J. Mater. Sci. Technol. ›› 2020, Vol. 58: 145-154.DOI: 10.1016/j.jmst.2020.05.009
• Research Article • Previous Articles Next Articles
Kai Liua,b, Shengcan Maa,*(
), Yuxi Zhanga, Hai Zenga,b, Guang Yua,b, Xiaohua Luoa, Changcai Chena, Sajjad Ur Rehmana,b, Yongfeng Huc, Zhenchen Zhonga
Received:2020-02-16
Accepted:2020-04-07
Published:2020-12-01
Online:2020-12-17
Contact:
Shengcan Ma
Kai Liu, Shengcan Ma, Yuxi Zhang, Hai Zeng, Guang Yu, Xiaohua Luo, Changcai Chen, Sajjad Ur Rehman, Yongfeng Hu, Zhenchen Zhong. Magnetic-field-driven reverse martensitic transformation with multiple magneto-responsive effects by manipulating magnetic ordering in Fe-doped Co-V-Ga Heusler alloys[J]. J. Mater. Sci. Technol., 2020, 58: 145-154.
Fig. 1. (a) The zero-field-cooling (ZFC) and field-cooling (FC) M(T) curves from 10 to 400 K under μ0H = 0.1 T applied field for Co50+xV35-xGa15 (x = 0, 1, 2) alloys. ZFC represents heating M(T) measurements after cooling from RT to low temperature under zero magnetic field. FC denotes the cooling M(T) curves after completing ZFC measurements under an external field. (b) The M(T) curves under the magnetic fields of μ0H = 0.1 T and 5 T for Co51V34Ga15 alloy. The MT/RMT characteristic temperatures (Tm, Tt, $T_{s}^{M}$, $T_{f}^{M}$, $T_{s}^{A}$, $T_{f}^{A}$) and magnetization difference ΔM across RMT are illustrated.
Fig. 2. M(T) curves under μ0H = 0.1 T for Co51-yFeyV34Ga15 (y = 2, 3, 4, 5, 6) (a) and for Co51-yFeyV34Ga15 (y = 4.5, 5, 5.5) alloys (b). The inset of (a) shows the zoomed-in image for the curves of y = 2, 3 and 4 samples. The Curie temperature of austenite $T_C^A$ and magnetization difference ΔM' across MT are defined.
| Samples | $T_s^M$ $T_f^M$ $T_s^A$ $T_f^A$ Tt Tm $T_C^A$ ΔM' e/a |
|---|---|
| y = 0 | 296 286 309 329 320 290 - 0.01 6.74 |
| y = 2 | 235 231 244 249 246 240 - 0.03 6.72 |
| y=3 | 218 213 229 234 232 216 - 0.05 6.70 |
| y=4 | 181 177 193 196 195 180 - 0.32 6.70 |
| y = 4.5 | 155 148 165 172 169 153 173 5.91 6.69 |
| y = 5 | 145 138 159 164 162 142 166 11.7 6.69 |
| y = 5.5 | 121 97 135 145 140 116 164 16.9 6.68 |
| y = 6 | - - - - - - 163 - 6.68 |
Table 1 MT and RMT characteristic temperatures ($T_s^M$, $T_f^M$, $T_s^A$, $T_f^A$, Tt and Tm, with the unit of K), curie temperature of austenite ($T_C^A$, with the unit of K), e/a and magnetization difference across the MT (ΔM', with the unit of Am2 kg-1) under the magnetic field of μ0H = 0.1 T for Co51-yFeyV34Ga15 alloys.
| Samples | $T_s^M$ $T_f^M$ $T_s^A$ $T_f^A$ Tt Tm $T_C^A$ ΔM' e/a |
|---|---|
| y = 0 | 296 286 309 329 320 290 - 0.01 6.74 |
| y = 2 | 235 231 244 249 246 240 - 0.03 6.72 |
| y=3 | 218 213 229 234 232 216 - 0.05 6.70 |
| y=4 | 181 177 193 196 195 180 - 0.32 6.70 |
| y = 4.5 | 155 148 165 172 169 153 173 5.91 6.69 |
| y = 5 | 145 138 159 164 162 142 166 11.7 6.69 |
| y = 5.5 | 121 97 135 145 140 116 164 16.9 6.68 |
| y = 6 | - - - - - - 163 - 6.68 |
Fig. 3. XANES spectra at Co (a), Fe (b) and V (c) K-edge recorded at RT for FE5 and FE5.5 alloys, respectively. The pre-edge region is shown in the corresponding insets. Pre-edge area calculations (corresponding to 3d EDSs) of FE5 and FE5.5 alloys at K-edge of Co, Fe, and V.
Fig. 5. Magnetic and structural phase diagram for Co51-yFeyV34Ga15 (y = 0, 2, 3, 4, 4.5, 5, 5.5, 6) alloy system. Tt, Tm and $T_C^A$ are directly obtained from the experiments of this work.
Fig. 6. Typical BFTEM (a) and HRTEM (b) images for FE5 alloy. The SAED shown in the inset of (a) is obtained from the blue circle, which conforms the L21-type structure of FE5 alloy.
Fig. 7. (a) M(T) curves measured under μ0H = 0.1, 5, and 8.5 T for FE5 specimen, and M(H) curves at selected temperature near Tt (b) and $T_C^A$ (c). The MFIRMT with relatively low μ0Hreq is achieved in the magnetizing process shown in (b). (d) The Arrott plots deriving from M(H) data around Tt. (e) μ0Hreq as a function of temperature. (f) Temperature dependence of isothermal magnetic entropy changes ΔSm(T) curves calculated using the Maxwell relation from M(H) measurements adopting the so-called ‘loop process method’ for FE5 alloy under various field changes (μ0ΔH = 0-1 T, 3 T, 5 T, 7 T, and 8.5 T).
Fig. 8. (a) Heat capacity as a function of temperature and magnetic field for FE5 alloy. The endothermic peaks indicate the occurrence of phase transition. (b) Isothermal magnetic entropy change $ΔS_m^Q$ as a function of temperature and magnetic field deriving from heat capacity data for FE5 alloy. (c) The temperature dependence of ΔTad under different magnetic field changes (μ0ΔH = 0-1 T, 3 T, 5 T, 7 T, and 8.5 T) for FE5 sample.
Fig. 10. Temperature dependence of the electrical resistivity under magnetic fields of μ0H = 0 and 8.5 T for FE5 alloy. The inset exhibits the temperature dependence of MR curve upon heating.
| [1] | T. Graf, C. Felser, S.S.P. Parkin, Prog. Solid State Chem. 39 (2011) 1-50. |
| [2] | L. Wollmann, A.K. Nayak, S.S.P. Parkin, C. Felser, Annu. Rev. Mater. Res. 47 (2017) 247-270. |
| [3] | P.J. Webster, K.R.A. Ziebeck, S.L. Town, M.S. Peak, Philos. Mag. B 49 (1984) 295-310. |
| [4] | Z.C. Zhong, S.C. Ma, D.H. Wang, Y.W. Du, J. Mater. Sci. Technol. 28 (2012) 193-199. |
| [5] | L. Mañosa, D. González-Alonso, A. Planes, E. Bonnot, M. Barrio, J.L. Tamarit, S. Aksoy, M. Acet, Nat. Mater. 9 (2010) 478-481. |
| [6] |
D.Y. Cong, W.X. Xiong, A. Planes, Y. Ren, L. Manosa, P.Y. Cao, Z.H. Nie, X.M. Sun, Z. Yang, X.F. Hong, Y.D. Wang, Phys. Rev. Lett. 122 (2019), 255703.
DOI URL PMID |
| [7] |
R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Nature (London) 439 (2006) 957-960.
DOI URL |
| [8] | S.Y. Yu, L. Ma, G.D. Liu, Z.H. Liu, J.L. Chen, Z.X. Cao, G.H. Wu, B. Zhang, X.X. Zhang, Appl. Phys. Lett. 90 (2007), 242501. |
| [9] | N.M. Bruno, D. Salas, S. Wang, Igor V. Roshchin, R. Santamarta, R. Arroyave, T. Duong, Y.I. Chumlyakov, I. Karaman, Acta Mater. 142 (2018) 95-106. |
| [10] |
J. Kübler, A.R. Williams, C.B. Sommers, Phys. Rev. B 28 (1983) 1745.
DOI URL |
| [11] |
M. Jourdan, J. Minár, J. Braun, A. Kronenberg, S. Chadov, B. Balke, A. Gloskovskii, M. Kolbe, H.J. Elmers, G. Schönhense, H. Ebert, C. Felser, M. Kläui, Nat. Commun. 5 (2014) 3974.
URL PMID |
| [12] | L. Bainsla, A.I. Mallick, M.M. Raja, A.K. Nigam, B.S.D.Ch.S. Varaprasad, Y.K. Takahashi, A. Alam, K.G. Suresh, K. Hono,Phys. Rev. B 91 (2015), 104408. |
| [13] | L. Bainsla, A.I. Mallick, M.M. Raja, A.A. Coelho, A.K. Nigam, D.D. Johnson, A. Alam, K.G. Suresh, Phys. Rev. B 92 (2015), 045201. |
| [14] | X. Xu, A. Nagashima, M. Nagasako, T. Omori, T. Kanomata, R. Kainuma, Appl. Phys. Lett. 110 (2017), 121906. |
| [15] | X. Xu, T. Omori, M. Nagasako, A. Okubo, R.Y. Umetsu, T. Kanomata, K. Ishida, R. Kainuma, Appl. Phys. Lett. 103 (2013), 164104. |
| [16] | K. Hirata, X. Xu, T. Omori, M. Nagasako, R. Kainuma, J. Alloy. Compd. 642 (2015) 200-203. |
| [17] | H.X. Jiang, X. Xu, T. Omori, M. Nagasako, J.J. Ruan, S.Y. Yang, C.P. Wang, X.J. Liu, R. Kainuma, Mater. Sci. Eng. A 676 (2016) 191-196. |
| [18] | C.Q. Liu, Z. Li, Y.L. Zhang, Y.S. Huang, M.F. Ye, X.D. Sun, G.J. Zhang, Y.M. Cao, K. Xu, C. Jing, Appl. Phys. Lett. 112 (2018), 211903. |
| [19] | L. Feng, W.X. Zhang, E.K. Liu, W.H. Wang, G.H. Wu, Funct. Mater. Lett. 6 (2013), 1350050. |
| [20] | P. Lázpita, M. Sasmaz, J.M. Barandiarán, V.A. Chernenko, Acta Mater. 155 (2018) 95-103. |
| [21] | V.K. Pecharsky, K.A. Gschneidner, Phys. Rev. Lett. 78 (1997) 4494. |
| [22] | O. Tegus, E. Brück, K.H.J. Buschow, F.R. de Boer, Nature (London) 415 (2002) 150-152. |
| [23] | A. Fujita, S. Fujieda, Y. Hasegawa, K. Fukamichi, Phys. Rev. B 67 (2003), 104416. |
| [24] | J.D. Zou, B.G. Shen, B. Gao, J. Shen, J.R. Sun, Adv. Mater. 21 (2009) 693-696. |
| [25] | E.K. Liu, W.H. Wang, L. Feng, W. Zhu, G.J. Li, J.L. Chen, H.W. Zhang, G.H. Wu, C.B. Jiang, H.B. Xu, F. de Boer, Nat.Commun. 3 (2012) 873. |
| [26] | S.C. Ma, K. Liu, C.C. Ma, Q. Ge, J.T. Zhang, Y.F. Hu, E.K. Liu, Z.C. Zhong, Appl. Phys. Lett. 111 (2017), 232404. |
| [27] | L. Caron, Z.Q. Ou, T.T. Nguyen, D.T. Cam Thanh, O. Tegus, E. Brück, J. Magn. Magn. Mater. 321 (2009) 3559-3566. |
| [28] | J.H. Chen, A.U. Saleheen, P.W. Adams, D.P. Young, N. Ali, S. Stadler, J. Appl. Phys. 123 (2018), 145101. |
| [29] |
B. Ravel, M. Newville, J. Synchrotron Radiat. 12 (2005) 537-541.
DOI URL PMID |
| [30] | L. Ma, H.W. Zhang, S.Y. Yu, Z.Y. Zhu, J.L. Chen, G.H. Wu, H.Y. Liu, J.P. Qu, Y.X. Li, Appl. Phys. Lett. 92 (2008), 032509. |
| [31] | Z.Y. Wei, E.K. Liu, J.H. Chen, Y. Li, G.D. Liu, H.Z. Luo, X.K. Xi, H.W. Zhang, W.H. Wang, G.H. Wu, Appl. Phys. Lett. 107 (2015), 022406. |
| [32] |
E. Stern-Taulats, A. Planes, P. Lloveras, M. Barrio, J.L. Tamarit, S. Pramanick, S. Majumdar, S. Yüce, B. Emre, C. Frontera, L. Mañosa, Acta Mater. 96 (2015) 324-332.
DOI URL |
| [33] | T. Krenke, S. Aksoy, E. Duman, M. Acet, X. Moya, L. Mañosa, A. Planes, J. Appl. Phys. 108 (2010), 043914. |
| [34] |
B. Emre, S. Yüce, E. Stern-Taulats, A. Planes, S. Fabbrici, F. Albertini, L. Mañosa, J. Appl. Phys. 113 (2013), 213905.
DOI URL |
| [35] | E. Stern-Taulats, P.O. Castillo-Villa, L. Mañosa, C. Frontera, S. Pramanick, S. Majumdar, A. Planes, Magnetocaloric effect in the low hysteresis Ni-Mn-In metamagnetic shape-memory Heusler alloy, J. Appl. Phys. 115 (2014), 173907. |
| [36] | L. Huang, D.Y. Cong, L. Ma, Z.H. Nie, Z.L. Wang, H.L. Suo, Y. Ren, Y.D. Wang, Appl. Phys. Lett. 108 (2016), 032405. |
| [37] | T. Kanomata, Y. Chieda, K. Endo, H. Okada, M. Nagasako, K. Kobayashi, R. Kainuma, R.Y. Umetsu, H. Takahashi, Y. Furutani, H. Nishihara, K. Abe, Y. Miura, M. Shirai, Phys. Rev. B 82 (2010), 144415. |
| [38] | L. Zhang, S.C. Ma, Q. Ge, K. Liu, Q.Z. Jiang, X.Q. Han, S. Yang, K. Yu, Z.C. Zhong, J. Mater. Sci. Technol. 33 (2017) 1362-1370. |
| [39] | H.C. Xuan, Y.Q. Zhang, H. Li, P.D. Han, D.H. Wang, F.H. Chen, Y.W. Du, Appl. Phys. A 119 (2015) 597-602. |
| [40] | A.T. Zayak, W.A. Adeagbo, P. Entel, K.M. Rabe, Appl. Phys. Lett. 88 (2006), 111903. |
| [41] | Z.G. Wu, Z.H. Liu, H. Yang, Y.N. Liu, G.H. Wu, Appl. Phys. Lett. 98 (2011), 061904. |
| [42] | A. Giguère, M. Foldeaki, B.R. Gopal, R. Chahine, T.K. Bose, A. Frydman, J.A. Barclay, Phys. Rev. Lett. 83 (1999) 2262. |
| [43] | X. Xu, W. Ito, M. Tokunaga, R.Y. Umetsu, R. Kainuma, K. Ishida, Mater. Trans. 51 (2010) 1357-1360. |
| [44] | A. Hagen, Chem. Phys. Lett. 502 (2011) 235-240. |
| [45] | A. Kuzminy, N. Mironovaz, J. Purans, J. Phys. Condens. Matter 9 (1997) 5277-5286. |
| [46] | J.P. Hill, C.C. Kao, D.F. McMorrow, Phys. Rev. B 55 (1997) R8662. |
| [47] | V. Bilovol, S. Ferrari, D. Derewnicka, F.D. Saccone, XANES and XPS study of electronic structure of Ti-enriched Nd-Fe-B ribbons, Mater.Chem. Phys. 146 (2014) 269-276. |
| [48] | F. de Groot, G. Vankó, P. Glatzel, The 1s X-ray absorption pre-edge structures in transition metal oxides, J. Phys. Condens. Matter 21 (2009), 104207. |
| [49] |
J.E. Müller, O. Jepsen, J.W. Wilkins, Solid State Commun. 42 (1982) 365-368.
DOI URL |
| [50] | Y.Y. Shao, B.F. Lu, M.X. Zhang, J. Liu, Acta Mater. 150 (2018) 206-212. |
| [51] | F. Guillou, K. Ollefs, F. Wilhelm, A. Rogalev, A.N. Yaresko, H. Yibole, N.H. van Dijk, E. Brück,Phys. Rev. B 92 (2015), 224427. |
| [52] | Y.H. Qu, D.Y. Cong, X.M. Sun, Z.H. Nie, W.Y. Gui, R.G. Li, Y. Ren, Y.D. Wang, Acta Mater. 134 (2017) 236-248. |
| [53] | M. Balli, D. Fruchart, D. Gignoux, R. Zach, Appl. Phys. Lett. 95 (2009), 072509. |
| [54] | K.A. Gschneidner Jr, V.K. Pecharsky, A.O. Pecharsky, Rep. Prog. Phys. 68 (2005) 1479-1539. |
| [55] |
T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, Nat. Mater. 4 (2005) 450-454.
DOI URL PMID |
| [56] | T. Krenke, E. Duman, M. Acet, E. Wassermann, X. Moya, L. Mañosa, A. Planes, Phys. Rev. B 75 (2007), 104414. |
| [57] | P. Czaja, M. Kowalczyk, W. Maziarz, J. Magn. Magn. Mater. 474 (2019) 381-392. |
| [58] | J. Liu, S. Aksoy, N. Scheerbaum, M. Acet, O. Gutfleisch, Appl. Phys. Lett. 95 (2009), 232515. |
| [59] | Z. Li, K. Xu, Y.L. Zhang, C. Jing, J. Appl. Phys. 117 (2015), 023902. |
| [60] |
W.H. Wang, J.L. Chen, Z.H. Liu, G.H. Wu, W.S. Zhan, Phys. Rev. B 65 (2001), 012416.
DOI URL |
| [61] | J.M. Barandiarán, V.A. Chernenko, J. Gutiérrez, I. Orúe, P. Lázpita, Appl. Phys. Lett. 100 (2012), 262410. |
| [62] | V.A. Chernenko, J.M. Barandiarán, V.A. L’vov, J. Gutiérrez, P. Lázpita, I. Orue, J. Alloy. Compd. 577 (2013) S305-S308. |
| [63] | T. Samanta, A. Us Saleheen, D.L. Lepkowski, A. Shankar, I. Dubenko, A. Quetz, M. Khan, N. Ali, S. Stadler, Phys. Rev. B 90 (2014), 064412. |
| [64] | F. Chen, Q. Huang, Z. Jiang, M. Zhang, X. Xu, Q. Zhang, J. Zhao, Mater. Lett. 160 (2015) 428-431. |
| [65] | L. Huang, D.Y. Cong, L. Ma, Z.H. Nie, M.G. Wang, Z.L. Wang, H.L. Suo, Y. Ren, Y.D. Wang, J. Alloy. Compd. 647 (2015) 1081-1085. |
| [66] | Y.F. Wu, H.C. Xuan, S. Agarwal, Y.K. Xu, T. Zhang, L. Feng, H. Li, P.D. Han, C.L. Zhang, D.H. Wang, F.H. Chen, Y.W. Du, Phys. Status Solidi A 215 (2018), 1700843. |
| [1] | Jinfeng Ling, Dandan Huang, Kewu Bai, Wei Li, Zhentao Yu, Weimin Chen. High-throughput development and applications of the compositional mechanical property map of the β titanium alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 201-210. |
| [2] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
| [3] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
| [4] | Yuan Wu, Fei Zhang, Xiaoyuan Yuan, Hailong Huang, Xiaocan Wen, Yihan Wang, Mengyuan Zhang, Honghui Wu, Xiongjun Liu, Hui Wang, Suihe Jiang, Zhaoping Lu. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 214-220. |
| [5] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
| [6] | Pengfei Ji, Bohan Chen, Bo Li, Yihao Tang, Guofeng Zhang, Xinyu Zhang, Mingzhen Ma, Riping Liu. Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2021, 69(0): 7-14. |
| [7] | Xiang Peng, Shihao Xu, Dehua Ding, Guanglan Liao, Guohua Wu, Wencai Liu, Wenjiang Ding. Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg-5Li-3Al-2Zn alloy with different Sn and Y addition [J]. J. Mater. Sci. Technol., 2021, 72(0): 16-22. |
| [8] | Wen Zhang, Lei Chen, Chenguang Xu, Wenyu Lu, Yujin Wang, Jiahu Ouyang, Yu Zhou. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering [J]. J. Mater. Sci. Technol., 2021, 72(0): 23-28. |
| [9] | Yanli Lu, Yi Wang, Yifan Wang, Meng Gao, Yao Chen, Zheng Chen. First-principles study on the mechanical, thermal properties and hydrogen behavior of ternary V-Ni-M alloys [J]. J. Mater. Sci. Technol., 2021, 70(0): 83-90. |
| [10] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
| [11] | Qingqing Li, Yong Zhang, Jie Chen, Bugao Guo, Weicheng Wang, Yuhai Jing, Yong Liu. Effect of ultrasonic micro-forging treatment on microstructure and mechanical properties of GH3039 superalloy processed by directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 70(0): 185-196. |
| [12] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
| [13] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
| [14] | S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan. Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella [J]. J. Mater. Sci. Technol., 2021, 73(0): 66-75. |
| [15] | Qingkai Shen, Xiangdong Kong, Xizhang Chen. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 136-142. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
