J. Mater. Sci. Technol. ›› 2020, Vol. 54: 119-131.DOI: 10.1016/j.jmst.2020.04.034
• Research Article • Previous Articles Next Articles
Yong Lia, Zhiyong Liua,b,*(), Endian Fana, Zhongyu Cuic, Jinbin Zhaoa,d
Received:
2020-04-01
Accepted:
2020-04-24
Published:
2020-10-01
Online:
2020-10-21
Contact:
Zhiyong Liu
Yong Li, Zhiyong Liu, Endian Fan, Zhongyu Cui, Jinbin Zhao. The effect of crack tip environment on crack growth behaviour of a low alloy steel at cathodic potentials in artificial seawater[J]. J. Mater. Sci. Technol., 2020, 54: 119-131.
Fig. 1. Schematic diagram of the device: (a) cyclic loading experiment equipment, (b) dimensions of the CT specimen, (c) mini-electrode and (d) calibration graph for the Cl- concentration.
Fig. 4. Crack growth path of E690 steel in (a) air and (b) artificial seawater: (a1 and b1) IPF, (a2 and b2) IQ, (a3 and b3) KAM and (a4 and b4) KAM with grain boundaries (white arrows indicate LBBs and yellow circles indicate PAGBs).
Fig. 5. CGR of E690 steel under various potentials: (a) crack length as time elapses, (b) da/dt as a function of ΔK and (c) CGR as a function of the applied potential.
Fig. 6. Images of corrosion products on the fracture surface of E690 steel at various potentials: (a) OCP, (b) -0.75 V, (c) -0.85 V, and (d) -1.05 V. (e) EDS results and (f) in situ Raman spectra on the fracture surface of E690 steel.
Fig. 7. Fracture images of E690 steel under various potentials after derusting: (a) OCP, (b) -0.75 V, (c) -0.85 V, (d) -0.95 V, (e) -1.05 V and (f) -1.2 V.
Fig. 10. Environment within the crack at various potentials: (a) pH value depending on the distance from the crack tip under cyclic loading, (b) crack tip pH value as a function of time with and without cyclic loading.
Fig. 13. (a) Polarisation curves of E690 steel in simulated solution at slow and fast scanning rates and (b) the contribution of crack growth factors to the CGR.
Fig. 14. Schematic diagrams of (a) the electrochemical reaction that occurred at the crack tip and (b) the relationship between CGR and the reaction at various potentials.
[1] |
X. Li, D. Zhang, Z. Liu, Z. Li, C. Du, C. Dong, Nature 527 (2015) 441.
DOI URL PMID |
[2] | Z. Lu, T. Shoji, Y. Takeda, Y. Ito, S. Yamazaki, Corros. Sci. 50 (2008) 698-712. |
[3] | B. Lu, F. Song, M. Gao, M. Elboujdaini, Corros. Sci. 52 (2010) 4064-4072. |
[4] | T. Zhao, Z. Liu, C. Du, C. Liu, X. Xu, X. Li, Corros. Sci. 142 (2018) 277-283. |
[5] | T. Zhao, Z. Liu, C. Du, C. Dai, X. Li, B. Zhang, Mater. Sci. Eng. A 708 (2017) 181-192. |
[6] | R. Parkins, Corros. Sci. 20 (1980) 147-166. |
[7] | A. Turnbull, L. Wright, Corros. Sci. 126 (2017) 69-77. |
[8] | K. Cooper, R. Kelly, Elsevier, 2008, pp. 333-343. |
[9] | Y. Cheng, J. Mater. Sci. 42 (2007) 2701-2705. |
[10] |
Z. Cui, Z. Liu, L. Wang, X. Li, C. Du, X. Wang, Mater. Sci. Eng. A 677 (2016) 259-273.
DOI URL |
[11] | Z. Liu, X. Li, C. Du, Y. Cheng, Corros. Sci. 51 (2009) 2863-2871. |
[12] | X. Chen, X. Li, C. Du, Y. Cheng, Corros. Sci. 51 (2009) 2242-2245. |
[13] | G. Sandoz, C.T. Fujii, B.F. Brown, Corros. Sci. 10 (1970) 839, 839. |
[14] | K.R. Cooper, R. Kelly, Corros. Sci. 49 (2007) 2636-2662. |
[15] |
K. Cooper, R. Kelly, J. Chromatogr. A 850 (1999) 381-389.
URL PMID |
[16] | H. Tian, X. Wang, Z. Cui, Q. Lu, L. Wang, L. Lei, Y. Li, D. Zhang, Corros. Sci. 144 (2018) 145-162. |
[17] | C. Liu, R.I. Revilla, Z. Liu, D. Zhang, X. Li, H. Terryn, Corros. Sci. 129 (2017) 82-90. |
[18] | Z. Liu, X. Wang, C. Du, J. Li, X. Li, Mater. Sci. Eng. A 658 (2016) 348-354. |
[19] | H. Ma, Z. Liu, C. Du, H. Wang, C. Li, X. Li, Mater. Sci. Eng. A 642 (2015) 22-31. |
[20] | Y. Li, Z. Liu, E. Fan, Y. Huang, Y. Fan, B. Zhao, ws J. Mater. Sci. Technol. (2020) , http://dx.doi.org/10.1016/j.jmst.2019.08.029, In press. |
[21] | Y. Li, Z. Liu, W. Wu, X. Li, J. Zhao, Corros. Sci. 164 (2019), 108336. |
[22] | Z. Liu, X. Li, Y. Cheng, Corros. Sci. 55 (2012) 54-60. |
[23] | Z. Liu, L. Lu, Y. Huang, C. Du, X. Li, Corrosion 70 (2014) 678-685. |
[24] | ASTM E647: “Standard Test Method for Fatigue Crack Growth Rates”, The American Society for Testing of Materials, 2005, P. |
[25] | T. Zhao, Z. Liu, X. Xu, Corros. Sci. 157 (2019) 146-156. |
[26] | M. Masoumi, C.C. Silva, H.F. G. de Abreu, Corros.Sci. 111 (2016) 121-131. |
[27] | S. Zhang, E. Fan, J. Wan, J. Liu, Y. Huang, X. Li, Corros. Sci. 139 (2018) 83-96. |
[28] | D.C. Kong, X.Q. Ni, C.F. Dong, X.W. Lei, L. Zhang, C. Man, J.Z. Yao, X.Q. Cheng, X.G. Li, Mater. Des. 152 (2018) 88-101. |
[29] | D.D.L. Fuente, J. Alcántara, B. Chico, I. Díaz, J.A. Jiménez, M. Morcillo, Corros. Sci. 110 (2016) 253-264. |
[30] | Z. Liu, X. Li, Y. Cheng, Electrochim. Acta 60 (2012) 259-263. |
[31] | W. Chen, R.L. Sutherby, Metall. Mater. Trans. A 38 (2007) 1260-1268. |
[32] | R. Oriani, P. Josephic, Acta Metall. 22 (1974) 1065-1074. |
[33] | M. Hall Jr, D. Symons, in: R.H. Jones (Ed.), The Minerals, Metals, and Materials Society, 1974, p. 447, Warrendale, PA. |
[34] | R. Magnin, D. Delafosse, B. Baule, C. Bosch, in: International Conference on Hydrogen Effects on Materials Behaviour and Corrosion Deformation Interactions: HCDI, 2002, pp. 563-576. |
[35] | K. Lian, E. Meletis, Corrosion 52 (1996) 347-355. |
[36] | W. Wu, Z. Liu, X. Li, C. Du, Z. Cui, Mater. Sci. Eng. A 759 (2019) 124-141. |
[37] | A.-M. Brass, J. Chêne, Corros. Sci. 48 (2006) 481-497. |
[38] | H. Tian, J. Xin, Y. Li, X. Wang, Z. Cui, Corros. Sci. 158 (2019), 108089. |
[1] | Xin Wei, Dongmei Fu, Mindong Chen, Wei Wu, Dequan Wu, Chao Liu. Data mining to effect of key alloying elements on corrosion resistance of low alloy steels in Sanya seawater environmentAlloying Elements [J]. J. Mater. Sci. Technol., 2021, 64(0): 222-232. |
[2] | Yong Li, Zhiyong Liu, Endian Fan, Yunhua Huang, Yi Fan, Bojie Zhao. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64(0): 141-152. |
[3] | Liang Lan, Xinyuan Jin, Shuang Gao, Bo He, Yonghua Rong. Microstructural evolution and stress state related to mechanical properties of electron beam melted Ti-6Al-4V alloy modified by laser shock peening [J]. J. Mater. Sci. Technol., 2020, 50(0): 153-161. |
[4] | Y.F. Jiang, B. Zhang, Y. Zhou, J.Q. Wang, E.-H. Han, W. Ke. Atom probe tomographic observation of hydrogen trapping at carbides/ferrite interfaces for a high strength steel [J]. J. Mater. Sci. Technol., 2018, 34(8): 1344-1348. |
[5] | Rui Shao-Shi, Shang Yi-Bo, Qiu Wenhui, Niu Li-Sha, Shi Hui-Ji, Matsumoto Shunsaku, Chuman Yasuharu. Fracture mode identification of low alloy steels and cast irons by electron back-scattered diffraction misorientation analysis [J]. J. Mater. Sci. Technol., 2017, 33(12): 1582-1595. |
[6] | Wen Jian-Feng,Tu Shan-Tung,Xuan Fu-Zhen,Zhang Xue-Wei,Gao Xin-Lin. Effects of Stress Level and Stress State on Creep Ductility: Evaluation of Different Models [J]. J. Mater. Sci. Technol., 2016, 32(8): 695-704. |
[7] | Yunfei Lu, Junhua Dong, Wei Ke. Effects of Cl- Ions on the Corrosion Behaviour of Low Alloy Steel in Deaerated Bicarbonate Solutions [J]. J. Mater. Sci. Technol., 2016, 32(4): 341-348. |
[8] | Yunfei Lu, Junhua Dong, Wei Ke. Corrosion Evolution of Low Alloy Steel in Deaerated Bicarbonate Solutions [J]. J. Mater. Sci. Technol., 2015, 31(10): 1047-1058. |
[9] | Albin Stormvinter, Peter Hedstr?m, Annika Borgenstam. A Transmission Electron Microscopy Study of Plate Martensite Formation in High-carbon Low Alloy Steels [J]. J. Mater. Sci. Technol., 2013, 29(4): 373-379. |
[10] | Hongyang LI, Zhongren, WANG, Qibin MIAO, Shijian YUAN, Xiaosong WANG. Analysis of the Internal Pressure in Tube Hydroforming and Its Experimental Investigation [J]. J Mater Sci Technol, 2006, 22(02): 284-288. |
[11] | Shenhua SONG, Luqian WENG. An FEGSTEM Study of Grain Boundary Segregation of Phosphorus during Quenching in a 2.25Cr-1Mo Steel [J]. J Mater Sci Technol, 2005, 21(04): 445-450. |
[12] | Quancheng ZHANG, Jiansheng WU, Wenlong ZHENG, Jianjun WANG, Jiaguang CHEN, Xiaofang YANG, Aibai LI. Characterization of Rust Layer Formed on Low Alloy Steel Exposed in Marine Atmosphere [J]. J Mater Sci Technol, 2002, 18(05): 455-458. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||