J. Mater. Sci. Technol. ›› 2020, Vol. 54: 112-118.DOI: 10.1016/j.jmst.2020.02.076
• Research Article • Previous Articles Next Articles
Hao Liua, Xuan Gea, Qiaodan Hua,*(), Fan Yangb,*(
), Jianguo Lia
Received:
2020-01-17
Revised:
2020-02-13
Accepted:
2020-02-28
Published:
2020-10-01
Online:
2020-10-21
Contact:
Qiaodan Hu,Fan Yang
Hao Liu, Xuan Ge, Qiaodan Hu, Fan Yang, Jianguo Li. A new sight into the glass forming ability caused by doping on Ba- and Ti-site in BaTi2O5 glass[J]. J. Mater. Sci. Technol., 2020, 54: 112-118.
Fig. 1. Glass forming regions of La- and Nb-doped BT2. Open circles, half-filled circle and crosses represent glasses, partially crystallized glass and crystals, respectively. The inset figures show the digital camera photos of the glass spheres with different compositions.
Fig. 2. The composition dependence of density, ρ, and molar volume, VM, of (a) La-doped BT2 and (b) Nb-doped BT2 glasses. The lines through the symbols are the linear fittings of the data.
Fig. 3. (a) DTA curves for La-doped BT2 glasses. The inset figure shows the expanded view of DTA curve for x = 0 in the rectangle showing the glass transition temperature. (b) The glass-transition temperature Tg, the first crystallization temperature Tx1, and the glass thermal stability ΔT (ΔT =Tx1-Tg, inset figure) as a function of the La-doping level, x.
Fig. 4. (a) DTA curves for Nb-doped BT2 glasses. (b) The glass-transition temperature Tg, the first crystallization temperature Tx1, and the glass thermal stability ΔT (ΔT =Tx1-Tg, inset figure) as a function of the Nb-doping level, y.
Fig. 5. (a) Raman spectra of La-doped BT2 glasses. The inset figure shows the deconvolution of the Raman spectrum of BT2 in the range between 130 and 950 cm-1 using four Lorentz peaks. (b) Variation of the wavenumber of each peak in Region I, II and III as a function of La-doping level, x. (c) Fraction of the [TiOn] polyhedra calculated based on the peak area from spectrum deconvolution. The dash lines through the symbols in (b) and (c) shows the trend.
Fig. 6. (a) Raman spectra of Nb-doped BT2 glasses. (b) Variation of the wavenumber of each peak in Region I, II and III as a function of Nb-doping level, y. The solid lines through the symbols show the trend in the composition range 0 ≤ y ≤ 0.20, and the vertical dash line indicates the critical composition y = 0.20. (c) Fraction of the [TiOn] polyhedra calculated based on the peak area from spectrum deconvolution. The dash lines through the symbols in (b) and (c) show the trend.
[1] |
A. Rosenflanz, M. Fery, B. Endres, T. Anderson, E. Richard, C. Schardt, Nature 430 (2004) 761-764.
DOI URL PMID |
[2] | L.B. Skinner, A.C. Barnes, P.S. Salmon, W.A. Crichton, J. Phys.: Condens. Matter 20 (2008), 205103. |
[3] | C. Xu, C.Y. Wang, J.D. Yu, R.L. Zhang, J.J. Ren, X.F. Liu, J.R. Qiu, J. Am. Ceram. Soc. 100 (2017) 2852-2858. |
[4] | N.K. Nasikas, S. Sen, G.N. Papatheodorou, Chem. Mater. 23 (2011) 2860-2868. |
[5] | Y. Li, X.Y. Zhang, X.W. Qi, M. Zhang, Y.H. Gu, H.E. Zhu, Mater. Res. Express 6 (2019), 015205. |
[6] | A. Masuno, H. Inoue, Appl. Phys. Express 3 (2010), 102601. |
[7] | A. Masuno, H. Inoue, K. Yoshimoto, Y. Watanabe, Opt. Mater. Express 4 (2014) 710-718. |
[8] | J.D. Yu, Y. Arai, T. Masaki, Chem. Mater. 18 (2006) 2169-2173. |
[9] | Y. Arai, K. Itoh, S. Kohara, J.D. Yu, J. Appl. Phys. 103 (2008), 094905. |
[10] | A. Masuno, H. Inoue, J.D. Yu, Y. Arai, J. Appl. Phys. 108 (2010), 063520. |
[11] | M.H. Zhang, H.Q. Wen, X.H. Pan, J.D. Yu, H. Shao, M.B. Tang, L.J. Gai, Mater. Lett. 222 (2018) 5-7. |
[12] | X. Ge, X. Xu, Q. Hu, W. Lu, L. Yang, S. Cao, M. Xia, J. Li, J. Mater, Sci. Technol. 35 (2019) 1636-1643. |
[13] | J.D. Yu, S. Kohara, K. Itoh, S. Nozawa, S. Miyoshi, Y. Arai, A. Masuno, H. Taniguchi, M. Itoh, M. Takata, T. Fukunaga, S. Koshihara, Y. Kuroiwa, S. Yoda, Chem. Mater. 21 (2008) 259-263. |
[14] | A. Masuno, H. Inoue, J.D. Yu, Y. Arai, F. Otsubo, Adv. Mater. Res. 39-40 (2008) 243-246. |
[15] | A. Masuno, H. Inoue, Y. Arai, J.D. Yu, Y. Watanabe, J. Mater. Chem. 21 (2011) 17441-17447. |
[16] | J. Ahmad, S. Alam, J.D. Yu, Y. Arai, Mod. Phys. Lett. B 23 (2009) 2377-2383. |
[17] | D.B. Dingwell, E. Paris, F. Seifert, A. Mottana, C. Romano, Phys. Chem. Miner. 21 (1994) 501-509. |
[18] | L. Cormier, P.H. Gaskell, G. Calas, A.K. Soper, Phys. Rev. B 58 (1998) 11322-11330. |
[19] | X.G. Ma, Z.J. Peng, J.Q. Li, J. Am. Ceram. Soc. 98 (2015) 770-773. |
[20] | M. Altaf, M.A. Chaudhry, J. Mod. Phys. 1 (2010) 201-205. |
[21] | M.A. Valente, L. Bih, M.P.F. Gracça, J. Non-Cryst Solids 357 (2011) 55-61. |
[22] | V. Boffa, G. Magnacca, L.B. Jøgensen, A. Wehner, A. Dönhöer, Y.Z. Yue, Microporous Mesoporous Mater. 179 (2013) 242-249. |
[23] | I.O. Mazali, L.C. Barbosa, O.L. Alves, J. Mater. Sci. 39 (2004) 1987-1995. |
[24] | J.S. de Andrade, A.G. Pinheiro, I.F. Vasconcelos, J.M. Sasaki, J.A.C. de Paiva, M.A. Valente, A.S.B. Sombra, J. Phys.: Condens. Matter 11 (1999) 4451-4460. |
[25] | A. Masuno, S. Kohara, A.C. Hannon, E. Bychkov, H. Inoue, Chem. Mater. 25 (2013) 3056-3061. |
[26] | N. Nowak, T. Cardinal, F. Adamietz, M. Dussauze, V. Rodriguez, L. Durivault-Reymond, C. Deneuvilliers, J.E. Poirier, Mater. Res. Bull. 48 (2013) 1376-1380. |
[27] | G. D’Angelo, G. Carini, C. Crupi, M. Koza, G. Tripodo, C. Vasi, Phys. Rev. B 79(2009), 014206. |
[28] | S. Kojima, M. Kodama, Phys. B 263-264 (1999) 336-338. |
[29] | S.A. Markgraf, S.K. Sharma, J. Am. Ceram. Soc. 75 (1992) 2630-2632. |
[30] | S.A. Markgraf, S.K. Sharma, A.S. Bhalla, J. Mater. Res. 8 (1993) 635-648. |
[31] | S. Sakka, F. Miyaji, K. Fukumi, J. Non-Cryst. Solids 112 (1989) 64-68. |
[32] | B.O. Mysen, J.R. Frederick, V. David, Am. Miner. 65 (1980) 1150-1165. |
[33] | G.S. Henderson, M.E. Fleet, Can. Miner. 33 (1995) 399-408. |
[34] | T. Honma, Y. Benino, T. Fujiwara, T. Komatsu, R. Sato, V. Dimitrov, J. Appl. Phys. 91 (2002) 2942-2950. |
[35] | C. Gautam, A.K. Yadav, V.K. Mishra, K. Vikram, Open J. Inorg. Non-Met. Mater. 2 (2012) 47-54. |
[36] | L. Aleksandrov, T. Komatsu, R. Iordanova, Y. Dimitriev, J. Phys. Chem. Solids 72 (2011) 263-268. |
[37] | O. Chaix-Pluchery, J. Kreisel, Phase Transit. 84 (2011) 542-554. |
[38] | J.M. Jehng, I.E. Wachs, Chem. Mater. 3 (1991) 100-107. |
[39] | A. Aronne, V.N. Sigaev, B. Champagnon, E. Fanelli, V. Califano, L.Z. Usmanova, P. Pernice, J. Non-Cryst. Solids 351 (2005) 3610-3618. |
[40] | Z.Z. Mao, J. Duan, X.J. Zheng, M.H. Zhang, L.P. Zhang, H.Y. Zhao, J.D. Yu, Ceram. Int. 41 (2015) S51-S56. |
[1] | Xiaotan Yuan, Tao Zhou, Weili Ren, Jianchao Peng, Tianxiang Zheng, Long Hou, Jianbo Yu, Zhongming Ren, Peter K. Liaw, Yunbo Zhong. Nondestructive effect of the cusp magnetic field on the dendritic microstructure during the directional solidification of Nickel-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 52-59. |
[2] | Liao Yu, Qiaodan Hu, Zongye Ding, Fan Yang, Wenquan Lu, Naifang Zhang, Sheng Cao, Jianguo Li. Effect of cooling rate on the 3D morphology of the proeutectic Al3Ni intermetallic compound formed at the Al/Ni interface after solidification [J]. J. Mater. Sci. Technol., 2021, 69(0): 60-68. |
[3] | Yoon Hwa, Christopher S. Kumai, Thomas M. Devine, Nancy Yang, Joshua K. Yee, Ryan Hardwick, Kai Burgmann. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 96-105. |
[4] | Lei Luo, Liangshun Luo, Yanqing Su, Lin Su, Liang Wang, Jingjie Guo, Hengzhi Fu. Optimizing microstructure, shrinkage defects and mechanical performance of ZL205A alloys via coupling travelling magnetic fields with unidirectional solidification [J]. J. Mater. Sci. Technol., 2021, 74(0): 246-258. |
[5] | Peng Peng, Anqiao Zhang, Jinmian Yue, Xudong Zhang, Yuanli Xu. Macrosegregation and thermosolutal convection-induced freckle formation in dendritic mushy zone of directionally solidified Sn-Ni peritectic alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 21-26. |
[6] | Haijun Su, Yuan Liu, Qun Ren, Zhonglin Shen, Haifang Liu, Di Zhao, Guangrao Fan, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu. Distribution control and formation mechanism of gas inclusions in directionally solidified Al2O3-Er3Al5O12-ZrO2 ternary eutectic ceramic by laser floating zone melting [J]. J. Mater. Sci. Technol., 2021, 66(0): 21-27. |
[7] | Ying Niu, Yue Wang, Long Hou, Lansong Ba, Yanchao Dai, Yves Fautrelle, Zongbin Li, Zhongming Ren, Xi Li. Effect of γ phase on mechanical behavior and detwinning evolution of directionally solidified Ni-Mn-Ga alloys under uniaxial compression [J]. J. Mater. Sci. Technol., 2021, 66(0): 91-96. |
[8] | Luyan Yang, Shuangming Li, Kai Fan, Yang Li, Yanhui Chen, Wei Li, Deli Kong, Pengfei Cao, Haibo Long, Ang Li. Twin crystal structured Al-10 wt.% Mg alloy over broad velocity conditions achieved by high thermal gradient directional solidification [J]. J. Mater. Sci. Technol., 2021, 71(0): 152-162. |
[9] | Peng Peng, Jinmian Yue, Anqiao Zhang, Xudong Zhang, Yuanli Xu. Analysis on fluid permeability of dendritic mushy zone during peritectic solidification in a temperature gradient [J]. J. Mater. Sci. Technol., 2021, 71(0): 169-176. |
[10] | Weidan Ma, Jun Zhang, Haijun Su, Guangrao Fan, Min Guo, Lin Liu, Hengzhi Fu. Phase growth patterns for Al2O3/GdAlO3 eutectics over wide ranges of compositions and solidification rates [J]. J. Mater. Sci. Technol., 2021, 65(0): 89-98. |
[11] | Nagasivamuni Balasubramani, Gui Wang, David H. StJohn, Matthew S. Dargusch. Current understanding of the origin of equiaxed grains in pure metals during ultrasonic solidification and a comparison of grain formation processes with low frequency vibration, pulsed magnetic and electric-current pulse techniques [J]. J. Mater. Sci. Technol., 2021, 65(0): 38-53. |
[12] | Lei Luo, Liangshun Luo, Robert O. Ritchie, Yanqing Su, Binbin Wang, Liang Wang, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Optimizing the microstructures and mechanical properties of Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification [J]. J. Mater. Sci. Technol., 2021, 61(0): 100-113. |
[13] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[14] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[15] | Shaodong Hu, Long Hou, Kang Wang, Zhongmiao Liao, Wen Zhu, Aihua Yi, Wenfang Li, Yves Fautrelle, Xi Li. Effect of transverse static magnetic field on radial microstructure of hypereutectic aluminum alloy during directional solidification [J]. J. Mater. Sci. Technol., 2021, 76(0): 207-214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||