J. Mater. Sci. Technol. ›› 2020, Vol. 57: 12-17.DOI: 10.1016/j.jmst.2020.05.013
• Research Article • Previous Articles Next Articles
Shahzad Fateh Ali, Jitang Fan*()
Received:
2020-02-23
Accepted:
2020-04-29
Published:
2020-11-15
Online:
2020-11-20
Contact:
Jitang Fan
Shahzad Fateh Ali, Jitang Fan. Elastic-viscoplastic constitutive model for capturing the mechanical response of polymer composite at various strain rates[J]. J. Mater. Sci. Technol., 2020, 57: 12-17.
i=1 | i=2 | i=3 | |
---|---|---|---|
ΔG | 3.74 × 10-19 | 3.769 × 10-20 | 3.92 × 10-20 |
γ′0 | 32.74 × 1016 | 3.92 × 105 | 3.92 × 105 |
?? | 0.48 | - | - |
h (MPa) | 250 | 33.33 | - |
s | 2.21 | - | - |
Table 1 Elastic-viscoplastic component.
i=1 | i=2 | i=3 | |
---|---|---|---|
ΔG | 3.74 × 10-19 | 3.769 × 10-20 | 3.92 × 10-20 |
γ′0 | 32.74 × 1016 | 3.92 × 105 | 3.92 × 105 |
?? | 0.48 | - | - |
h (MPa) | 250 | 33.33 | - |
s | 2.21 | - | - |
Fig. 3. Comparison of the engineering stress-strain relation of the polymer composite obtained from model simulations and experimental tests at some representative strain rates.
Fig. 4. Comparison of the engineering stress-strain relation of the polymer composite obtained from model simulations and experimental tests in the strain rate range from 0.0001 s-1 to 8000 s-1.
Fig. 6. Physical mechanisms of strain energy absorption under dynamic loading revealed by post-test observations: (a) cleavage fracture in hard segments and plastic damagein soft segments; (b) unopened crack with an extensive plastic zone for improving the material toughness.
[1] |
H. Cho, S. Mayer, E. Pöselt, M. Susoff, P.J. Veld, G.C. Rutledge, M.C. Boyce, Polymer 128 (2017) 87-99.
DOI URL |
[2] |
J.T. Fan, J. Weerheijm, L.J. Sluys, Mater. Des. 79(2015) 73-85.
DOI URL |
[3] |
J.T. Fan, J. Weerheijm, L.J. Sluys, Polymer 91 (2016) 62-73.
DOI URL |
[4] | J.T. Fan, J. Appl. Polym. Sci. 135(2018) 1-5. |
[5] | X.L. Gong, Y. Liu, S.Y. He, J. Lu, J. Mater. Sci. Technol. 20(2004) 65-68. |
[6] |
Y. Wu, J. Liu, H. Wang, S. Guan, R. Yang, H. Fu, J. Mater. Sci. Technol. 34(2018) 1189-1195.
DOI URL |
[7] |
J.D. Davidson, N.C. Goulbourne, J. Mech. Phys. Solids 61 (2013) 1784-1797.
DOI URL |
[8] |
Y.C. Chen, D.C. Lagoudas, J. Mech. Phys. Solids 56 (2008) 1752-1765.
DOI URL |
[9] |
C. Miehe, J. Keck, J. Mech. Phys. Solids 48 (2000) 323-365.
DOI URL |
[10] |
N. Li, S. Huang, G. Zhang, R. Qin, W. Liu, H. Xiong, G. Shi, J. Blackburn, J. Mater. Sci. Technol. 35(2019) 242-269.
DOI URL |
[11] |
J.T. Fan, C. Wang, Compos. Pt. B-Eng. 152(2018) 96-101.
DOI URL |
[12] |
N.M. Ames, L. Anand, V. Srivastava, S.A. Chester, Int. J. Plast. 26(2010) 1138-1182.
DOI URL |
[13] | Z.S. Liao, X.H. Yao, L.H. Zhang, M. Hossain, J. Wang, S.G. Zang, Int. J. Plast. 129(2019) 152-167. |
[14] |
J.T. Fan, A. Chen, Polymers 11 (2019) 467.
DOI URL |
[15] |
T. Sain, J. Meaud, B. Yeom, A.M. Waas, E.M. Arruda, Int. J. Solids Struct. 54(2015) 147-155.
DOI URL |
[16] | A. Karamnejad, A. Ahmed, L.J. Sluys, J. Multis, Model. 8(2016) 1750001-1750026. |
[17] |
J.T. Fan, J. Weerheijm, L.J. Sluys, Compos. Sci. Technol. 118(2015) 55-62.
DOI URL |
[18] |
P. Wang, F. Liu, H. Wang, Hao Li, Y. Gou, J. Mater. Sci. Technol. 35(2019) 2743-2750.
DOI URL |
[19] |
J.S. Bergstrom, M.C. Boyce, J. Mech. Phys. Solids 46 (1998) 931-954.
DOI URL |
[20] |
A.D. Mulliken, M.C. Boyce, Int. J. Solids Struct. 43(2006) 1331-1356.
DOI URL |
[21] |
E.M. Arruda, M.C. Boyce, Int. J. Plast. 9(1993) 697-720.
DOI URL |
[22] |
C.C. Roach, Y.C. Lu, J. Mater. Sci. Technol. 35(2019) 1147-1152.
DOI URL |
[23] |
A.K. Kaushik, A.M. Waas, E.M. Arruda, Mech. Mater. 43(2011) 186-193.
DOI URL |
[24] |
E. Kheng, H.R. Iyer, P. Podsiadlo, A.K. Kaushik, N.A. Kotov, E.M. Arruda, A.M. Waas, Eng. Fract. Mech. 77(2010) 3227-3245.
DOI URL |
[25] | H. Eyring, J. Chem. Phys. (1936) 283-291. |
[26] | T. Ree, H. Eyring, J. Appl. Phys. 26(1955) 793-800. |
[27] |
S.G. Zang, Y.B. Gu, L.H. Zhang, X.H. Yao, Polym. Eng. Sci. 55(2015) 1864-1872.
DOI URL |
[28] |
N.M. Ames, L. Anand, V. Srivastava, S.A. Chester, Int. J. Plast. 26(2010) 1138-1182.
DOI URL |
[29] |
I. Ward, R. Duckett, J. Foot, R. Truss, J. Mater. Sci. 22(1987) 1437-1442.
DOI URL |
[30] |
M. Kroger, W.K. Liu, Y. Li, S. Tang, J. Mech. Phys. Solids 88 (2016) 204-226.
DOI URL |
[31] | E. Lee, J. Appl. Mech. 36(1968) 27. |
[32] | E. Kroner, Arch. Rotat. Mech. Anal. 4(1960) 273-334. |
[33] |
A.D. Mulliken, Massachusetts Institute of Technology, 2004.
DOI URL PMID |
[34] | E.M. Arruda, M.C. Boyce, Evolution of plastic anisotropy in amorphous polymers during finite straining, Anisotropy and Localization of Plastic Deformation (1991) 483-488. |
[35] |
H.J. Qi, M.C. Boyce, Mech. Mater. 37(2005) 817-839.
DOI URL |
[36] |
K. Shaw, M.C. Boyce, K. Kear, S. Socrate, J. Mech. Phys. Solids 49 (2001) 1073-1098.
DOI URL |
[37] | Dynaflow, Jive - software development kit for advanced numerical simulations, http://jive.dynaflow.com (accessed 08-01-2020), 2018. |
[38] |
J.C. Bauwens, J. Mater. Sci. 7(1972) 577-584.
DOI URL |
[39] |
C. Bauwens-Crowet, J. Mater. Sci. 8(1973) 968-979.
DOI URL |
[40] | J.T. Fan, F.F. Wu, D.F. Li, Mater. Sci. Eng. A 4 (2018), 720-140. |
[41] |
Q. Yuan, R.D.K. Misra, Polymer 47 (2006) 4421-4433.
DOI URL |
[42] |
J.T. Fan, J. Weerheijm, L.J. Sluys, Polymer 65 (2015) 72-80.
DOI URL |
[43] |
M. Todo, S.D. Park, T. Takayama, K. Arakawa, Eng. Fract. Mech. 74(2007) 1872-1883.
DOI URL |
[1] | Yi Yang, Di Xu, Sheng Cao, Songquan Wu, Zhengwang Zhu, Hao Wang, Lei Li, Shewei Xin, Lei Qu, Aijun Huang. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 52-60. |
[2] | Xinkai Ma, Zhuo Chen, Dongling Zhong, S.N. Luo, Lei Xiao, Wenjie Lu, Shanglin Zhang. Effect of rotationally accelerated shot peening on the microstructure and mechanical behavior of a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 27-38. |
[3] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[4] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[5] | Qiyu Liao, Yanchao Jiang, Qichi Le, Xingrui Chen, Chunlong Cheng, Ke Hu, Dandan Li. Hot deformation behavior and processing map development of AZ110 alloy with and without addition of La-rich Mish Metal [J]. J. Mater. Sci. Technol., 2021, 61(0): 1-15. |
[6] | Jiaxin Zhang, Jinshan Zhang, Fuyin Han, Wei Liu, Longlong Zhang, Rui Zhao, Chunxiang Xu, Jing Dou. Modification of Mn on corrosion and mechanical behavior of biodegradable Mg88Y4Zn2Li5 alloy with long-period stacking ordered structure [J]. J. Mater. Sci. Technol., 2020, 42(0): 130-142. |
[7] | Qiang Zhu, Gang Chen, Chuanjie Wang, Lukuan Cheng, Heyong Qin, Peng Zhang. Microstructure evolution and mechanical property characterization of a nickel-based superalloy at the mesoscopic scale [J]. J. Mater. Sci. Technol., 2020, 47(0): 177-189. |
[8] | Jian Yang Zhang, Bin Xu, Naeem ul Haq Tariq, Ming Yue Sun, Dian Zhong Li, Yi Yi Li. Effect of strain rate on plastic deformation bonding behavior of Ni-based superalloys [J]. J. Mater. Sci. Technol., 2020, 40(0): 54-63. |
[9] | G.Y. Li, L.F. Cao, J.Y. Zhang, X.G. Li, Y.Q. Wang, K. Wu, G. Liu, J. Sun. An insight into Mg alloying effects on Cu thin films: microstructural evolution and mechanical behavior [J]. J. Mater. Sci. Technol., 2020, 57(0): 101-112. |
[10] | Bassem Barkia, Pascal Aubry, Paul Haghi-Ashtiani, Thierry Auger, Lionel Gosmain, Frédéric Schuster, Hicham Maskrot. On the origin of the high tensile strength and ductility of additively manufactured 316L stainless steel: Multiscale investigation [J]. J. Mater. Sci. Technol., 2020, 41(0): 209-218. |
[11] | Binbin Wang, Liangshun Luo, Fuyu Dong, Liang Wang, Hongying Wang, Fuxin Wang, Lei Luo, Baoxian Su, Yanqing Su, Jingjie Guo, Hengzhi Fu. Impact of hydrogen microalloying on the mechanical behavior of Zr-bearing metallic glasses: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2020, 45(0): 198-206. |
[12] | Minqiang Gao, Zongning Chen, Huijun Kang, Enyu Guo, Rengeng Li, Ying Fu, Honglan Xie, Tongmin Wang. Microstructural characteristics and mechanical behavior of B4Cp/6061Al composites synthesized at different hot-pressing temperatures [J]. J. Mater. Sci. Technol., 2019, 35(8): 1523-1531. |
[13] | Yifeng Li, Jianqiu Wang, En-Hou Han, Wenbo Wu, Hannu H?nninen. Multi-scale study of ductility-dip cracking in nickel-based alloy dissimilar metal weld [J]. J. Mater. Sci. Technol., 2019, 35(4): 545-559. |
[14] | Lijin Dong, Qunjia Peng, En-Hou Han, Wei Ke, Lei Wang. Microstructure and intergranular stress corrosion cracking susceptibility of a SA508-52M-316L dissimilar metal weld joint in primary water [J]. J. Mater. Sci. Technol., 2018, 34(8): 1281-1292. |
[15] | Le Chang, Chang-Yu Zhou, Hong-Xi Liu, Jian Li, Xiao-Hua He. Orientation and strain rate dependent tensile behavior of single crystal titanium nanowires by molecular dynamics simulations [J]. J. Mater. Sci. Technol., 2018, 34(5): 864-877. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||