J. Mater. Sci. Technol. ›› 2021, Vol. 62: 52-59.DOI: 10.1016/j.jmst.2020.05.059
• Research Article • Previous Articles Next Articles
Xiaotan Yuana, Tao Zhoua, Weili Rena,*(), Jianchao Pengb, Tianxiang Zhenga, Long Houa, Jianbo Yua, Zhongming Rena, Peter K. Liawc, Yunbo Zhonga,*(
)
Received:
2020-04-10
Revised:
2020-05-20
Accepted:
2020-05-25
Published:
2021-01-30
Online:
2021-02-01
Contact:
Weili Ren,Yunbo Zhong
About author:
yunboz@staff.shu.edu.cn (Y. Zhong).Xiaotan Yuan, Tao Zhou, Weili Ren, Jianchao Peng, Tianxiang Zheng, Long Hou, Jianbo Yu, Zhongming Ren, Peter K. Liaw, Yunbo Zhong. Nondestructive effect of the cusp magnetic field on the dendritic microstructure during the directional solidification of Nickel-based single crystal superalloy[J]. J. Mater. Sci. Technol., 2021, 62: 52-59.
Fig. 2. (a) The structure of the CMF (the color legend represents the magnetic field intensity): (a1) the distribution of magnetic-field line (the horizontal black dashed line is the ZMP, and the black solid is the sample), (a2) the distribution of magnetic field line on the ZMP. (b) The microstructure of directionally-solidified samples near the TRI by the seeded method (the white and green dashed lines represent the TRI and the partial melting interface respectively): (b1) the selection of the TRI (the red rectangle is the zone of the TRI), (b2) the microstructure near the TRI.
Fig. 3. The longitudinal microstructures near the TRI under different magnetic fields (the white-dotted line is the TRI) : (a) without the magnetic field, (b) TMF, (c) LMF, (d) CMF, (a1-d1) OM images, (a2-d2) inverse pole Figure (IPF) maps (the green-dashed-line frame in a1 and d1 is the local secondary-dendrite magnification diagram. The secondary-dendrite arms on the left side are thicker than that on the right side without the magnetic field, while the secondary-dendrite arms are more symmetrical under CMF).
Fig. 4. The transverse microstructures of different solidification distances under various magnetic fields: (a) without the magnetic field, (b) TMF, (c) LMF, (d) CMF, (a1-d3) OM images, (a1-d1) at the TRI, (a2-d2) 5 mm above the TRI, (a3-d3) 15 mm above the TRI, (a1'-d3') IPF maps (the numbers in the lower left corner indicate the average orientation of the measured area).
Fig. 5. The normal distribution map of the ratio, LL/LR, under the CMF and without the magnetic field: (a), (b) the local magnification of dendrites in Fig. 4 (a3) and (d3); (c) the diagram of the asymmetry of the secondary-dendrite arm (LL and LR are the lengths of left and right dendrite arms).
Fig. 6. TEMF and TEMC simulations of a single cell under different magnetic fields: (a1) the calculation domain of the cell geometry model, which is φ1 mm × 3 mm; (a2) the JTE of the liquid-solid interface; (b1)-(d1) the distribution of TEMF on the cell under TMF, LMF, and CMF, respectively; (b2)-(d2) the distribution of TEMC in the liquid under the TMF, LMF, and CMF, respectively (the blue arrows represent the direction of TEMC). TEME of the dendritic array with different magnetic fields: (e1) TMF, (e2) LMF, (e3) CMF (the yellow arrows represent the TEMC direction, and the size of arrows represents the intensity).
[1] |
M. Schutze, Nat. Mater. 15 (2016) 823-824.
DOI URL PMID |
[2] |
T.M. Smith, B.D. Esser, N. Antolin, A. Carlsson, R.E. Williams, A. Wessman, T. Hanlon, H.L. Fraser, W. Windl, D.W. McComb, M.J. Mills, Nat. Commun. 7 (2016) 13434.
DOI URL PMID |
[3] |
J. Cormier, Nature 537 (2016) 315-316.
DOI URL PMID |
[4] |
W. Xia, X. Zhao, L. Yue, Z. Zhang, J. Mater. Sci. Technol. 44 (2020) 76-95.
DOI URL |
[5] |
L.H. Rettberg, T.M. Pollock, Acta Mater. 73 (2014) 287-297.
DOI URL |
[6] |
J.H. Perepezko, Science 326 (2009) 1068-1069.
DOI URL PMID |
[7] |
M. Seita, J.P. Hanson, S. Gradecak, M.J. Demkowicz, Nat. Commun. 6 (2015) 6164.
DOI URL PMID |
[8] |
J.P. Hanson, A. Bagri, J. Lind, P. Kenesei, R.M. Suter, S. Gradecak, M.J. Demkowicz, Nat. Commun. 9 (2018) 3386.
DOI URL PMID |
[9] |
X. Li, K. Lu, Nat. Mater. 16 (2017) 700-701.
DOI URL PMID |
[10] |
Y.J. Liang, X. Cheng, H.M. Wang, Acta Mater. 118 (2016) 17-27.
DOI URL |
[11] |
X.B. Zhao, L. Liu, C.B. Yang, Y.F. Li, J. Zhang, Y.L. Li, H.Z. Fu, J. Alloys Compd. 509 (2011) 9645-9649.
DOI URL |
[12] |
E. Alabort, D. Barba, S. Sulzer, M. Lißner, N. Petrinic, R.C. Reed, Acta Mater. 151 (2018) 377-394.
DOI URL |
[13] |
P. Hallensleben, H. Schaar, P. Thome, N. Jöns, A. Jafarizadeh, I. Steinbach, G. Eggeler, J. Frenzel, Mater. Des. 128 (2017) 98-111.
DOI URL |
[14] |
Y. Zhao, J. Zhang, Y. Luo, G. Sha, L. Li, D. Tang, Q.C. Feng, Acta Mater. 176 (2019) 109-122.
DOI URL |
[15] |
F. Wang, D. Ma, A. Bührig-Polaczek, Mater. Charact. 127 (2017) 311-316.
DOI URL |
[16] |
W. Ren, C. Niu, B. Ding, Y. Zhong, J. Yu, Z. Ren, W. Liu, L. Ren, P.K. Liaw, Sci. Rep. 8 (2018) 1452.
DOI URL PMID |
[17] |
C. Mapelli, A. Gruttadauria, M. Peroni, J. Mater. Process. Technol. 210 (2010) 306-314.
DOI URL |
[18] | P. Daggolu, J.W. Ryu, A. Galyukov, A. Kondratyev, J. Cryst. Growth 452 (2016) 22-26. |
[19] | A. Kao, B. Cai, P.D. Lee, K. Pericleous, J. Cryst. Growth 457 (2017) 270-274. |
[20] |
Z. Lu, Y. Fautrelle, Z. Ren, X. Li, Sci. Rep. 8 (2018) 10641.
DOI URL PMID |
[21] |
W. Ren, T. Zhang, Z. Ren, A. Zhao, Y. Zhong, J. Guo, Mater. Lett. 63 (2009) 382-385.
DOI URL |
[22] | H. Zhong, C. Li, Z. Ren, M. Rettenmayr, Y. Zhong, J. Yu, J. Wang, J. Cryst. Growth 439 (2016) 66-73. |
[23] |
J. Wang, Y. Fautrelle, H. Nguyen-Thi, G. Reinhart, H. Liao, X. Li, Y. Zhong, Z. Ren, Metall. Mater. Trans. A 47 (2015) 1169-1179.
DOI URL |
[24] |
X. Li, A. Gagnoud, Y. Fautrelle, Z. Ren, R. Moreau, Y. Zhang, C. Esling, Acta Mater. 60 (2012) 3321-3332.
DOI URL |
[25] | T. Alboussiere, A.C. Neubrand, J.P. Garandet, R. Moreau, Magnetohydrodynamics 31 (1995) 228-235. |
[26] |
W.L. Ren, Y.F. Fan, J.W. Feng, Y.B. Zhong, J.B. Yu, Z.M. Ren, P.K. Liaw, Sci. Rep. 6 (2016) 20598.
DOI URL PMID |
[27] |
X. Li, A. Gagnoud, Z. Ren, Y. Fautrelle, R. Moreau, Acta Mater. 57 (2009) 2180-2197.
DOI URL |
[28] |
P. Lehmann, R. Moreau, D. Camel, R. Bolcato, Acta Mater. 46 (1998) 4067-4079.
DOI URL |
[29] |
S. Shuai, X. Lin, Y. Dong, L. Hou, H. Liao, J. Wang, Z. Ren, J. Mater. Sci. Technol. 35 (2019) 1587-1592.
DOI URL |
[30] | M. Li, W.L. Ren, Z.M. Ren, X. Li, Y.B. Zhong, K. Deng, Chin. J. Nonferrous Met. 21 (2011) 1292-1298 (in Chinese). |
[31] | Y.Y. Khine, J.S. Walker, J. Cryst. Growth 183 (1998) 150-158. |
[32] |
K.C. Mills, Y. Youssef, Z. Li, Y. Su, ISIJ Int. 46 (5) (2006) 623-632.
DOI URL |
[1] | Weidan Ma, Jun Zhang, Haijun Su, Guangrao Fan, Min Guo, Lin Liu, Hengzhi Fu. Phase growth patterns for Al2O3/GdAlO3 eutectics over wide ranges of compositions and solidification rates [J]. J. Mater. Sci. Technol., 2021, 65(0): 89-98. |
[2] | Haijun Su, Yuan Liu, Qun Ren, Zhonglin Shen, Haifang Liu, Di Zhao, Guangrao Fan, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu. Distribution control and formation mechanism of gas inclusions in directionally solidified Al2O3-Er3Al5O12-ZrO2 ternary eutectic ceramic by laser floating zone melting [J]. J. Mater. Sci. Technol., 2021, 66(0): 21-27. |
[3] | Ying Niu, Yue Wang, Long Hou, Lansong Ba, Yanchao Dai, Yves Fautrelle, Zongbin Li, Zhongming Ren, Xi Li. Effect of γ phase on mechanical behavior and detwinning evolution of directionally solidified Ni-Mn-Ga alloys under uniaxial compression [J]. J. Mater. Sci. Technol., 2021, 66(0): 91-96. |
[4] | Lei Luo, Liangshun Luo, Robert O. Ritchie, Yanqing Su, Binbin Wang, Liang Wang, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Optimizing the microstructures and mechanical properties of Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification [J]. J. Mater. Sci. Technol., 2021, 61(0): 100-113. |
[5] | Luyan Yang, Shuangming Li, Kai Fan, Yang Li, Yanhui Chen, Wei Li, Deli Kong, Pengfei Cao, Haibo Long, Ang Li. Twin crystal structured Al-10 wt.% Mg alloy over broad velocity conditions achieved by high thermal gradient directional solidification [J]. J. Mater. Sci. Technol., 2021, 71(0): 152-162. |
[6] | Peng Peng, Jinmian Yue, Anqiao Zhang, Xudong Zhang, Yuanli Xu. Analysis on fluid permeability of dendritic mushy zone during peritectic solidification in a temperature gradient [J]. J. Mater. Sci. Technol., 2021, 71(0): 169-176. |
[7] | Shaodong Hu, Long Hou, Kang Wang, Zhongmiao Liao, Wen Zhu, Aihua Yi, Wenfang Li, Yves Fautrelle, Xi Li. Effect of transverse static magnetic field on radial microstructure of hypereutectic aluminum alloy during directional solidification [J]. J. Mater. Sci. Technol., 2021, 76(0): 207-214. |
[8] | Yubao Xiao, Tie Liu, Yuxin Tong, Meng Dong, Jinshan Li, Jun Wang, Qiang Wang. Microstructure evolution of peritectic Al-18 at.% Ni alloy directionally solidified in high magnetic fields [J]. J. Mater. Sci. Technol., 2021, 76(0): 51-59. |
[9] | Zhengkun Xie, Xiaowei An, Zhijun Wu, Xiyan Yue, Jiajia Wang, Xiaogang Hao, Abuliti Abudula, Guoqing Guan. Fluoropyridine family: Bifunction as electrolyte solvent and additive to achieve dendrites-free lithium metal batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 119-127. |
[10] | Lei Luo, Liangshun Luo, Yanqing Su, Lin Su, Liang Wang, Jingjie Guo, Hengzhi Fu. Optimizing microstructure, shrinkage defects and mechanical performance of ZL205A alloys via coupling travelling magnetic fields with unidirectional solidification [J]. J. Mater. Sci. Technol., 2021, 74(0): 246-258. |
[11] | Peng Peng, Anqiao Zhang, Jinmian Yue, Xudong Zhang, Yuanli Xu. Macrosegregation and thermosolutal convection-induced freckle formation in dendritic mushy zone of directionally solidified Sn-Ni peritectic alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 21-26. |
[12] | Chunjuan Cui, Cong Wang, Pei Wang, Wei Liu, Yuanyuan Lai, Li Deng, Haijun Su. Microstructure and fracture toughness of the Bridgman directionally solidified Fe-Al-Ta eutectic at different solidification rates [J]. J. Mater. Sci. Technol., 2020, 42(0): 63-74. |
[13] | Shiwei Ci, Jingjing Liang, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming [J]. J. Mater. Sci. Technol., 2020, 45(0): 23-34. |
[14] | Huiting Zheng, Ruirun Chen, Gang Qin, Xinzhong Li, Yanqing Su, Hongsheng Ding, Jingjie Guo, Hengzhi Fu. Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification [J]. J. Mater. Sci. Technol., 2020, 38(0): 19-27. |
[15] | Yuanhao Dong, Sansan Shuai, Tianxiang Zheng, Jiawei Cao, Chaoyue Chen, Jiang Wang, Zhongming Ren. In-situ observation of solid-liquid interface transition during directional solidification of Al-Zn alloy via X-ray imaging [J]. J. Mater. Sci. Technol., 2020, 39(0): 113-123. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||