J. Mater. Sci. Technol. ›› 2020, Vol. 57: 131-137.DOI: 10.1016/j.jmst.2020.03.045
• Research article • Previous Articles Next Articles
Min Jung Kima, Gyeol Chan Kanga, Sung Hwan Honga, Hae Jin Parka, Sang Chul Muna, Gian Songb,*, Ki Buem Kima,*()
Received:
2019-12-20
Accepted:
2020-03-05
Published:
2020-11-15
Online:
2020-11-20
Contact:
Gian Song,Ki Buem Kim
Min Jung Kim, Gyeol Chan Kang, Sung Hwan Hong, Hae Jin Park, Sang Chul Mun, Gian Song, Ki Buem Kim. Understanding microstructure and mechanical properties of (AlTa0.76)xCoCrFeNi2.1 eutectic high entropy alloys via thermo-physical parameters[J]. J. Mater. Sci. Technol., 2020, 57: 131-137.
Fig. 2. Back-scattered electron (BSE) SEM images of as-cast (AlTa0.76)xCoCrFeNi2.1 alloys with x = 0.1 (a), 0.3 (b), 0.5 (c), 0.7 (d), 1.0 (e), and 1.5 (f). Insets of (b), (c) and (d) show secondary-electron (SE) SEM images, and (e) and (f) are BSE SEM images at a higher magnification. The dendrite and interdendrite region are marked in DR and ID, respectively.
Alloys | Al | Ta | Co | Cr | Fe | Ni |
---|---|---|---|---|---|---|
Al0.1 | 8.7 | 6.3 | 14.2 | 16.2 | 16.6 | 35.7 |
Al0.3 | 5 | 5 | 18 | 17.5 | 18 | 36.5 |
Al0.5 | 8.1 | 6 | 17 | 17 | 17.3 | 34.6 |
Al0.7 | 13 | 5 | 15.9 | 15.5 | 16.4 | 34.2 |
Al1.0 | 25.5 | 7.4 | 11.9 | 8.2 | 10.2 | 36.8 |
Al1.5 | 4.6 | 29.4 | 15.9 | 17.7 | 18.1 | 14.4 |
Table 1 Chemical composition in dendrite region of as-cast (AlTa0.76)xCoCrFeNi2.1 (x = 0.1, 0.3, 0.5, 0.7, 1.0 and 1.5) alloys (at.%), measured by EDS.
Alloys | Al | Ta | Co | Cr | Fe | Ni |
---|---|---|---|---|---|---|
Al0.1 | 8.7 | 6.3 | 14.2 | 16.2 | 16.6 | 35.7 |
Al0.3 | 5 | 5 | 18 | 17.5 | 18 | 36.5 |
Al0.5 | 8.1 | 6 | 17 | 17 | 17.3 | 34.6 |
Al0.7 | 13 | 5 | 15.9 | 15.5 | 16.4 | 34.2 |
Al1.0 | 25.5 | 7.4 | 11.9 | 8.2 | 10.2 | 36.8 |
Al1.5 | 4.6 | 29.4 | 15.9 | 17.7 | 18.1 | 14.4 |
Fig. 3. (a) Bright-field image of the dendrite region and fine-eutectic structure, and (b) coarse-eutectic structure of Al1.0. SAED patterns corresponding to the B2 (c) and FCC (d), and Laves phases (e), respectively.
Phase and microstructure | Al | Ta | Co | Cr | Fe | Ni | |
---|---|---|---|---|---|---|---|
Dendrite | B2 | 25.5 | 7.4 | 11.9 | 8.2 | 10.2 | 36.8 |
Fine lamellar | FCC | 6.9 | 3.4 | 15.7 | 16.8 | 20.4 | 36.8 |
Laves | 1.8 | 26 | 18.9 | 16.2 | 16.4 | 20.7 | |
Coarse lamellar | B2 | 25.7 | 2.8 | 10.2 | 3.6 | 12.7 | 45 |
Laves | 2.6 | 33.8 | 18.2 | 15.9 | 14.4 | 15.1 |
Table 2 Chemical compositions of the phases in Al1.0 alloy (at.%).
Phase and microstructure | Al | Ta | Co | Cr | Fe | Ni | |
---|---|---|---|---|---|---|---|
Dendrite | B2 | 25.5 | 7.4 | 11.9 | 8.2 | 10.2 | 36.8 |
Fine lamellar | FCC | 6.9 | 3.4 | 15.7 | 16.8 | 20.4 | 36.8 |
Laves | 1.8 | 26 | 18.9 | 16.2 | 16.4 | 20.7 | |
Coarse lamellar | B2 | 25.7 | 2.8 | 10.2 | 3.6 | 12.7 | 45 |
Laves | 2.6 | 33.8 | 18.2 | 15.9 | 14.4 | 15.1 |
Alloys | Dendrite phase | Eutectic phases | Alloy groups |
---|---|---|---|
Al0.1 | FCC | - | 1 |
Al0.3 | FCC | FCC + Laves | 2 |
Al0.5 | FCC | FCC + Laves | 2 |
Al0.7 | FCC | FCC + Laves | 2 |
Al1.0 | B2 | [B2 + Laves] + [FCC + Laves] | 3 |
Al1.5 | Laves | B2 + Laves | 4 |
Table 3 Microstructural attributes and constitutive phases for (AlTa0.76)xCoCrFeNi2.1 alloys.
Alloys | Dendrite phase | Eutectic phases | Alloy groups |
---|---|---|---|
Al0.1 | FCC | - | 1 |
Al0.3 | FCC | FCC + Laves | 2 |
Al0.5 | FCC | FCC + Laves | 2 |
Al0.7 | FCC | FCC + Laves | 2 |
Al1.0 | B2 | [B2 + Laves] + [FCC + Laves] | 3 |
Al1.5 | Laves | B2 + Laves | 4 |
Fig. 4. Compressive engineering stress-strain curves of as-cast (AlTa0.76)xCoCrFeNi2.1 (x = 0.1, 0.3, 0.5, 0.7, 1.0, and 1.5) alloys at room temperature (at a strain rate: 1 × 10-3 s-1). Note that the Al0.1 and Al0.3 did not fail under the compression strain up to 50 %.
Alloys | σ0.2 (MPa) | σmax (MPa) | εp (%) |
---|---|---|---|
Al0.1 | 293 | No fracture | |
Al0.3 | 503 | No fracture | |
Al0.5 | 974 | 2646 | 30.6 |
Al0.7 | 1533 | 2604 | 15 |
Al1.0 | 2336 | 2566 | 2 |
Al1.5 | 2208 | 2342 | 2 |
Table 4 Mechanical properties of as-cast (AlTa0.76)xCoCrFeNi2.1 (x = 0.1, 0.3, 0.5, 0.7, 1.0 and 1.5) alloys.
Alloys | σ0.2 (MPa) | σmax (MPa) | εp (%) |
---|---|---|---|
Al0.1 | 293 | No fracture | |
Al0.3 | 503 | No fracture | |
Al0.5 | 974 | 2646 | 30.6 |
Al0.7 | 1533 | 2604 | 15 |
Al1.0 | 2336 | 2566 | 2 |
Al1.5 | 2208 | 2342 | 2 |
Fig. 5. The Relationships between (a) the mixing enthalpy (ΔHmix) and atomic size difference (δr), (b) the valence electron concentration (VEC) and atomic size difference (δr) for the (AlTa0.76)xCoCrFeNi2.1 (x = 0.1, 0.3, 0.5, 0.7, 1.0 and 1.5) alloys, and (c) the table representing typically- reported HEAs with different compositions and microstructures, which are marked by various symbols in (a) and (b). Black circles represent the Alx alloys developed in the present study. Blue square areas represent ranges to form eutectic structures from previous EHEAs, and bright and dark yellow ellipses indicate regimes to form BCC or FCC single-phase HEAs, respectively [32].
Alloys | ΔSmix (J k -1 mol-1) | ΔHmix (kJ mol-1) | VEC | δr (%) |
---|---|---|---|---|
Al0.1 | 12.05 | -6.02 | 8.465 | 2.4 |
Al0.3 | 13.09 | -9.63 | 8.183 | 3.7 |
Al0.5 | 13.69 | -12.6 | 7.93 | 4.57 |
Al0.7 | 14.05 | -14.66 | 7.71 | 5.02 |
Al1.0 | 14.37 | -17.61 | 7.406 | 5.86 |
Al1.5 | 14.54 | -20.67 | 7.01 | 6.71 |
Table 5 Calculated values of ΔSmix, ΔHmix, VEC and δr for (AlTa0.76)xCoCrFeNi2.1 alloys according to the Eqs. (1)-(4).
Alloys | ΔSmix (J k -1 mol-1) | ΔHmix (kJ mol-1) | VEC | δr (%) |
---|---|---|---|---|
Al0.1 | 12.05 | -6.02 | 8.465 | 2.4 |
Al0.3 | 13.09 | -9.63 | 8.183 | 3.7 |
Al0.5 | 13.69 | -12.6 | 7.93 | 4.57 |
Al0.7 | 14.05 | -14.66 | 7.71 | 5.02 |
Al1.0 | 14.37 | -17.61 | 7.406 | 5.86 |
Al1.5 | 14.54 | -20.67 | 7.01 | 6.71 |
Al | Ta | Co | Cr | Fe | Ni | ||
---|---|---|---|---|---|---|---|
VEC | 3 | 5 | 9 | 6 | 8 | 10 | |
Atomic radius (pm) | 118 | 146 | 125 | 128 | 126 | 124 | |
ΔHmix (kJ mol-1) | Al | ? | -19 | -19 | -10 | -11 | -22 |
Ta | ? | ? | -24 | -7 | -16 | -29 | |
Co | ? | ? | ? | -4 | -1 | 0 | |
Cr | ? | ? | ? | ? | -1 | -5 | |
Fe | ? | ? | ? | ? | ? | -2 | |
Ni | ? | ? | ? | ? | ? | ? |
Table 6 Values of VEC and atomic radius among the alloying elements and mixing enthalpies for atomic pairs between elements used in the present study [32,33].
Al | Ta | Co | Cr | Fe | Ni | ||
---|---|---|---|---|---|---|---|
VEC | 3 | 5 | 9 | 6 | 8 | 10 | |
Atomic radius (pm) | 118 | 146 | 125 | 128 | 126 | 124 | |
ΔHmix (kJ mol-1) | Al | ? | -19 | -19 | -10 | -11 | -22 |
Ta | ? | ? | -24 | -7 | -16 | -29 | |
Co | ? | ? | ? | -4 | -1 | 0 | |
Cr | ? | ? | ? | ? | -1 | -5 | |
Fe | ? | ? | ? | ? | ? | -2 | |
Ni | ? | ? | ? | ? | ? | ? |
[1] | J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6(2004) 299-303. |
[2] | Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, J. Prog. Mater. Sci. 61(2014) 1-93. |
[3] | M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang, High-entropy Alloys: Fundamentals and Applications, first ed., Springer International Publishing, Cham, Switzerland, 2013. |
[4] | B. Cantor, Entropy 16 (2014) 4749-4768. |
[5] |
O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics 19 (2011) 698-706.
DOI URL |
[6] | A. Zhang, J. Han, B. Su, J. Meng, J. Alloys Compd. 725(2017) 700-710. |
[7] | B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158. |
[8] | J. Wang, T. Guo, J. Li, W. Jia, H. Kou, Mater. Chem. Phys. 210(2018) 192-196. |
[9] | J. Dąbrowa, W. Kucza, G. Cieślak, T. Kulik, M. Danielewski, J.W. Yeh, J. Alloys Compd. 674(2016) 455-462. |
[10] | M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, P.K. Liaw, Acta Mater. 60(2012) 5723-5734. |
[11] | Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Acta Mater. 124(2017) 143-150. |
[12] |
Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, T. Li, Sci. Rep. 4(2014) 6200.
URL PMID |
[13] | Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Compounds J. Alloys Compd. 488(2009) 57-64. |
[14] | I.S. Wani, T. Bhattacharjee, S. Sheikh, Y.P. Lu, S. Chatterjee, P.P. Bhattacharjee, S. Guo, N. Tsuji, Mater. Res. Lett. 4(2016) 174-179. |
[15] | W. Huo, H. Zhou, F. Fang, X. Zhou, Z. Xie, J. Jiang, J. Alloys Compd. 735(2018) 897-904. |
[16] | S. Ma, Y. Zhang, Mater. Sci. Eng. A 532 (2012) 480-486. |
[17] | L. Jiang, Z.Q. Cao, J.C. Jie, J.J. Zhang, Y.P. Lu, T.M. Wang, T.J. Li, J. Alloys Compd. 649(2015) 585-590. |
[18] | W. Huo, H. Zhou, F. Fang, Z. Xie, J. Jiang, Mater. Des. 134(2017) 226-233. |
[19] | F. He, Z. Wang, P. Cheng, Q. Wang, J. Li, Y. Dang, J. Wang, C.T. Liu, J. Alloys Compd. 656(2016) 284-289. |
[20] | C. Ai, F. He, M. Guo, J. Zhou, Z. Wang, Z. Yuan, Y. Guo, Y. Liu, L. Liu, J. Alloys Compd. 735(2018) 2653-2662. |
[21] | Y. Lu, H. Jiang, S. Guo, T. Wang, Z. Cao, T. Li, Intermetallics 91 (2017) 124-128. |
[22] | K. Rzyman, Z. Moser, R.E. Watson, M. Weinert, J. Phase Equilib. 19(1998) 106. |
[23] |
H. Jiang, K. Han, D. Qiao, Y. Lu, Z. Cao, T. Li, Mater. Chem. Phys. 210(2018) 43-48.
DOI URL |
[24] | M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, G.M. Stocks, Phys. Rev. X 5 (2015), 011041. |
[25] | S. Guo, Q. Hu, C. Ng, C.T. Liu, Intermetallics 41 (2013) 96-103. |
[26] | M.H. Tsai, K.Y. Tsai, C.W. Tsai, C. Lee, C.C. Juan, J.W. Yeh, Mater. Res. Lett. 1(2013) 207-212. |
[27] | S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109(2011), 103505. |
[28] | S. Guo, C.T. Liu, Prog. Nat. Sci. 21(2011) 433-446. |
[29] | F. He, Z. Wang, C. Ai, J. Li, J. Wang, J.J. Kai, Mater. Chem. Phys. 221(2019) 138-143. |
[30] | H. Jiang, K. Han, X. Gao, Y. Lu, Z. Cao, M.C. Gao, J.A. Hawk, T. Li, Mater. Des. 142(2018) 101-105. |
[31] | W. Liu, Y. Wu, J.Y. He, Y. Zhang, C.T. Liu, Z.P. Lu, JOM 66 (2014) 1973-1983. |
[32] | B. Chanda, J. Das, J. Alloys Compd. 798(2019) 167-173. |
[33] | A. Takeuchi, A. Inoue, Mater. Trans. 46(2005) 2817-2829. |
[34] | J.W. Yeh, JOM 65 (2013) 1759-1771. |
[1] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[2] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
[3] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[4] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[5] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[6] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[7] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[8] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[9] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[10] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[11] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[12] | Y. Cao, X. Lin, Q.Z. Wang, S.Q. Shi, L. Ma, N. Kang, W.D. Huang. Microstructure evolution and mechanical properties at high temperature of selective laser melted AlSi10Mg [J]. J. Mater. Sci. Technol., 2021, 62(0): 162-172. |
[13] | Yongsheng Liu, Jiaying Jin, Tianyu Ma, Baixing Peng, Xinhua Wang, Mi Yan. Promoting the La solution in 2:14: 1-type compound: Resultant chemical deviation and microstructural nanoheterogeneity [J]. J. Mater. Sci. Technol., 2021, 62(0): 195-202. |
[14] | Yuan Wu, Fei Zhang, Xiaoyuan Yuan, Hailong Huang, Xiaocan Wen, Yihan Wang, Mengyuan Zhang, Honghui Wu, Xiongjun Liu, Hui Wang, Suihe Jiang, Zhaoping Lu. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 214-220. |
[15] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||