J. Mater. Sci. Technol. ›› 2021, Vol. 62: 60-69.DOI: 10.1016/j.jmst.2020.05.066
• Research Article • Previous Articles Next Articles
Xuemin Yin, Hejun Li*(), Ruimei Yuan, Jinhua Lu*(
)
Received:
2020-04-21
Revised:
2020-05-21
Accepted:
2020-05-22
Published:
2021-01-30
Online:
2021-02-01
Contact:
Hejun Li,Jinhua Lu
About author:
lujinhua@nwpu.edu.cn (L. Jinhua).Xuemin Yin, Hejun Li, Ruimei Yuan, Jinhua Lu. NiCoLDH nanosheets grown on MOF-derived Co3O4 triangle nanosheet arrays for high-performance supercapacitor[J]. J. Mater. Sci. Technol., 2021, 62: 60-69.
Fig. 2. SEM images of different samples: (a) Co-MOFNSs/CC; (b), (c) Co3O4NSs/CC; (d)-(f) Co3O4@NiCoLDHNSs/CC. (g) EDX mapping images of Co3O4@NiCoLDHNSs/CC.
Fig. 3. (a, b, d, e) TEM and (c, f) HRTEM images of different samples: (a-c) Co3O4 and (d-f) Co3O4@NiCoLDHNSs, insert (f) is the enlarged HRTEM image.
Fig. 4. (a) XRD patterns of different samples. XPS spectrum of Co3O4@NiCoLDHNSs: (b) Survey spectrum, high-resolution spectrum of (c) Ni 2p and (d) Co 2p.
Fig. 5. (a) CV curves, (b) GCD curves, (e) Rate performance and (f) Nyquist plots of different samples. (c) CV and (d) GCD curves of Co3O4@NiCoLDHNSs/CC electrode.
Fig. 6. (a) Cycle performance of different samples at a current density of 10 A g-1 for 4000 cycles; (b) CV curves of Co3O4@NiCoLDHNSs-20 before and after cycles at 20 mV s-1.
Fig. 7. (a) CV curves of Co3O4@NiCoLDHNSs/CC and AC/CC electrodes at a scan rate of 20 mV s-1; (b) CV curves in different potential ranges at 50 mVs-1, (c) GCD curves in different potential ranges at 5 A g-1, (d) CV curves at different scan rates, (e) GCD curves at different current densities, and (f) Specific capacitances at different current densities of Co3O4@NiCoLDHNSs//AC ASC.
Fig. 8. (a) Ragone plots and (b) Cycling performance of Co3O4@NiCoLDHNSs//AC ASC. Insert (b) is the digital photos of a red LED powered by two devices in series.
[1] |
J.G. Wang, Z. Zhang, X. Zhang, X. Yin, X. Li, X. Liu, F. Kang, B. Wei, Nano Energy 39 (2017) 647-653.
DOI URL |
[2] |
X. Yin, H. Li, Y. Fu, R. Yuan, J. Lu, Chem. Eng. J. 392 (2020), 124820.
DOI URL |
[3] | T. Liu, J. Liu, L. Zhang, B. Cheng, J. Yu, J. Mater, Sci. Technol. 47 (2020) 113-121. |
[4] | X. Yin, H. Li, H. Wang, Z. Zhang, R. Yuan, J. Lu, Q. Song, J. Wang, L. Zhang, Q. Fu, ACS Appl. Mater. Interfaces 10 (2018) 29496-29504. |
[5] | C. Guan, J. Liu, C. Cheng, H. Li, X. Li, W. Zhou, H. Zhang, H. Fan, Energy Environ. Sci. 4 (2011) 4496-4499. |
[6] | R. Yuan, H. Li, X. Yin, P. Wang, J. Lu, L. Zhang, Chem. Commun. 55 (2019) 9031-9034. |
[7] |
B. Xue, K. Li, Y. Guo, J. Lu, S. Gu, L. Zhang, J. Colloid Interface Sci. 557 (2019) 112-123.
DOI URL PMID |
[8] | X. Yin, H. Li, R. Yuan, L. Zhang, J. Lu, Sci. China Mater. 63 (2020) 739-747. |
[9] | Y. Liu, C. Xiang, H. Chu, S. Qiu, J. McLeod, Z. She, F. Xu, L. Sun, Y. Zou, J. Mater, Sci. Technol. 37 (2020) 135-142. |
[10] | X. Feng, Y. Huang, C. Li, X. Chen, S. Zhou, X. Gao, C. Chen, Chem. Eng. J. 368 (2019) 51-60. |
[11] | L. Liu, X. Hu, H. Zeng, M. Yi, S. Shen, S. Xu, X. Cao, J. Du, J. Mater. Sci. Technol. 35 (2019) 1691-1699. |
[12] | C. Guan, X. Liu, W. Ren, X. Li, C. Cheng, J. Wang, Adv. Energy Mater. 7 (2017), 1602391. |
[13] | N. Wang, B. Sun, P. Zhao, M. Yao, W. Hu, S. Komarneni, Chem. Eng. J. 345 (2018) 31-38. |
[14] | J.G. Wang, R. Zhou, D. Jin, K. Xie, B. Wei, Energy Storage Mater. 2 (2016) 1-7. |
[15] |
X. Yin, H. Li, L. Han, R. Yuan, J. Lu, J. Colloid Interface Sci. 577 (2020) 481-493.
DOI URL PMID |
[16] | W. Lu, M. Yang, X. Jiang, Y. Yu, X. Liu, Y. Xing, Chem. Eng. J. 382 (2020), 122943. |
[17] | G. Zhang, Y. Chen, Y. Jiang, C. Lin, Y. Chen, H. Guo, J. Mater. Sci. Technol. 34 (2018) 1538-1543. |
[18] | Z. Peng, L. Gong, J. Huang, Y. Wang, L. Tan, Y. Chen, Carbon 153 (2019) 531-538. |
[19] | L. Xu, L. Zhang, B. Cheng, J. Yu, Carbon 152 (2019) 652-660. |
[20] | N. Wang, B. Sun, P. Zhao, M. Yao, W. Hu, S. Komarneni, Chem. Eng. J. 345 (2018) 31-38. |
[21] | X. Wang, F. Huang, F. Rong, P. He, R. Que, J. Mater. Chem. A7 (2019) 12018-12028. |
[22] | Q. Yang, Y. Liu, M. Yan, Y. Lei, W. Shi, Chem. Eng. J. 370 (2019) 666-676. |
[23] | Y. Zhao, J. Liu, M. Horn, N. Motta, M. Hu, Y. Li, Sci. China Mater. 61 (2018) 159-184. |
[24] | W. Zhao, Y. Zheng, L. Cui, D. Jia, D. Wei, R. Zheng, C. Barrow, W. Yang, J. Liu, Chem. Eng. J. 371 (2019) 461-469. |
[25] |
H. Hu, B. Guan, B. Xia, X.W. Lou, J. Am. Chem. Soc. 137 (2015) 5590-5595.
DOI URL PMID |
[26] | F. Song, G. Zan, Y. Chen, Q. Wu, Y. Xu, J. Alloys Compd. 741 (2018) 633-641. |
[27] | X. Liu, L. Zhang, X. Gao, C. Guan, Y. Hu, J. Wang, ACS Appl. Mater. Interfaces 11 (2019) 23236-23243. |
[28] | D. Kong, Y. Wang, S. Huang, J. Hu, Y.V. Lim, B. Liu, S. Fan, Y. Shi, H. Yang, Energy Storage Mater. 23 (2019) 653-663. |
[29] | K. Le, M. Gao, W. Liu, J. Liu, Z. Wang, F. Wang, V. Murugadoss, S. Wu, T. Ding, Z. Guo, Electrochim. Acta 323 (2019), 134826. |
[30] | Q. Yang, Y. Liu, L. Xiao, M. Yan, H. Bai, F. Zhu, Y. Lei, W. Shi, Chem. Eng. J. 354 (2018) 716-726. |
[31] | S. Chen, G. Yang, Y. Jia, H. Zheng, J. Mater. Chem. A 5 (2017) 1028-1034. |
[32] | M. Yan, Y. Yao, J. Wen, L. Long, M. Kong, G. Zhang, X. Liao, G. Yin, Z. Huang, ACS Appl. Mater. Interfaces 8 (2016) 24525-24535. |
[33] | Y. Ouyang, R. Huang, X. Xia, H. Ye, X. Jiao, L. Wang, W. Lei, Q. Hao, Chem. Eng. J. 355 (2019) 416-427. |
[34] | G. Zhang, T. Wang, X. Yu, H. Zhang, H. Duan, B. Lu, Nano Energy 2 (2013) 586-594. |
[35] | X. Wu, Z. Han, X. Zheng, S. Yao, X. Yang, T. Zhai, Nano Energy 31 (2017) 410-417. |
[36] | Z. Liu, W. Zhou, S. Wang, W. Du, H. Zhang, C. Ding, Y. Du, L. Zhu, J. Alloys Compd. 774 (2019) 137-144. |
[37] | Y. Zhu, S. An, J. Cui, H. Qiu, X. Sun, Y. Zhang, W. He, Ceram. Int. 45 (2019) 22095-22103. |
[38] |
S. Dai, F. Han, J. Tang, W. Tang, Electrochim. Acta 328 (2019), 135103.
DOI URL |
[39] |
W. Su, F. Wu, L. Fang, J. Hu, L. Liu, T. Guan, X. Long, H. Luo, M. Zhou, J. Alloys Compd. 799 (2019) 15-25.
DOI URL |
[40] |
Y. Zhang, B. Wang, F. Liu, J. Cheng, X. Zhang, L. Zhang, Nano Energy 27 (2016) 627-637.
DOI URL |
[41] |
A. Shanmugavani, R.K. Selvan, Electrochim. Acta 189 (2016) 283-294.
DOI URL |
[42] |
J. Luo, J. Wang, S. Liu, W. Wu, T. Jia, Z. Yang, S. Mu, Y. Huang, Carbon 146 (2019) 1-8.
DOI URL |
[43] |
K. Xu, J. Yang, J. Hu, J. Colloid Interface Sci. 511 (2018) 456-462.
DOI URL PMID |
[1] | Yang Wang, Shun Zhang, Ruizhi Wu, Nodir Turakhodjaev, Legan Hou, Jinghuai Zhang, Sergey Betsofen. Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 197-203. |
[2] | Xu Bao, Wei-Bin Zhang, Qiang Zhang, Lun Zhang, Xue-Jing Ma, Jianping Long. Interlayer material technology of manganese phosphate toward and beyond electrochemical pseudocapacitance over energy storage application [J]. J. Mater. Sci. Technol., 2021, 71(0): 109-128. |
[3] | Qinchuan He, Hejun Li, Xuemin Yin, Jinhua Lu. Effects of PyC shell thickness on the microstructure, ablation resistance of SiCnws/PyC-C/C-ZrC-SiC composites [J]. J. Mater. Sci. Technol., 2021, 71(0): 55-66. |
[4] | Ruimei Yuan, Hejun Li, Xuemin Yin, Peipei Wang, Jinhua Lu, Leilei Zhang. Construction of multi-structures based on Cu NWs-supported MOF-derived Co oxides for asymmetric pseudocapacitors [J]. J. Mater. Sci. Technol., 2021, 65(0): 182-189. |
[5] | Liuyang Cao, Xue Cheng, Hongjie Xu, Guoqin Cao, Junhua Hu, Guosheng Shao. Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode [J]. J. Mater. Sci. Technol., 2021, 76(0): 156-165. |
[6] | Mengting Cao, Fengli Yang, Quan Zhang, Juhua Zhang, Lu Zhang, Lingfeng Li, Xiaohao Wang, Wei-Lin Dai. Facile construction of highly efficient MOF-based Pd@UiO-66-NH2@ZnIn2S4 flower-like nanocomposites for visible-light-driven photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2021, 76(0): 189-199. |
[7] | Jiashen Meng, Ziang Liu, Xiong Liu, Wei Yang, Lianzhou Wang, Yan Li, Yuan-Cheng Cao, Xingcai Zhang, Liqiang Mai. Scalable fabrication and active site identification of MOF shell-derived nitrogen-doped carbon hollow frameworks for oxygen reduction [J]. J. Mater. Sci. Technol., 2021, 66(0): 186-192. |
[8] | Juan Du, Aibing Chen, Yue Zhang, Shuang Zong, Haixia Wu, Lei Liu. PVP-assisted preparation of nitrogen doped mesoporous carbon materials for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 58(0): 197-204. |
[9] | Guoxiang Pan, Feng Cao, Yujian Zhang, Xinhui Xia. N-doped carbon nanofibers arrays as advanced electrodes for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 144-151. |
[10] | Jing Liang, Cuili Xiang, Yongjin Zou, Xuebu Hu, Hailiang Chu, Shujun Qiu, Fen Xu, Lixian Sun. Spacing graphene and Ni-Co layered double hydroxides with polypyrrole for high-performance supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 190-197. |
[11] | Yongjin Zou, Xi Zhang, Jing Liang, Cuili Xiang, Hailiang Chu, Huanzhi Zhang, Fen Xu, Lixian Sun. Encapsulation of hollow Cu2O nanocubes with Co3O4 on porous carbon for energy-storage devices [J]. J. Mater. Sci. Technol., 2020, 55(0): 182-189. |
[12] | Xueying Yang, Cuili Xiang, Yongjin Zou, Jing Liang, Huanzhi Zhang, Erhu Yan, Fen Xu, Xuebu Hu, Qiong Cheng, Lixian Sun. Low-temperature synthesis of sea urchin-like Co-Ni oxide on graphene oxide for supercapacitor electrodes [J]. J. Mater. Sci. Technol., 2020, 55(0): 223-230. |
[13] | Wenguang Zhu, Changsheng Tan, Ruoyu Xiao, Qiaoyan Sun, Jun Sun. Slip behavior of Bi-modal structure in a metastable β titanium alloy during tensile deformation [J]. J. Mater. Sci. Technol., 2020, 57(0): 188-196. |
[14] | Ruifang Gao, Jin Li, Rui Shi, Yang Zhang, Fuzhou Ouyang, Ting Zhang, Lihua Hu, Guoqiang Xu, Jian Liu. Highly sensitive detection of phosphopeptides with superparamagnetic Fe3O4@mZrO2 core-shell microspheres-assisted mass spectrometry [J]. J. Mater. Sci. Technol., 2020, 59(0): 234-242. |
[15] | Licheng Zhao, Ping Zhang, Yanan Zhang, Zhi Zhang, Lei Yang, Zhi-Gang Chen. Facile synthesis of hierarchical Ni3Se2 nanodendrite arrays for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 54(0): 69-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||