J. Mater. Sci. Technol. ›› 2020, Vol. 57: 138-145.DOI: 10.1016/j.jmst.2020.03.046
• Research article • Previous Articles Next Articles
C.Q. Lia,*(), D.K. Xub,*(
), Z.R. Zhanga, E.H. Hanb
Received:
2019-12-26
Accepted:
2020-03-18
Published:
2020-11-15
Online:
2020-11-20
Contact:
C.Q. Li,D.K. Xu
C.Q. Li, D.K. Xu, Z.R. Zhang, E.H. Han. Influence of the lithium content on the negative difference effect of Mg-Li alloys[J]. J. Mater. Sci. Technol., 2020, 57: 138-145.
Alloys | Mg | Li | Al | Zn | Cu | Fe | Si | Mn | Ni | Co |
---|---|---|---|---|---|---|---|---|---|---|
Mg-4Li | Bal. | 4.21 | 0.002 | 0.001 | 0.002 | 0.006 | 0.01 | 0.01 | <0.001 | <0.001 |
Mg-7.5Li | Bal. | 7.47 | 0.001 | 0.002 | 0.002 | 0.005 | 0.01 | 0.02 | <0.001 | <0.001 |
Mg-14Li | Bal. | 13.66 | 0.002 | 0.001 | 0.001 | 0.005 | 0.01 | 0.01 | <0.001 | <0.001 |
Table 1 Chemical compositions (wt%) of Mg-4Li, Mg-7.5Li and Mg-14Li alloys.
Alloys | Mg | Li | Al | Zn | Cu | Fe | Si | Mn | Ni | Co |
---|---|---|---|---|---|---|---|---|---|---|
Mg-4Li | Bal. | 4.21 | 0.002 | 0.001 | 0.002 | 0.006 | 0.01 | 0.01 | <0.001 | <0.001 |
Mg-7.5Li | Bal. | 7.47 | 0.001 | 0.002 | 0.002 | 0.005 | 0.01 | 0.02 | <0.001 | <0.001 |
Mg-14Li | Bal. | 13.66 | 0.002 | 0.001 | 0.001 | 0.005 | 0.01 | 0.01 | <0.001 | <0.001 |
Alloys | Ecorr (V vs. SCE) | jcorr (μA cm-2) |
---|---|---|
Mg-4Li | -1.56 ± 0.02 | 5.41 ± 0.28 |
Mg-7.5Li | -1.55 ± 0.01 | 5.23 ± 0.21 |
Mg-14Li | -1.64 ± 0.02 | 6.86 ± 0.25 |
Table 2 Tafel fitting results derived from the polarization curves of Mg-4Li, Mg-7.5Li and Mg-14Li alloys tested in 0.1 M NaCl solution.
Alloys | Ecorr (V vs. SCE) | jcorr (μA cm-2) |
---|---|---|
Mg-4Li | -1.56 ± 0.02 | 5.41 ± 0.28 |
Mg-7.5Li | -1.55 ± 0.01 | 5.23 ± 0.21 |
Mg-14Li | -1.64 ± 0.02 | 6.86 ± 0.25 |
Fig. 3. Applied and measured electrochemical currents and potentials arising from the application of a custom polarization regime for (a) Mg-4Li, (b) Mg-7.5Li and (c) Mg-14Li alloys in 0.1 M NaCl at 25 °C. The regime consisted of increasing the applied anodic current density in a stepwise manner (from 20 to 2500 μA/cm2).
Fig. 4. Summary of data collected as a result of the custom polarization regime from 20 μA/cm2 to 20 mA/cm2 for (a) Mg-4Li, (b) Mg-7.5Li and (c) Mg-14Li alloys.
Fig. 5. Typical potentiodynamic cathodic polarization curve of (a) Mg-4Li, (b) Mg-7.5Li and (c) Mg-14Li alloys after anodic dissolution/conditioning for 2 min at 10 mA/cm2.
Fig. 6. Typical surface morphologies of (a, d) Mg-4Li, (b, e) Mg-7.5Li and (c, f) Mg-14Li alloys after potentiodynamic cathodic polarization following (a-c) OCP holding for 10 min and (d-f) anodic dissolution/conditioning for 2 min at 10 mA/cm2. Higher-magnification observation to the images (a), (b), (c) and (f) are inserted.
Fig. 8. Surface morphologies of (a) Mg-4Li, (b) Mg-7.5Li and (c) Mg-14Li alloys following anodic dissolution at +100 mV above OCP for 10 min, respectively. Images (d), (e) and (f) are higher-magnification observation to the areas defined in images (a), (c) and (e).
Fig. 9. Cross-sectional morphologies of (a) Mg-4Li, (b) Mg-7.5Li and (c) Mg-14Li alloys following anodic dissolution at +100 mV above OCP for 10 min. Images (d), (e) and (f) are higher-magnification observation to images (a), (b) and (c), respectively.
[1] |
B.J. Wang, D.K. Xu, S.D. Wang, L.Y. Sheng, R.C. Zeng, E.H. Han, Int. J. Fatigue 120 (2019) 46-55.
DOI URL |
[2] | S.Q. Yin, W.C. Duan, W.H. Liu, L. Wu, J.M. Yu, Z.L. Zhao, M. Liu, P. Wang, J.Z. Cui, Z.Q. Zhang, Corros. Sci. (2019), 108419. |
[3] |
M. Duan, L. Luo, Y. Liu, J. Alloys Compd. 823(2020), 153691.
DOI URL |
[4] |
F. Zhong, H.J. Wu, Y.L. Jiao, R.Z. Wu, J.H. Zhang, L.G. Hou, J. Mater. Sci. Technol. 39(2020) 124-134.
DOI URL |
[5] |
J.H. Zhang, S.J. Liu, R.Z. Wu, L.G. Hou, M.L. Zhang, J. Magnes. Alloys 6 (2018) 277-291.
DOI URL |
[6] |
X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xing, Z.Q. Zhang, Y. Liu, X.H. Chen, G, G. Chen, K.K. Deng, H.Y. Wang, J. Mater. Sci. Technol. 34(2018) 245-247.
DOI URL |
[7] |
L. Wu, X.X. Ding, Z.C. Zheng, A.T. Tang, G. Zhang, A. Atrens, F.S. Pan, J. Mater. Sci. Technol. (2019), http://dx.doi.org/10.1016/j.jmst.2019.09.031.
DOI URL PMID |
[8] |
B.J. Wang, D.K. Xu, L.Y. Sheng, E.H. Han, J. Sun, J. Mater. Sci. Technol. 35(2019) 2423-2429.
DOI URL |
[9] |
C.Q. Li, D.K. Xu, Z.R. Zeng, B.J. Wang, L.Y. Sheng, X.B. Chen, E.H. Han, Mater. Des. 121(2017) 430-441.
DOI URL |
[10] |
B.J. Wang, D.K. Xu, S.D. Wang, E.H. Han, Front. Mech. Eng. 14(2019) 113-127.
DOI URL |
[11] |
B.J. Wang, D.K. Xu, J. Sun, E.H. Han, Corros. Sci. 157(2019) 347-356.
DOI URL |
[12] |
S. Lebouil, O. Gharbi, P. Volovitch, K. Ogle, Corrosion 71 (2015) 234-241.
DOI URL |
[13] | J.R. Li, Z.Y. Chen, J.P. Jing, J. Hou, J. Mater, Sci. Technol. 41(2020) 33-42. |
[14] |
S. Fajardo, G.S. Frankel, Electrochem. Commun. 84(2017) 36-39.
DOI URL |
[15] |
T.W. Cain, I. Gonzalez-Afanador, N. Birbilis, J.R. Scully, J. Electrochem. Soc. 164(2017) C300-C311.
DOI URL |
[16] |
S. Fajardo, G.S. Frankel, Electrochim. Acta 165 (2015) 255-267.
DOI URL |
[17] |
M. Curioni, Electrochim. Acta 120 (2014) 284-292.
DOI URL |
[18] |
J.A. Yuwono, N. Birbilis, C.D. Taylor, K.S. Williams, A.J. Samin, N.V. Medhekar, Corros. Sci. 147(2019) 53-68.
DOI URL |
[19] |
J.A. Yuwono, C.D. Taylor, G.S. Frankel, N. Birbilis, S. Fajardo, Electrochem. Commun. 104(2019), 106482.
DOI URL |
[20] |
S. Fajardo, C.F. Glover, G. Williams, G.S. Frankel, Electrochim. Acta 212 (2016) 510-521.
DOI URL |
[21] |
S. Fajardo, C.F. Glover, G. Williams, G.S. Frankel, Corrosion 73 (2017) 482-493.
DOI URL |
[22] |
P. Gore, V.S. Raja, N. Birbilis, J. Electrochem. Soc. 165(2018) C849-C859.
DOI URL |
[23] |
C.Q. Li, D.K. Xu, X.-B. Chen, B.J. Wang, R.Z. Wu, E.H. Han, N. Birbilis, Electrochim. Acta 260 (2018) 55-64.
DOI URL |
[24] |
C.Q. Li, D.K. Xu, B.J. Wang, L.Y. Sheng, R.Z. Wu, E.H. Han, J. Mater. Sci. Technol. 35(2019) 2477-2484.
DOI URL |
[25] | B.J. Wang, J.Y. Luan, D.K. Xu, J. Sun, C.Q. Li, E.H. Han, Acta Metall. Sin.(Engl. Lett.) 32(2019) 1-9. |
[26] |
C.Q. Li, D.K. Xu, B.J. Wang, L.Y. Sheng, Y.X. Qiao, E.H. Han, Sci. Rep. 7(2017) 40078.
DOI URL PMID |
[27] |
W.Q. Xu, N. Birbilis, G. Sha, Y. Wang, J. Daniels, Y. Xiao, M. Ferry, Nat. Mater. 14(2015) 1229-1235.
DOI URL PMID |
[28] |
L.F. Hou, M. Raveggi, X.B. Chen, W.Q. Xu, K.J. Laws, Y.H. Wei, M. Ferry, N. Birbilis, J. Electrochem. Soc. 163(2016) C324-C329.
DOI URL |
[29] |
A. Samaniego, N. Birbilis, X. Xia, G.S. Frankel, Corrosion 71 (2015) 224-233.
DOI URL |
[30] |
N. Birbilis, A.D. King, S. Thomas, G.S. Frankel, J.R. Scully, Electrochim. Acta 132 (2014) 277-283.
DOI URL |
[31] |
H.G. Liu, F.Y. Cao, G.L. Song, D.J. Zheng, Z.M. Shi, M.S. Dargusch, A. Atrens, J. Mater. Sci. Technol. 35(2019) 2003-2016.
DOI URL |
[32] |
C.Q. Li, D.K. Xu, S. Yu, L.Y. Sheng, E.H. Han, J. Mater. Sci. Technol. 33(2017) 475-480.
DOI URL |
[33] |
A.A. Nayeb-Hashemi, J.B. Clark, Bull. Alloy Phase Diagr. 5(1984) 365-374.
DOI URL |
[34] |
R.L. Liu, J.R. Scully, G. Williams, N. Birbilis, Electrochim. Acta 260 (2018) 184-195.
DOI URL |
[35] |
R.L. Liu, S. Thomas, J.R. Scully, G. Williams, N. Birbilis, Corrosion 73 (2017) 494-505.
DOI URL |
[36] |
L.G. Bland, K. Gusieva, J.R. Scully, Electrochim. Acta 227 (2017) 136-151.
DOI URL |
[37] |
M. Taheri, R.C. Phillips, J.R. Kish, G.A. Botton, Corros. Sci. 59(2012) 222-228.
DOI URL |
[38] | C.Y. Li, C.Y. Li, X.L. Fan, R.C. Zeng, L.Y. Cui, S.Q. Li, F. Zhang, Q.K. He, M. Bobby Kannan, H.W. Jiang, D.C. Chen, S.K. Guan, J. Mater. Sci. Technol. 35(2019) 1088-1098. |
[39] |
Y.M. Yan, P. Zhou, O. Gharbi, Z.R. Zeng, X.B. Chen, P. Volovitch, K. Ogle, N. Birbilis, Electrochem. Commun. 99(2019) 46-50.
DOI URL |
[40] | Y.M. Yan, O. Gharbi, A. Maltseva, X.B. Chen, Z.R. Zeng, S.W. Xu, W.Q. Xu, P. Volovitch, M. Ferry, N. Birbilis, Corrosion 75 (2019), 89-89. |
[41] |
Y.M. Yan, Y. Qiu, O. Gharbi, N. Birbilis, P.N.H. Nakashima, Appl. Surf. Sci. 494(2019) 1066-1071.
DOI URL |
[42] |
S.S. Jamali, S.E. Moulton, D.E. Tallman, Y. Zhao, J. Weber, G.G. Wallace, Electrochem. Commun. 76(2017) 6-9.
DOI URL |
[43] |
Y.W. Song, D.Y. Shan, R.S. Chen, E.H. Han, J. Alloys Compd. 484(2009) 585-590.
DOI URL |
[44] |
R.C. Zeng, L. Sun, Y.F. Zheng, H.Z. Cui, E.H. Han, Corros. Sci. 79(2014) 69-82.
DOI URL |
[45] |
L.G. Bland, A.D. King, N. Birbilis, J.R. Scully, Corrosion 71 (2014) 128-145.
DOI URL |
[46] |
V. Shkirskiy, A.D. King, O. Gharbi, P. Volovitch, J.R. Scully, K. Ogle, N. Birbilis, Chem. Phys. Chem. 16(2015) 536-539.
DOI URL PMID |
[47] |
A.D. King, N. Birbilis, J.R. Scully, Electrochim. Acta 121 (2014) 394-406.
DOI URL |
[48] |
Y.W. Song, D.Y. Shan, R.S. Chen, E.H. Han, Corros. Sci. 51(2009) 1087-1094.
DOI URL |
[49] | G. Williams, N. Birbilis, H.N. McMurray, Electrochem.Commun. 36(2013) 1-5. |
[50] |
Z.P. Cano, M. Danaie, J.R. Kish, J.R. McDermid, G.A. Botton, G. Williams, Corrosion 71 (2015) 146-159.
DOI URL |
[51] |
E. Ghali, W. Dietzel, K.U. Kainer, J. Mater. Eng. Perform. 22(2013) 2875-2891.
DOI URL |
[52] | G.L. Song, P.E. Gannon, Magnes. Technol. (2016) 285-290. |
[53] |
F.Y. Cao, Z.M. Shi, J. Hofstetter, P.J. Uggowitzer, G.L. Song, M. Liu, A. Atrens, Corros. Sci. 75(2013) 78-99.
DOI URL |
[54] |
Y. Cho, J.Y. Lee, A.D. Bokare, S.B. Kwon, D.S. Park, W.S. Jung, J.S. Choi, Y.M. Yang, J.Y. Lee, W.Y. Choi, J. Ind. Eng. Chem. 22(2015) 350-356.
DOI URL |
[55] |
S. Satyapal, T. Filburn, J. Trela, Energy Fuel 15 (2001) 250-255.
DOI URL |
[56] |
G.L. Song, A. Atrens, Adv. Eng. Mater. 1(1999) 11-33.
DOI URL |
[57] | S. Bender, J. Goellner, A. Heyn, S. Schmigalla, Mater. Corros. 63(2012) 707-712. |
[58] |
S. Fajardo, J. Bosch, G.S. Frankel, Corros. Sci. 146(2019) 163-171.
DOI URL |
[59] |
S.H. Salleh, S. Thomas, J.A. Yuwono, K. Venkatesan, N. Birbilis, Electrochim. Acta 161 (2015) 144-152.
DOI URL |
[60] |
M. Curioni, Electrochim. Acta 120 (2014) 284-292.
DOI URL |
[61] | I.A. Gvozdkov, V.A. Belyaev, S.N. Potapov, V.N. Verbetskii, S.V. Mitrokhin, A.A. Tepanov, Inorg. Mater. 10(2019) 870-874. |
[62] |
X. Xia, C.H.J. Davies, J.F. Nie, N. Birbilis, Corrosion 71 (2015) 38-49.
DOI URL |
[1] | Hu Liu, Jie Wei, Junhua Dong, Yiqing Chen, Yumin Wu, Yangtao Zhou, Subedi Dhruba Babu, Wei Ke. Influence of cementite spheroidization on relieving the micro-galvanic effect of ferrite-pearlite steel in acidic chloride environment [J]. J. Mater. Sci. Technol., 2021, 61(0): 234-246. |
[2] | Binbin Zhang, Jizhou Duan, Yanliang Huang, Baorong Hou. Double layered superhydrophobic PDMS-Candle soot coating with durable corrosion resistance and thermal-mechanical robustness [J]. J. Mater. Sci. Technol., 2021, 71(0): 1-11. |
[3] | Gaopeng Xu, Kui Wang, Xianping Dong, Lei Yang, Mahmoud Ebrahimi, Haiyan Jiang, Qudong Wang, Wenjiang Ding. Review on corrosion resistance of mild steels in liquid aluminum [J]. J. Mater. Sci. Technol., 2021, 71(0): 12-22. |
[4] | Zhong Li, Jie Wang, Yizhe Dong, Dake Xu, Xianhui Zhang, Jianhua Wu, Tingyue Gu, Fuhui Wang. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 71(0): 177-185. |
[5] | Yue Wang, Xin Mu, Junhua Dong, Aniefiok Joseph Umoh, Wei Ke. Insight into atmospheric corrosion evolution of mild steel in a simulated coastal atmosphere [J]. J. Mater. Sci. Technol., 2021, 76(0): 41-50. |
[6] | Xuan Wu, Yuanyuan Liu, Yangting Sun, Nianwei Dai, Jin Li, Yiming Jiang. A discussion on evaluation criteria for crevice corrosion of various stainless steels [J]. J. Mater. Sci. Technol., 2021, 64(0): 29-37. |
[7] | Dawei Guo, Chi Tat Kwok. A corrosion study on W-Cu alloys in sodium chloride solution at different pH [J]. J. Mater. Sci. Technol., 2021, 64(0): 38-56. |
[8] | Liang Wu, Xingxing Ding, Zhicheng Zheng, Aitao Tang, Gen Zhang, Andrej Atrens, Fusheng Pan. Doublely-doped Mg-Al-Ce-V2O7 4- LDH composite film on magnesium alloy AZ31 for anticorrosion [J]. J. Mater. Sci. Technol., 2021, 64(0): 66-72. |
[9] | Pan Liu, Lulu Hu, Qinhao Zhang, Cuiping Yang, Zuosi Yu, Jianqing Zhang, Jiming Hu, Fahe Cao. Effect of aging treatment on microstructure and corrosion behavior of Al-Zn-Mg aluminum alloy in aqueous solutions with different aggressive ions [J]. J. Mater. Sci. Technol., 2021, 64(0): 85-98. |
[10] | Pan Liu, Qinhao Zhang, Xinran Li, Jiming Hu, Fahe Cao. Insight into the triggering effect of (Al, Mg, Ca, Mn)-oxy-sulfide inclusions on localized corrosion of weathering steel [J]. J. Mater. Sci. Technol., 2021, 64(0): 99-113. |
[11] | Xiang Peng, Shihao Xu, Dehua Ding, Guanglan Liao, Guohua Wu, Wencai Liu, Wenjiang Ding. Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg-5Li-3Al-2Zn alloy with different Sn and Y addition [J]. J. Mater. Sci. Technol., 2021, 72(0): 16-22. |
[12] | Hao Liu, Baomin Fan, Guifeng Fan, Yucong Ma, Hua Hao, Wen Zhang. Anti-corrosive mechanism of poly (N-ethylaniline)/sodium silicate electrochemical composites for copper: Correlated experimental and in-silico studies [J]. J. Mater. Sci. Technol., 2021, 72(0): 202-216. |
[13] | Fangqiang Ning, Xiang Wang, Ying Yang, Jibo Tan, Ziyu Zhang, Dan Jia, Xinqiang Wu, En-Hou Han. Uniform corrosion behavior of FeCrAl alloys in borated and lithiated high temperature water [J]. J. Mater. Sci. Technol., 2021, 70(0): 136-144. |
[14] | Jiashun Shi, Suchun Wang, Xin Cheng, Shiqiang Chen, Guangzhou Liu. Constructing zwitterionic nanofiber film for anti-adhesion of marine corrosive microorganisms [J]. J. Mater. Sci. Technol., 2021, 70(0): 145-155. |
[15] | Xiaoming Sun, Lingzhong Du, Hao Lan, Jingyi Cui, Liang Wang, Runguang Li, Zhiang Liu, Junpeng Liu, Weigang Zhang. Mechanical, corrosion and magnetic behavior of a CoFeMn1.2NiGa0.8 high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 139-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||