J. Mater. Sci. Technol. ›› 2020, Vol. 50: 257-270.DOI: 10.1016/j.jmst.2020.01.014
• Research Article • Previous Articles
Risheng Pei*(), Sandra Korte-Kerzel(
), Talal Al-Samman(
)
Received:
2019-06-23
Revised:
2019-08-19
Accepted:
2019-09-21
Published:
2020-08-01
Online:
2020-08-10
Contact:
Risheng Pei
Risheng Pei, Sandra Korte-Kerzel, Talal Al-Samman. Normal and abnormal grain growth in magnesium: Experimental observations and simulations[J]. J. Mater. Sci. Technol., 2020, 50: 257-270.
Fig. 1. Optical microstructures of rolled and recrystallized specimens annealed at 220 °C for different times: (a) - (d) representative micrographs at low magnification; (e) - (h) specific areas of interest at high magnification.
Fig. 2. Optical microstructure of the specimen annealed at 220 °C for 7 days: (a) Panoramic image of the whole sample area (10 × 8 mm2) (RD-TD plane); (b) - (d) magnified images of several outlined areas in (a) revealing more details with respect to a few abnormally grown grains with an overwhelming size advantage compared to the rest of the microstructure.
Fig. 3. Optical microstructure of the specimen annealed at 350 °C for 7 days (analogous to Fig. 2): (a) Panoramic image of the whole sample area (10 × 6 mm2) (RD-TD plane); (b) - (d) magnified images of several outlined areas in (a) revealing a more uniform grain size distribution than that in Fig. 2, which is taken as an indication for the absence of AGG at 350 °C.
Fig. 4. Grain boundary misorientation analysis results of the microstructure annealed at 220 °C for 7 days: (a) ND-IPF map of the sampled area containing both very large and small grains (step size: 2 μm, area: 1600 × 1200 μm2, mean MAD: 0.61°). Blue and white boundaries denote high and low angle boundaries (<15°); (b) selected area from (a) with only small grains; (c) and (d) misorientation axis and angle distributions of grain boundaries of very large and small grains, respectively. The color coding denotes the frequency of plotted misorientation axes in the unit triangles.
Fig. 5. Grain orientation analysis results (220 °C / 7 days) for very large grains and small grains in terms of RD-IPF maps (a) and (b) along with the corresponding basal and prismatic pole figures; (c) and (d) pole figures of large and small grains of more than 8000 grains gotten by multi-EBSD measurements; (e) intensity on (11 $\bar{2}$ 0) plane along the outmost circle (α = 90°) with angle β increased. Texture intensity is given in terms of multiples of a random distribution.
Fig. 6. XRD bulk textures of selected specimens: (a) as-recrystallized; (b) annealed at 220 °C for 16 h; (c) annealed at 220 °C for 7 days; (d) annealed at 350 °C for 7 days. Texture intensity is given in terms of multiples of a random distribution.
Fig. 7. Initial microstructure of the recrystallized condition at 200 °C for 1 h prior to grain growth annealing treatments presented in terms of (a) RD-IPF EBSD map (step size: 1.5 μm, area: 1800 × 1500 μm2, mean MAD: 0.68°); (b) GOS map up to 5°. (c) & (d) (0001) <$11\bar{2}0$> and (0001) <$10\bar{1}0$> size distributions of GOS <1° grains depicted in terms of grain number and area fractions.
Fig. 8. Schematic illustration of the solid-state wetting mechanism of grain growth in silicon steel reproduced from [47]. The numbers at the grain boundaries denote examples of their energies.
Fig. 9. Comparison of the fraction of low angle boundaries (up to 15°) present in (a) the initial recrystallized condition, and (b) in the annealed condition at 220 °C for 7 days.
Fig. 10. Schematic illustration for abnormal and normal grain growth occurring in annealed pure magnesium at 220 °C and 350 °C, respectively. The length and the thickness of the arrows represent the magnitude of the impact of boundary mobility and DDG at each temperature. The number of G2 grains was restricted to those with almost an ideal (0001) <$11\bar{2}0$> orientation (c.f. Section 4.2).
Fig. 11. Simulated grain growth microstructures and their corresponding textures at different time increments matching the experimental annealing times employed. (a, f) input EBSD microstructure; (b - e) anomalous grain growth behavior equivalent to annealing at 220 °C; (g - j) uniform grain growth equivalent to annealing at 350 °C. The color of grain boundaries denotes their relative mobility (red is maximum, purple is minimum).
Fig. 12. Quantitative analysis of the simulated growth behavior shown in Fig. 11. (a) temporal grain size evolution for the two cases corresponding to 220 °C and 350 °C; (b) variation of D/<d> with time; (c) variation of the derivative of D/<d> with time. D is the diameter of the largest grain and <d> is the average grain diameter of all grains.
[56] | A.D. Rollett, D.J. Srolovitz, M.P. Anderson, Acta Metall. 37 1989 1227-1240. |
[55] | P.R. Rios, Acta Metall. Mater. 40 1992 2765-2768. |
[54] | M. Shirdel, H. Mirzadeh, M.H. Parsa, Metall. Mater. Trans. A 45A (2014) 5185-5193. |
[53] |
M. Kamaya, Ultramicroscopy 111 (2011) 1189-1199.
DOI URL PMID |
[52] |
S.I. Wright, M.M. Nowell, D.P. Field, Microsc. Microanal. 17 2011 316-329.
DOI URL PMID |
[51] | U.F. Kocks, Phil. Mag. A 13 (1966) 541-566. |
[50] | M.F. Ashby, Phil. Mag. A 21 (1970) 399-424. |
[49] | D. Mattissen, D.A. Molodov, L.S. Shvindlerman, G. Gottstein, Acta Mater. 53 2005 2049-2057. |
[48] | C.S. Park, T.W. Na, H.K. Park, D.K. Kim, C.H. Han, N.M. Hwang, Philos. Mag. Lett. 92 2012 344-351. |
[47] | K.J. Ko, P.R. Cha, D. Srolovitz, N.M. Hwang, Acta Mater. 57 2009 838-845. |
[46] | N.M. Hwang, S.B. Lee, D.Y. Kim, Scripta Mater. 44 2001 1153-1160. |
[45] | H.K. Park, H.G. Kang, C.S. Park, M.Y. Huh, N.M. Hwang, Metall. Mater. Trans. A 43A (2012) 5218-5223. |
[44] | M.A. Steiner, J.J. Bhattacharyya, S.R. Agnew, Acta Mater. 95 2015 443-455. |
[43] | G. Ibe, K. Lücke, Archiv für das Eisenhüttenwesen 39 (1968) 693-703. |
[42] | W.X. Wu, L. Jin, Z.Y. Zhang, W.J. Ding, J. Dong, J. Alloys Compd. 585 2014 111-119. |
[41] | P. Okrutny, S. Liang, L. Meng, H. Zurob, Magnesium Technology 2014, Springer International Publishing, Cham, 2016, pp. 149-153. |
[40] | W.T. Read, W. Shockley, Phys. Rev. 78 1950 275-289. |
[39] | H. Hallberg, Modell. Simul. Mater. Sci. Eng. 21 2013, 085012. |
[38] | B. Scholtes, R. Boulais-Sinou, A. Settefrati, D. Pino Mu˜noz, I. Poitrault, A. Montouchet, N. Bozzolo, M. Bernacki, Comput. Mater. Sci. 122 2016 57-71. |
[37] | B. Scholtes, M. Shakoor, A. Settefrati, P.O. Bouchard, N. Bozzolo, M. Bernacki, Comput. Mater. Sci. 109 2015 388-398. |
[36] | M. Elsey, S. Esedoglu, P. Smereka, Acta Mater. 61 2013 2033-2043. |
[35] | M. Elsey, S. Esedoglu, P. Smereka, J. Comput. Phys. 228 2009 8015-8033. |
[34] | C. Mieβen, A Simulation Software for Anisotropic Grain Growth in 2D, on, 2017 https://github.com/GraGLeS/GraGLeS2D. |
[33] | C. Mieβen, N. Velinov, G. Gottstein, L.A. Barrales-Mora, Modell. Simul. Mater. Sci. Eng. 25 2017, 084002. |
[32] | C. Mieβen, M. Liesenjohann, L.A. Barrales-Mora, L.S. Shvindlerman, G. Gottstein, Acta Mater. 99 2015 39-48. |
[7] | Y. Wang, Y.B. Xu, Y.X. Zhang, S.Q. Xie, Y.M. Yu, G.D. Wang, Mater. Res. Bull. 69 2015 138-141. |
[6] | Z.Q. Liu, P. Yang, W.M. Mao, F.E. Cui, Acta Metall. Sin. 51 2015 769-776. |
[5] | M. Shirdel, H. Mirzadeh, M.H. Parsa, Mater. Charact. 97 2014 11-17. |
[4] | J.J. Bhattacharyya, S.R. Agnew, G. Muralidharan, Acta Mater. 86 2015 80-94. |
[3] | I. Basu, K.G. Pradeep, C. Mieβen, L.A. Barrales-Mora, T. Al-Samman, BActa Mater. 116 2016 77-94. |
[2] | G. Gottstein, Physical Foundations of Materials Science, Springer-Verlag, Berlin Heidelberg,, 2004. |
[1] | F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon Press, Oxford, 2004. |
[31] | M. Kühbach, C. Mieβen, L.A. Barrales-Mora, G. Gottstein, Proceedings of the 6th International Conference on Recrystallization and Grain Growth (REX&GG 2016), John Wiley & Sons, Inc., 2016, pp. 35-42. |
[30] | F. Bachmann, R. Hielscher, P.E. Jupp, W. Pantleon, H. Schaeben, E. Wegert, J. Appl. Crystallogr. 43 2010 1338-1355. |
[29] | S.J. Dillon, M. Tang, W.C. Carter, M.P. Harmer, Acta Mater. 55 2007 6208-6218. |
[28] | S.J. Dillon, M.P. Harmer, Acta Mater. 55 2007 5247-5254. |
[27] | P.R. Cantwell, M. Tang, S.J. Dillon, J. Luo, G.S. Rohrer, M.P. Harmer, Acta Mater. 62 2014 1-48. |
[26] | A.K. Lawrence, A. Kundu, M.P. Harmer, C. Compson, J. Atria, M. Spreij, J. Am. Ceram. Soc. 98 2015 1347-1355. |
[25] | G. Abrivard, E.P. Busso, S. Forest, B. Appolaire, Philos. Mag. 92 2012 3643-3664. |
[24] | G. Abrivard, E.P. Busso, S. Forest, B. Appolaire, Philos. Mag. 92 2012 3618-3642. |
[23] | H. Park, D.Y. Kim, N.M. Hwang, Y.C. Joo, C.H. Han, J.K. Kim, J. Appl. Phys. 95 2004 5515-5521. |
[22] | H.K. Park, S.D. Kim, S.C. Park, J.T. Park, N.M. Hwang, Scripta Mater. 62 2010 376-378. |
[21] | K.J. Ko, A.D. Rollett, N.M. Hwang, Acta Mater. 58 2010 4414-4423. |
[20] | H.S. Shim, N.M. Hwang, Korean J. Met. Mater. 52 2014 663-687. |
[19] | N. Chen, S. Zaefferer, L. Lahn, K. Gunther, D. Raabe, Acta Mater. 51 2003 1755-1765. |
[18] | P. Lin, G. Palumbo, J. Harase, K.T. Aust, Acta Mater. 44 1996 4677-4683. |
[17] | N.C. Pease, D.W. Jones, M.H.L. Wise, W.B. Hutchinson, Met. Sci. 15 1981 203-209. |
[16] | P.R. Rios, Scripta Mater. 38 1998 1359-1364. |
[15] | P.R. Rios, Acta Mater. 42 1994 839-843. |
[14] | P.R. Rios, Acta Mater. 45 1997 1785-1789. |
[13] | M. Hillert, Acta Metall. 13 (1965) 227-&. |
[12] | K.Y. Zhu, B. Bacroix, T. Chauveau, D. Chaubet, O. Castelnau, Metall. Mater. Trans. A 40A (2009) 2423-2434. |
[11] | A. Ostapovets, P. Molnar, P. Lejcek, Mater. Lett. 137 2014 102-105. |
[10] | Y.L. Wang, G.J. Huang, X. Li, Q. Liu, Optoelectron. Adv. Mater. 9 2015 696-703. |
[9] | N. Takata, F. Yoshida, K. Ikeda, H. Nakashima, H. Abe, Mater. Trans. 46 2005 2975-2980. |
[8] | N. Bozzolo, N. Dewobroto, T. Grosdidier, E. Wagner, Mater. Sci. Eng. A 397 (2005) 346-355. |
[1] | Sang Won Lee, Gukin Han, Tea-Sung Jun, Sung Hyuk Park. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 139-149. |
[2] | J.X. Hou, X.Y. Li, K. Lu. Orientation dependence of mechanically induced grain boundary migration in nano-grained copper [J]. J. Mater. Sci. Technol., 2021, 68(0): 30-34. |
[3] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[4] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[5] | Jiayi Zhang, Yan Jin Lee, Hao Wang. Mechanochemical effect on the microstructure and mechanical properties in ultraprecision machining of AA6061 alloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 228-238. |
[6] | Bo Song, Zhiwen Du, Ning Guo, Qingshan Yang, Fang Wang, Shengfeng Guo, Renlong Xin. Effect of free-end torsion on microstructure and mechanical properties of AZ31 bars with square section [J]. J. Mater. Sci. Technol., 2021, 69(0): 20-31. |
[7] | Haiyue Zu, Kelvin Chau, Temitope Olumide Olugbade, Lulu Pan, Chris Halling Dreyer, Dick Ho-Kiu Chow, Le Huang, Lizhen Zheng, Wenxue Tong, Xu Li, Ziyi Chen, Xuan He, Ri Zhang, Jie Mi, Ye Li, Bingyang Dai, Jiali Wang, Jiankun Xu, Kevin Liu, Jian Lu, Ling Qin. Comparison of modified injection molding and conventional machining in biodegradable behavior of perforated cannulated magnesium hip stents [J]. J. Mater. Sci. Technol., 2021, 63(0): 145-160. |
[8] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[9] | Wei Wu, Yongshan Wei, Hongjiang Chen, Keyan Wei, Zhitong Li, Jianhui He, Libo Deng, Lei Yao, Haitao Yang. In-situ encapsulation of α-Fe2O3 nanoparticles into ZnFe2O4 micro-sized capsules as high-performance lithium-ion battery anodes [J]. J. Mater. Sci. Technol., 2021, 75(0): 110-117. |
[10] | Zhixin Zhang, Jiangkun Fan, Ruifeng Li, Hongchao Kou, Zhiyong Chen, Qingjiang Wang, Hailong Zhang, Jian Wang, Qi Gao, Jinshan Li. Orientation dependent behavior of tensile-creep deformation of hot rolled Ti65 titanium alloy sheet [J]. J. Mater. Sci. Technol., 2021, 75(0): 265-275. |
[11] | Pengfei Zhang, Yunchang Xin, Ling Zhang, Shiwei Pan, Qing Liu. On the texture memory effect of a cross-rolled Mg-2Zn-2Gd plate after unidirectional rolling [J]. J. Mater. Sci. Technol., 2020, 41(0): 98-104. |
[12] | Qinghang Wang, Bin Jiang, Aitao Tang, Jie Fu, Zhongtao Jiang, Haoran Sheng, Dingfei Zhang, Guangsheng Huang, Fusheng Pan. Unveiling annealing texture formation and static recrystallization kinetics of hot-rolled Mg-Al-Zn-Mn-Ca alloy [J]. J. Mater. Sci. Technol., 2020, 43(0): 104-118. |
[13] | Jialin Wu, Li Jin, Jie Dong, Fenghua Wang, Shuai Dong. The texture and its optimization in magnesium alloy [J]. J. Mater. Sci. Technol., 2020, 42(0): 175-189. |
[14] | Yi Zhang, Lili Tan, Qingchuan Wang, Ming Gao, Iniobong P. Etim, Ke Yang. Effects of microstructure on the torsional properties of biodegradable WE43 Mg alloy [J]. J. Mater. Sci. Technol., 2020, 51(0): 102-110. |
[15] | Jiangguli Peng, Wenbin Liu, Jiangtao Zeng, Liaoying Zheng, Guorong Li, Anthony Rousseau, Alain Gibaud, Abdelhadi Kassiba. Large electromechanical strain at high temperatures of novel <001> textured BiFeGaO3-BaTiO3 based ceramics [J]. J. Mater. Sci. Technol., 2020, 48(0): 92-99. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||