Wang, Y.T. Ma, H.F. Zheng, L. Lin, Q.F. Zhang, Y.Z. Chen, Y.L. Qiu D. L.Peng, ACS Appl. Mater. Interfaces 9 (2017) 7601-7610.
DOI URL PMID |
[40] | B. Zhao, X. Zhang, J.S. Deng, Z.Y. Bai, L.Y. Liang, Y. Li, R. Zhang, Phys. Chem.Chem. Phys. 20(2018) 28623-28633. |
[1] | Xueru Chen, Yin Zhang, Dashui Yuan, Wu Huang, Jing Ding, Hui Wan, Wei-Lin Dai, Guofeng Guan. One step method of structure engineering porous graphitic carbon nitride for efficient visible-light photocatalytic reduction of Cr(VI) [J]. J. Mater. Sci. Technol., 2021, 71(0): 211-220. |
[2] | Wenjuan Wang, Yan Zhao, Yongguang Zhang, Ning Liu, Zhumabay Bakenov. Nickel embedded porous macrocellular carbon derived from popcorn as sulfur host for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 69-77. |
[3] | Guangrong Li, Chunhua Tang, Guanjun Yang. Dynamic-stiffening-induced aggravated cracking behavior driven by metal-substrate-constraint in a coating/substrate system [J]. J. Mater. Sci. Technol., 2021, 65(0): 154-163. |
[4] | Kai Huang, Yuyang Xu, Yanpeng Song, Ruyue Wang, Hehe Wei, Yuanzheng Long, Ming Lei, Haolin Tang, Jiangang Guo, Hui Wu. NiPS3 quantum sheets modified nitrogen-doped mesoporous carbon with boosted bifunctional oxygen electrocatalytic performance [J]. J. Mater. Sci. Technol., 2021, 65(0): 1-6. |
[5] | Wang Yang, Bo Jiang, Zhihui Liu, Rui Li, Liqiang Hou, Zhengxuan Li, Yongli Duan, Xingru Yan, Fan Yang, Yongfeng Li. Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption [J]. J. Mater. Sci. Technol., 2021, 70(0): 214-223. |
[6] | Lu Zhang, Yuanyuan Cui, Fengli Yang, Quan Zhang, Juhua Zhang, Mengting Cao, Wei-Lin Dai. Electroless-hydrothermal construction of nickel bridged nickel sulfide@mesoporous carbon nitride hybrids for highly efficient noble metal-free photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 45(0): 176-186. |
[7] | Shan Jiang, Hao Shao, Genyang Cao, Han Li, Weilin Xu, Jingliang Li, Jian Fang, Xungai Wang. Waste cotton fabric derived porous carbon containing Fe3O4/NiS nanoparticles for electrocatalytic oxygen evolution [J]. J. Mater. Sci. Technol., 2020, 59(0): 92-99. |
[8] | Jing Liang, Cuili Xiang, Yongjin Zou, Xuebu Hu, Hailiang Chu, Shujun Qiu, Fen Xu, Lixian Sun. Spacing graphene and Ni-Co layered double hydroxides with polypyrrole for high-performance supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 190-197. |
[9] | Yin Liu, Cuili Xiang, Hailiang Chu, Shujun Qiu, Jennifer McLeod, Zhe She, Fen Xu, Lixian Sun, Yongjin Zou. Binary Co-Ni oxide nanoparticle-loaded hierarchical graphitic porous carbon for high-performance supercapacitors [J]. J. Mater. Sci. Technol., 2020, 37(0): 135-142. |
[10] | Su Jian, Fang Changqing, Yang Mannan, Cheng Youliang, Wang Zhen, Huang Zhigang, You Caiyin. A controllable soft-templating approach to synthesize mesoporous carbon microspheres derived from d-xylose via hydrothermal method [J]. J. Mater. Sci. Technol., 2020, 38(0): 183-188. |
[11] | Guangzhi Yang, Shen Song, Jing Li, Zhihong Tang, Jinyu Ye, Junhe Yang. Preparation and CO2 adsorption properties of porous carbon by hydrothermal carbonization of tree leaves [J]. J. Mater. Sci. Technol., 2019, 35(5): 875-884. |
[12] | Yurong Liu, Yongpeng Xia, Kang An, Chaowei Huanga, Weiwei Cui, Sheng Wei, Rong Ji, Fen Xu, Huanzhi Zhang, Lixian Sun. Fabrication and characterization of novel meso-porous carbon/n-octadecane as form-stable phase change materials for enhancement of phase-change behavior [J]. J. Mater. Sci. Technol., 2019, 35(5): 939-945. |
[13] | Tinghuan Wu, Lixian Sun, Fen Xu, Dan Cai. Nitrogen-doped hierarchical porous carbon materials derived from diethylenetriaminepentaacetic acid (DTPA) for supercapacitors [J]. J. Mater. Sci. Technol., 2018, 34(12): 2384-2391. |
[14] | Yuemei Chen, Guoxiong Zhang, Jingyuan Zhang, Haibo Guo, Xin Feng, Yigang Chen, . Synthesis of porous carbon spheres derived from lignin through a facile method for high performance supercapacitors [J]. J. Mater. Sci. Technol., 2018, 34(11): 2189-2196. |
[15] | Camelia Matei Ghimbeu, Aleksandr I. Egunov, Andrey S. Ryzhikov, Valeriy A. Luchnikov. Carbon-Iron Microfibrous Material Produced by Thermal Treatment of Self-rolled Poly(4-vinyl pyridine) Films Loaded by Fe2O3 Particles [J]. J. Mater. Sci. Technol., 2015, 31(9): 881-887. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||