J. Mater. Sci. Technol. ›› 2020, Vol. 57: 18-25.DOI: 10.1016/j.jmst.2020.05.012
• Research Article • Previous Articles Next Articles
Yueni Mei, Yuyu Li, Fuyun Li, Yaqian Li, Yingjun Jiang, Xiwei Lan, Songtao Guo, Xianluo Hu*()
Received:
2020-03-05
Accepted:
2020-03-28
Published:
2020-11-15
Online:
2020-11-20
Contact:
Xianluo Hu
Yueni Mei, Yuyu Li, Fuyun Li, Yaqian Li, Yingjun Jiang, Xiwei Lan, Songtao Guo, Xianluo Hu. Lithium-ion insertion kinetics of Na-doped Li2TiSiO5 as anode materials for lithium-ion batteries[J]. J. Mater. Sci. Technol., 2020, 57: 18-25.
Fig. 1. (a) XRD patterns of as-prepared Li2-xNaxTiSiO5 samples (x = 0, 0.02, 0.05, 0.08 and 0.1) and (b) enlarged peak details of Li2-xNaxTiSiO5 samples. (c, d) Schematic illustration of the crystal structure of LTSO before and after Na substitution. (grey dots: oxygen, yellow tetrahedra: SiO4, blue octahedra: TiO6).
Fig. 4. Electrochemical performances of the Li2-xNaxTiSiO5 samples (x = 0, 0.02, 0.05, 0.08 and 0.1) in the potential range of 0.2-3 V. (a) Cycling performance of as-prepared samples at a current density of 0.5 A g-1. (b) Rate performance of as-obtained samples under various current densities. Galvanostatic charge-discharge profiles of the (c) 1 st cycle and (d) 10th cycle of as-prepared samples at 0.5 A g-1.
Fig. 5. Cyclic voltammograms of (a) LTSO, (b) LTSO-2% Na, (c) LTSO-5% Na, (d) LTSO-8% Na and (e) LTSO-10% Na samples. (f) Comparison of as-obtained samples at the scan rate of 0.1 mV s-1.
Fig. 6. Determination of the b value using the relationship between the peak current and the scan rate: (a) Cathodic peaks and (b) Anodic peaks. (c) The relationship of the peak current and the square root of the scan ratefor the Li2-xNaxTiSiO5 samples (x = 0, 0.02, 0.05, 0.08 and 0.1). (d) Calculated results of Li-ion diffusion coefficients.
Sample | Rs (Ω) | Rct (Ω) |
---|---|---|
LTSO | 3.66 | 61.18 |
LTSO-2% Na | 3.27 | 67.92 |
LTSO-5% Na | 2.54 | 45.56 |
LTSO-8% Na | 3.62 | 107.1 |
LTSO-10% Na | 4.29 | 101.9 |
Table 1 Calculated resistance of as-prepared Li2-xNaxTiSiO5 samples (x = 0, 0.02, 0.05, 0.08 and 0.1).
Sample | Rs (Ω) | Rct (Ω) |
---|---|---|
LTSO | 3.66 | 61.18 |
LTSO-2% Na | 3.27 | 67.92 |
LTSO-5% Na | 2.54 | 45.56 |
LTSO-8% Na | 3.62 | 107.1 |
LTSO-10% Na | 4.29 | 101.9 |
Fig. 8. Calculated band structure of (a) LTSO and (b) LTSO doped with 1/16 Na. The dashed horizontal line shows the Fermi energy, which is set as zero.
[1] | J.M. Tarascon, M. Armand, Nature 414 (2001) 359-367. |
[2] | J.B. Goodenough, K.S. Park, J. Am. Chem. Soc. 135(2013) 1167-1176. |
[3] | V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 4(2011) 3243. |
[4] | L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Energy Environ. Sci. 4(2011) 2682. |
[5] | N. Mahmood, T. Tang, Y. Hou, Adv. Energy Mater. 6(2016), 1600374. |
[6] | A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nature Mater. 4(2005) 366-377. |
[7] | S. Flandrois, B. Simon, Carbon 37 (1999) 165-180. |
[8] | B. Moradi, G.G. Botte, J. Appl. Electrochem. 46(2015) 123-148. |
[9] | D. Aurbach, B. Markovsky, I. Weissman, E. Levi, Y. Ein-Eli, Electrochim. Acta 45 (1999) 67-86. |
[10] | T. Yuan, Z. Tan, C. Ma, J. Yang, Z.-F. Ma, S. Zheng, Adv. Energy Mater. 7(2017), 1601625. |
[11] | K. Zaghib, M. Dontigny, A. Guerfi, J. Trottier, J. Hamel-Paquet, V. Gariepy, K. Galoutov, P. Hovington, A. Mauger, H. Groult, C.M. Julien, J. Power Sources 216 (2012) 192-200. |
[12] | T. Ohzuku, J. Electrochem. Soc. 142(1995) 1431. |
[13] | A.S. Prakash, P. Manikandan, K. Ramesha, M. Sathiya, J.M. Tarascon, A.K. Shukla, Chem. Mater. 22(2010) 2857-2863. |
[14] | J. Liu, W.K. Pang, T. Zhou, L. Chen, Y. Wang, V.K. Peterson, Z. Yang, Z. Guo, Y. Xia, Energy Environ. Sci. 10(2017) 1456-1464. |
[15] | J. Liu, Y. Liu, M. Hou, Y. Wang, C. Wang, Y. Xia, Electrochim. Acta 260 (2018) 695-702. |
[16] | L. Jin, R. Gong, J. Zheng, C. Zhang, Y. Xia, J.P. Zheng, ChemElectroChem 6 (2019) 3020-3029. |
[17] | L. Jin, R. Gong, W. Zhang, Y. Xiang, J. Zheng, Z. Xiang, C. Zhang, Y. Xia, J.P. Zheng, J. Mater. Chem. A 7 (2019) 8234-8244. |
[18] | S. Wang, R. Wang, Y. Bian, D. Jin, Y. Zhang, L. Zhang, Nano Energy 55 (2019) 173-181. |
[19] | Y.Q. Qiao, X.L. Wang, J.Y. Xiang, D. Zhang, W.L. Liu, J.P. Tu, Electrochim. Acta 56 (2011) 2269-2275. |
[20] | J. Wang, X. Sun, Energy Environ. Sci. 5(2012) 5163-5185. |
[21] |
L. Zhao, Y.S. Hu, H. Li, Z. Wang, L. Chen, Adv. Mater. 23(2011) 1385-1388.
DOI URL PMID |
[22] | H. Xu, X. Hu, W. Luo, Y. Sun, Z. Yang, C. Hu, Y. Huang, ChemElectroChem 1 (2014) 611-616. |
[23] | A. Pan, D. Choi, J.-G. Zhang, S. Liang, G. Cao, Z. Nie, B.W. Arey, J. Liu, J. Power Sources 196 (2011) 3646-3649. |
[24] | H. Xu, X. Hu, Y. Sun, W. Luo, C. Chen, Y. Liu, Y. Huang, Nano Energy 10 (2014) 163-171. |
[25] | C. Chen, X. Hu, Z. Wang, X. Xiong, P. Hu, Y. Liu, Y. Huang, Carbon 69 (2014) 302-310. |
[26] | S.T. Myung, K. Amine, Y.K. Sun, J. Power Sources 283 (2015) 219-236. |
[27] | Y. Chen, Y. Zhao, X. An, J. Liu, Y. Dong, L. Chen, Electrochim. Acta 54 (2009) 5844-5850. |
[28] | S. Shi, L. Liu, C. Ouyang, Phys. Rev. B 68(2003). |
[29] | B. Tian, H. Xiang, L. Zhang, Z. Li, H. Wang, Electrochim. Acta 55 (2010) 5453-5458. |
[30] | C.H. Chen, J.T. Vaughey, A.N. Jansen, D.W. Dees, A.J. Kahaian, T. Goacher, M.M. Thackeray, J. Electrochem. Soc. 148(2001) A102-A104. |
[31] | M. Ji, Y. Xu, Z. Zhao, H. Zhang, D. Liu, C. Zhao, X. Qian, C. Zhao, J. Power Sources 263 (2014) 296-303. |
[32] | X. Yin, K. Huang, S. Liu, H. Wang, H. Wang, J. Power Sources 195 (2010) 4308-4312. |
[33] | F. Zhao, P. Xue, H.H. Ge, L. Li, B.F. Wang, J. Electrochem. Soc. 163(2016) A690-A695. |
[34] | Q. Kuang, Y. Zhao, Z. Liang, J. Power Sources 196 (2011) 10169-10175. |
[35] | W. He, D. Yuan, J. Qian, X. Ai, H. Yang, Y. Cao, J. Mater. Chem. A 1 (2013) 11397. |
[36] | Y.Y. Wang, Y.Y. Sun, S. Liu, G.R. Li, X.P. Gao, ACS Appl. Energy Mater. 1(2018) 3881-3889. |
[37] | R.P. Qing, J.L. Shi, D.D. Xiao, X.D. Zhang, Y.X. Yin, Y.B. Zhai, L. Gu, Y.G. Guo, Adv. Energy Mater. 6(2016), 1501914. |
[38] | Z. Huang, Z. Wang, Q. Jing, H. Guo, X. Li, Z. Yang, Electrochim. Acta 192 (2016) 120-126. |
[39] | C.A.J. Fisher, N. Kuganathan, M.S. Islam, J. Mater. Chem. A 1 (2013) 4207. |
[40] | P. Zhang, X.D. Li, S. Yu, S.Q. Wu, Z.Z. Zhu, Y. Yang, J. Electrochem. Soc. 160(2013) A658-A661. |
[41] | Y. Li, W. Sun, J. Liang, H. Sun, I. Di Marco, L. Ni, S. Tang, J. Zhang, J. Mater. Chem. A 4 (2016) 17455-17463. |
[42] | M. Wang, M. Yang, L. Ma, X. Shen, Chem. Phys. Lett. 619(2015) 39-43. |
[43] | M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys-Condens.Matt. 14(2002) 2717-2744. |
[44] | J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78(1997) 1396. |
[45] | K. Lejaeghere, V. Van Speybroeck, G. Van Oost, S. Cottenier, Crit. Rev. Solid State 39 (2014) 1-24. |
[46] | Vanderbilt, Phys. Rev. B, Condens. Matter 41 (1990) 7892-7895. |
[47] | H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188-5192. |
[48] | J. Wang, W. Lin, B. Wu, J. Zhao, Electrochim. Acta 145 (2014) 245-253. |
[49] | H. Lindstrom, S. Sodergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt, S.E. Lindquist, J. Phys. Chem. B 101 (1997) 7717-7722. |
[50] | A. J. Bard, L. R. Faulkner, New York, 1980, pp. 213-222. |
[51] | J. Molenda, W. Ojczyk, J. Marzec, J. Power Sources 174 (2007) 689-694. |
[52] | D. Aurbach, M.D. Levi, E. Levi, H. Teller, B. Markovsky, G. Salitra, U. Heider, L. Heider, J. Electrochem. Soc. 145(1998) 3024-3034. |
[53] | H. Song, S.W. Yun, H.H. Chun, M.G. Kim, K.Y. Chung, H.S. Kim, B.W. Cho, Y.T. Kim, Energy Environ. Sci. 5(2012) 9903. |
[54] | N.S. Peighambardoust, S. Khameneh Asl, R. Mohammadpour, S.K. Asl, Electrochim. Acta 270 (2018) 245-255. |
[55] | S.K. Oleary, P.K. Lim, Solid State Commun. 104(1997) 17-21. |
[56] | R. Shirley, M. Kraft, O.R. Inderwildi, Phys. Rev. B 81(2010). |
[57] | Z.Y. Zhang, M.S. Si, Y.H. Wang, X.P. Gao, D. Sung, S. Hong, J. He, J. Chem. Phys. 140 (2014). |
[58] |
H.H. Wu, Q. Meng, H. Huang, C.T. Liu, X.L. Wang, Phys. Chem. Chem. Phys. 20(2018) 3608-3613.
URL PMID |
[1] | Yuanmei Xu, Xiaoqin Zhang, Zhihong Chen, Krzysztof Kempa, Xin Wang, Lingling Shui. Chemical vapor deposition of amorphous molybdenum sulphide on black phosphorus for photoelectrochemical water splitting [J]. J. Mater. Sci. Technol., 2021, 68(0): 1-7. |
[2] | Zhi-Jia Zhang, Wei-Jie Li, Shu-Lei Chou, Chao Han, Hua-Kun Liu, Shi-Xue Dou. Effects of carbon on electrochemical performance of red phosphorus (P) and carbon composite as anode for sodium ion batteries [J]. J. Mater. Sci. Technol., 2021, 68(0): 140-146. |
[3] | Chunmao Huang, Shenghong Liu, Yang Wang, Jingjie Feng, Yanming Zhao. A new active NaVMoO6 cathode material for rechargeable Li ion batteries [J]. J. Mater. Sci. Technol., 2021, 66(0): 97-102. |
[4] | Bhavana Joshi, Edmund Samuel, Yong-il Kim, Govindasami Periyasami, Mostafizur Rahaman, Sam S. Yoon. Bimetallic zeolitic imidazolate framework-derived substrate-free anode with superior cyclability for high-capacity lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 67(0): 116-126. |
[5] | Seung Woo Lee, Bongho Lee, Chaekyung Baik, Tae-Yang Kim, Chanho Pak. Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells [J]. J. Mater. Sci. Technol., 2021, 60(0): 105-112. |
[6] | Chen Chen, Ying Huang, Zhuoyue Meng, Mengwei Lu, Zhipeng Xu, Panbo Liu, Tiehu Li. Experimental design and theoretical evaluation of nitrogen and phosphorus dual-doped hierarchical porous carbon for high-performance sodium-ion storage [J]. J. Mater. Sci. Technol., 2021, 76(0): 11-19. |
[7] | Liuyang Cao, Xue Cheng, Hongjie Xu, Guoqin Cao, Junhua Hu, Guosheng Shao. Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode [J]. J. Mater. Sci. Technol., 2021, 76(0): 156-165. |
[8] | Zhengkun Xie, Xiaowei An, Zhijun Wu, Xiyan Yue, Jiajia Wang, Xiaogang Hao, Abuliti Abudula, Guoqing Guan. Fluoropyridine family: Bifunction as electrolyte solvent and additive to achieve dendrites-free lithium metal batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 119-127. |
[9] | Wei Wu, Yongshan Wei, Hongjiang Chen, Keyan Wei, Zhitong Li, Jianhui He, Libo Deng, Lei Yao, Haitao Yang. In-situ encapsulation of α-Fe2O3 nanoparticles into ZnFe2O4 micro-sized capsules as high-performance lithium-ion battery anodes [J]. J. Mater. Sci. Technol., 2021, 75(0): 110-117. |
[10] | Jaffer Saddique, Xu Zhang, Tianhao Wu, Heng Su, Shiqi Liu, Dian Zhang, Yuefei Zhang, Haijun Yu. Sn4P3-induced crystalline/amorphous composite structures for enhanced sodium-ion battery anodes [J]. J. Mater. Sci. Technol., 2020, 55(0): 73-80. |
[11] | Licheng Zhao, Ping Zhang, Yanan Zhang, Zhi Zhang, Lei Yang, Zhi-Gang Chen. Facile synthesis of hierarchical Ni3Se2 nanodendrite arrays for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 54(0): 69-76. |
[12] | Guoquan Suo, Dan Li, Lei Feng, Xiaojiang Hou, Xiaohui Ye, Li Zhang, Qiyao Yu, Yanling Yang, Wei (Alex) Wang. Construction of SnS2/SnO2 heterostructures with enhanced potassium storage performance [J]. J. Mater. Sci. Technol., 2020, 55(0): 167-172. |
[13] | Jin Bai, Xiao Chen, Emilia Olsson, Huimin Wu, Shiquan Wang, Qiong Cai, Chuanqi Feng. Synthesis of Bi2S3/carbon nanocomposites as anode materials for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 50(0): 92-102. |
[14] | Chuang Liu, Fanxin Zeng, Li Xu, Shuangyu Liu, Jincheng Liu, Xinping Ai, Hanxi Yang, Yuliang Cao. Enhanced cycling stability of antimony anode by downsizing particle and combining carbon nanotube for high-performance sodium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 81-88. |
[15] | Liang Chen, Zhi Li, Gangyong Li, Minjie Zhou, Binhong He, Jie Ouyang, Wenyuan Xu, Wei Wang, Zhaohui Hou. A facile self-catalyzed CVD method to synthesize Fe3C/N-doped carbon nanofibers as lithium storage anode with improved rate capability and cyclability [J]. J. Mater. Sci. Technol., 2020, 44(0): 229-236. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||