J. Mater. Sci. Technol. ›› 2020, Vol. 36: 55-64.DOI: 10.1016/j.jmst.2019.07.009
• Research Article • Previous Articles Next Articles
Fang Guanabc, Jizhou Duanabc*(), Xiaofan Zhaiabc*(
), Nan Wangabcd, Jie Zhangabc, Dongzhu Luabc, Baorong Houabc
Received:
2019-02-01
Revised:
2019-04-14
Accepted:
2019-05-21
Published:
2020-01-01
Online:
2020-02-11
Contact:
Duan Jizhou,Zhai Xiaofan
Fang Guan, Jizhou Duan, Xiaofan Zhai, Nan Wang, Jie Zhang, Dongzhu Lu, Baorong Hou. Interaction between sulfate-reducing bacteria and aluminum alloys—Corrosion mechanisms of 5052 and Al-Zn-In-Cd aluminum alloys[J]. J. Mater. Sci. Technol., 2020, 36: 55-64.
Si | Fe | Cu | Mn | Mg | Zn | Cr | Al |
---|---|---|---|---|---|---|---|
0.25 | 0.4 | 0.1 | 0.1 | 0.4 | 0.1 | 0.15 | Balance |
Table 1 Chemical compositions of 5052 aluminum alloy (wt%).
Si | Fe | Cu | Mn | Mg | Zn | Cr | Al |
---|---|---|---|---|---|---|---|
0.25 | 0.4 | 0.1 | 0.1 | 0.4 | 0.1 | 0.15 | Balance |
Zn | In | Cd | Si | Fe | Cu | Al |
---|---|---|---|---|---|---|
2.5-4.5 | 0.018-0.05 | 0.005-0.02 | ﹤0.1 | ﹤0.15 | ﹤0.01 | Balance |
Table 2 Chemical compositions of Al-Zn-In-Cd aluminum alloy (wt%).
Zn | In | Cd | Si | Fe | Cu | Al |
---|---|---|---|---|---|---|
2.5-4.5 | 0.018-0.05 | 0.005-0.02 | ﹤0.1 | ﹤0.15 | ﹤0.01 | Balance |
Fig. 3. Nyquist plots of the measured (symbols) and fitted data (lines) for 5052 aluminum alloy in SRB culture solution (a), and Al-Zn-In-Cd in sterile (b) and SRB media (c) for 15 days.
Fig. 4. Bold plots of the measured (symbols) and fitted data (lines) for 5052 aluminum alloy in SRB medium (a) and Al-Zn-In-Cd alloys specimens in sterile (b) and SRB (c) media.
Time (day) | Rs (Ω cm2) | Qf (F cm-2) | nf | Rf (Ω cm2) | Qdl (F cm-2) | n | Rct (Ω cm2) |
---|---|---|---|---|---|---|---|
1 | 6.39 | 9.94 × 10-6 | 0.92 | 2007 | 1.85 × 10-5 | 0.64 | 8.19 × 104 |
3 | 6.09 | 8.49 × 10-6 | 0.90 | 2095 | 2.33 × 10-5 | 0.64 | 2.00 × 105 |
5 | 6.20 | 7.89 × 10-6 | 0.89 | 3035 | 2.86 × 10-5 | 0.65 | 4.89 × 105 |
7 | 5.81 | 7.75 × 10-6 | 0.89 | 2988 | 3.07 × 10-5 | 0.65 | 6.47 × 105 |
9 | 6.44 | 7.90 × 10-6 | 0.87 | 3596 | 2.93 × 10-5 | 0.65 | 1.30 × 106 |
10 | 6.28 | 8.64 × 10-6 | 0.85 | 4824 | 2.79 × 10-5 | 0.67 | 1.30 × 106 |
13 | 6.94 | 9.23 × 10-6 | 0.84 | 4949 | 2.80 × 10-5 | 0.67 | 1.28 × 106 |
15 | 7.79 | 9.17 × 10-6 | 0.83 | 5145 | 2.83 × 10-5 | 0.68 | 4.40 × 105 |
Table 3 Electrochemical parameters of the 5052 aluminum alloy sample in SRB medium.
Time (day) | Rs (Ω cm2) | Qf (F cm-2) | nf | Rf (Ω cm2) | Qdl (F cm-2) | n | Rct (Ω cm2) |
---|---|---|---|---|---|---|---|
1 | 6.39 | 9.94 × 10-6 | 0.92 | 2007 | 1.85 × 10-5 | 0.64 | 8.19 × 104 |
3 | 6.09 | 8.49 × 10-6 | 0.90 | 2095 | 2.33 × 10-5 | 0.64 | 2.00 × 105 |
5 | 6.20 | 7.89 × 10-6 | 0.89 | 3035 | 2.86 × 10-5 | 0.65 | 4.89 × 105 |
7 | 5.81 | 7.75 × 10-6 | 0.89 | 2988 | 3.07 × 10-5 | 0.65 | 6.47 × 105 |
9 | 6.44 | 7.90 × 10-6 | 0.87 | 3596 | 2.93 × 10-5 | 0.65 | 1.30 × 106 |
10 | 6.28 | 8.64 × 10-6 | 0.85 | 4824 | 2.79 × 10-5 | 0.67 | 1.30 × 106 |
13 | 6.94 | 9.23 × 10-6 | 0.84 | 4949 | 2.80 × 10-5 | 0.67 | 1.28 × 106 |
15 | 7.79 | 9.17 × 10-6 | 0.83 | 5145 | 2.83 × 10-5 | 0.68 | 4.40 × 105 |
Time (day) | Rs (Ω cm2) | Qf (F cm-2) | nf | Rf (Ω cm2) | Lpit (H cm2) | Rpit (Ω cm2) | Qdl (F cm-2) | n | Rct (Ω cm2) |
---|---|---|---|---|---|---|---|---|---|
1 | 3.93 | 8.03 × 10-6 | 0.90 | 300.0 | 9355 | 826.6 | 8.06 × 10-5 | 0.72 | 1503 |
3 | 6.221 | 1.18 × 10-5 | 0.89 | 537.4 | 8.77 × 10-5 | 0.62 | 2843 | ||
5 | 5.54 | 1.18 × 10-5 | 0.89 | 659.1 | 6.96 × 10-5 | 0.59 | 4487 | ||
7 | 5.46 | 1.15 × 10-5 | 0.90 | 604.3 | 6.04 × 10-5 | 0.55 | 5589 | ||
9 | 5.29 | 1.11 × 10-5 | 0.91 | 516.5 | 5.25 × 10-5 | 0.55 | 6029 | ||
10 | 5.32 | 1.24 × 10-5 | 0.90 | 862.3 | 5.14 × 10-5 | 0.56 | 6673 | ||
13 | 5.23 | 1.10 × 10-5 | 0.91 | 509.7 | 4.38 × 10-5 | 0.56 | 6938 | ||
15 | 5.43 | 1.18 × 10-5 | 0.90 | 783.3 | 4.51 × 10-5 | 0.55 | 8096 |
Table 4 Electrochemical parameters of the Al-Zn-In-Cd aluminum alloy sample in sterile medium.
Time (day) | Rs (Ω cm2) | Qf (F cm-2) | nf | Rf (Ω cm2) | Lpit (H cm2) | Rpit (Ω cm2) | Qdl (F cm-2) | n | Rct (Ω cm2) |
---|---|---|---|---|---|---|---|---|---|
1 | 3.93 | 8.03 × 10-6 | 0.90 | 300.0 | 9355 | 826.6 | 8.06 × 10-5 | 0.72 | 1503 |
3 | 6.221 | 1.18 × 10-5 | 0.89 | 537.4 | 8.77 × 10-5 | 0.62 | 2843 | ||
5 | 5.54 | 1.18 × 10-5 | 0.89 | 659.1 | 6.96 × 10-5 | 0.59 | 4487 | ||
7 | 5.46 | 1.15 × 10-5 | 0.90 | 604.3 | 6.04 × 10-5 | 0.55 | 5589 | ||
9 | 5.29 | 1.11 × 10-5 | 0.91 | 516.5 | 5.25 × 10-5 | 0.55 | 6029 | ||
10 | 5.32 | 1.24 × 10-5 | 0.90 | 862.3 | 5.14 × 10-5 | 0.56 | 6673 | ||
13 | 5.23 | 1.10 × 10-5 | 0.91 | 509.7 | 4.38 × 10-5 | 0.56 | 6938 | ||
15 | 5.43 | 1.18 × 10-5 | 0.90 | 783.3 | 4.51 × 10-5 | 0.55 | 8096 |
Time (day) | Rs (Ω cm2) | Qf (F cm-2) | nf | Rf (Ω cm2) | Qdl (F cm-2) | n | Rct (Ω cm2) |
---|---|---|---|---|---|---|---|
1 | 3.484 | 7.25 × 10-6 | 0.9386 | 639.5 | 7.08 × 10-5 | 0.5968 | 4866 |
3 | 2.649 | 5.94 × 10-6 | 0.9269 | 342.8 | 4.37 × 10-5 | 0.6849 | 4455 |
5 | 2.415 | 4.83 × 10-6 | 0.9413 | 193.9 | 6.64 × 10-5 | 0.6370 | 4891 |
7 | 2.272 | 4.74 × 10-6 | 0.9386 | 184.6 | 1.07 × 10-4 | 0.5768 | 3273 |
9 | 2.185 | 4.42 × 10-6 | 0.9427 | 170.5 | 1.06 × 10-4 | 0.5712 | 2054 |
10 | 2.491 | 5.03 × 10-6 | 0.9292 | 193.0 | 1.14 × 10-4 | 0.5784 | 1897 |
13 | 2.603 | 5.91 × 10-6 | 0.9097 | 203.9 | 1.67 × 10-4 | 0.5270 | 2482 |
15 | 2.682 | 6.46 × 10-6 | 0.8991 | 230.1 | 1.81 × 10-4 | 0.5136 | 3894 |
Table 5 Electrochemical parameters of the Al-Zn-In-Cd aluminum alloy sample in SRB medium.
Time (day) | Rs (Ω cm2) | Qf (F cm-2) | nf | Rf (Ω cm2) | Qdl (F cm-2) | n | Rct (Ω cm2) |
---|---|---|---|---|---|---|---|
1 | 3.484 | 7.25 × 10-6 | 0.9386 | 639.5 | 7.08 × 10-5 | 0.5968 | 4866 |
3 | 2.649 | 5.94 × 10-6 | 0.9269 | 342.8 | 4.37 × 10-5 | 0.6849 | 4455 |
5 | 2.415 | 4.83 × 10-6 | 0.9413 | 193.9 | 6.64 × 10-5 | 0.6370 | 4891 |
7 | 2.272 | 4.74 × 10-6 | 0.9386 | 184.6 | 1.07 × 10-4 | 0.5768 | 3273 |
9 | 2.185 | 4.42 × 10-6 | 0.9427 | 170.5 | 1.06 × 10-4 | 0.5712 | 2054 |
10 | 2.491 | 5.03 × 10-6 | 0.9292 | 193.0 | 1.14 × 10-4 | 0.5784 | 1897 |
13 | 2.603 | 5.91 × 10-6 | 0.9097 | 203.9 | 1.67 × 10-4 | 0.5270 | 2482 |
15 | 2.682 | 6.46 × 10-6 | 0.8991 | 230.1 | 1.81 × 10-4 | 0.5136 | 3894 |
Fig. 7. Polarization curves with a scan rate of 0.1 mV s-1 of 5052 aluminum alloy and Al-Zn-In-Cd alloys exposed to media with and without SRB (i: current density).
Condition | 5052Al with SRB | Al-Zn-In-Cd alloys with SRB | Al-Zn-In-Cd alloys without SRB |
---|---|---|---|
Icorr (nA cm-2) | 63.1 | 9157 | 3952 |
Ecorr(mV vs SCE) | -820.9 | -965.5 | -994.9 |
ba (mV dec-1) | 191.5 | 50.24 | 49.1 |
bc (mV dec-1) | 142.6 | 221.3 | 150.0 |
Table 6 Tafel parameters of the 5052 and Al-Zn-In-Cd aluminum alloy specimens exposed to media with and without SRB (ba: Tafel slope of the anodic curve; bc: Tafel slope of the cathodic curve).
Condition | 5052Al with SRB | Al-Zn-In-Cd alloys with SRB | Al-Zn-In-Cd alloys without SRB |
---|---|---|---|
Icorr (nA cm-2) | 63.1 | 9157 | 3952 |
Ecorr(mV vs SCE) | -820.9 | -965.5 | -994.9 |
ba (mV dec-1) | 191.5 | 50.24 | 49.1 |
bc (mV dec-1) | 142.6 | 221.3 | 150.0 |
Fig. 9. Surface morphologies of 5052 aluminum alloy in SRB medium (a) and Al-Zn-In-Cd alloys specimens in sterile (b) and SRB (c) media after removing corrosion products.
Energy (eV) | Element | 5052Al with SRB | Al-Zn-In-Cd alloys without SRB | Al-Zn-In-Cd alloys with SRB |
---|---|---|---|---|
75.4 | AlOOH | 0.39 | 0.22 | 0.15 |
74.9 | Al2O3 | 0.15 | 0.31 | 0.05 |
74.4 | Al2S3 | 0.23 | 0.13 | |
73.6 | Al(OH)3 | 0.24 | 0.22 | 0.06 |
72 | Al | 0.13 | ||
76.0 | Al2O3 | 0.12 | 0.37 | |
73.05 | NaAlO2 | 0.24 |
Table 7 Results of XPS for different Al-positions on the 5052 Al alloy and Al-Zn-In-Cd alloys specimen surface in sterile and SRB medium (%).
Energy (eV) | Element | 5052Al with SRB | Al-Zn-In-Cd alloys without SRB | Al-Zn-In-Cd alloys with SRB |
---|---|---|---|---|
75.4 | AlOOH | 0.39 | 0.22 | 0.15 |
74.9 | Al2O3 | 0.15 | 0.31 | 0.05 |
74.4 | Al2S3 | 0.23 | 0.13 | |
73.6 | Al(OH)3 | 0.24 | 0.22 | 0.06 |
72 | Al | 0.13 | ||
76.0 | Al2O3 | 0.12 | 0.37 | |
73.05 | NaAlO2 | 0.24 |
|
[1] | Hu Liu, Jie Wei, Junhua Dong, Yiqing Chen, Yumin Wu, Yangtao Zhou, Subedi Dhruba Babu, Wei Ke. Influence of cementite spheroidization on relieving the micro-galvanic effect of ferrite-pearlite steel in acidic chloride environment [J]. J. Mater. Sci. Technol., 2021, 61(0): 234-246. |
[2] | Binbin Zhang, Jizhou Duan, Yanliang Huang, Baorong Hou. Double layered superhydrophobic PDMS-Candle soot coating with durable corrosion resistance and thermal-mechanical robustness [J]. J. Mater. Sci. Technol., 2021, 71(0): 1-11. |
[3] | Gaopeng Xu, Kui Wang, Xianping Dong, Lei Yang, Mahmoud Ebrahimi, Haiyan Jiang, Qudong Wang, Wenjiang Ding. Review on corrosion resistance of mild steels in liquid aluminum [J]. J. Mater. Sci. Technol., 2021, 71(0): 12-22. |
[4] | Luyan Yang, Shuangming Li, Kai Fan, Yang Li, Yanhui Chen, Wei Li, Deli Kong, Pengfei Cao, Haibo Long, Ang Li. Twin crystal structured Al-10 wt.% Mg alloy over broad velocity conditions achieved by high thermal gradient directional solidification [J]. J. Mater. Sci. Technol., 2021, 71(0): 152-162. |
[5] | Zhong Li, Jie Wang, Yizhe Dong, Dake Xu, Xianhui Zhang, Jianhua Wu, Tingyue Gu, Fuhui Wang. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 71(0): 177-185. |
[6] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[7] | Huabao Yang, Liang Wu, Bin Jiang, Wenjun Liu, Jiangfeng Song, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries [J]. J. Mater. Sci. Technol., 2021, 62(0): 128-138. |
[8] | Baoxian Su, Liangshun Luo, Binbin Wang, Yanqing Su, Liang Wang, Robert O. Ritchie, Enyu Guo, Ting Li, Huimin Yang, Haiguang Huang, Jingjie Guo, Hengzhi Fu. Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 234-248. |
[9] | Bangalore Gangadharacharya Koushik, Nils Van den Steen, Mesfin Haile Mamme, Yves Van Ingelgem, Herman Terryn. Review on modelling of corrosion under droplet electrolyte for predicting atmospheric corrosion rate [J]. J. Mater. Sci. Technol., 2021, 62(0): 254-267. |
[10] | Yuqiao Dong, Jiaqi Li, Dake Xu, Guangling Song, Dan Liu, Haipeng Wang, M.Saleem Khan, Ke Yang, Fuhui Wang. Investigation of microbial corrosion inhibition of Cu-bearing 316L stainless steel in the presence of acid producing bacterium Acidithiobacillus caldus SM-1 [J]. J. Mater. Sci. Technol., 2021, 64(0): 176-186. |
[11] | Xinhua Wang, Lin Fan, Kangkang Ding, Likun Xu, Weimin Guo, Jian Hou, Tigang Duan. Pitting corrosion of 2Cr13 stainless steel in deep-sea environment [J]. J. Mater. Sci. Technol., 2021, 64(0): 187-194. |
[12] | Lin Lu, Qianqian Liu. Synergetic effects of photo-oxidation and biodegradation on failure behavior of polyester coating in tropical rain forest atmosphere [J]. J. Mater. Sci. Technol., 2021, 64(0): 195-202. |
[13] | Xiumin Ma, Zheng Ma, Dongzhu Lu, Quantong Jiang, Leilei Li, Tong Liao, Baorong Hou. Enhanced photoelectrochemical cathodic protection performance of MoS2/TiO2 nanocomposites for 304 stainless steel under visible light [J]. J. Mater. Sci. Technol., 2021, 64(0): 21-28. |
[14] | Zibo Pei, Xuequn Cheng, Xiaojia Yang, Qing Li, Chenhan Xia, Dawei Zhang, Xiaogang Li. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors [J]. J. Mater. Sci. Technol., 2021, 64(0): 214-221. |
[15] | Xin Wei, Dongmei Fu, Mindong Chen, Wei Wu, Dequan Wu, Chao Liu. Data mining to effect of key alloying elements on corrosion resistance of low alloy steels in Sanya seawater environmentAlloying Elements [J]. J. Mater. Sci. Technol., 2021, 64(0): 222-232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||