J. Mater. Sci. Technol. ›› 2023, Vol. 132: 27-41.DOI: 10.1016/j.jmst.2022.06.006
• Research Article • Previous Articles Next Articles
Received:2022-05-18
Accepted:2022-06-03
Published:2023-01-01
Online:2022-06-26
Contact:
Xiping Guo
About author:* E-mail addresses: xpguo@nwpu.edu.cn (X. Guo).Rui Ma, Xiping Guo. Cooperative effects of Mo, V and Zr additions on the microstructure and properties of multi-elemental Nb-Si based alloys[J]. J. Mater. Sci. Technol., 2023, 132: 27-41.
| Alloy | Nominal chemical composition (at.%) | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Nb | Ti | Si | Cr | Al | Hf | Mo | V | Zr | |
| 0Mo-0V-0Zr | 53 | 22 | 15 | 5 | 3 | 2 | - | - | - |
| 5Mo-0V-0Zr | 48 | 22 | 15 | 5 | 3 | 2 | 5 | - | - |
| 0Mo-3V-0Zr | 50 | 22 | 15 | 5 | 3 | 2 | - | 3 | - |
| 0Mo-0V-4Zr | 49 | 22 | 15 | 5 | 3 | 2 | - | - | 4 |
| 5Mo-3V-0Zr | 45 | 22 | 15 | 5 | 3 | 2 | 5 | 3 | - |
| 5Mo-0V-4Zr | 44 | 22 | 15 | 5 | 3 | 2 | 5 | 4 | |
| 0Mo-3V-4Zr | 46 | 22 | 15 | 5 | 3 | 2 | - | 3 | 4 |
| 5Mo-3V-4Zr | 41 | 22 | 15 | 5 | 3 | 2 | 5 | 3 | 4 |
Table 1. Nominal chemical compositions of the eight alloys with Mo, V and Zr additions.
| Alloy | Nominal chemical composition (at.%) | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Nb | Ti | Si | Cr | Al | Hf | Mo | V | Zr | |
| 0Mo-0V-0Zr | 53 | 22 | 15 | 5 | 3 | 2 | - | - | - |
| 5Mo-0V-0Zr | 48 | 22 | 15 | 5 | 3 | 2 | 5 | - | - |
| 0Mo-3V-0Zr | 50 | 22 | 15 | 5 | 3 | 2 | - | 3 | - |
| 0Mo-0V-4Zr | 49 | 22 | 15 | 5 | 3 | 2 | - | - | 4 |
| 5Mo-3V-0Zr | 45 | 22 | 15 | 5 | 3 | 2 | 5 | 3 | - |
| 5Mo-0V-4Zr | 44 | 22 | 15 | 5 | 3 | 2 | 5 | 4 | |
| 0Mo-3V-4Zr | 46 | 22 | 15 | 5 | 3 | 2 | - | 3 | 4 |
| 5Mo-3V-4Zr | 41 | 22 | 15 | 5 | 3 | 2 | 5 | 3 | 4 |
Fig. 2. BSE images of the eight arc-melted Nb-Si-based alloys. (a) (a1) 0Mo-0V-0Zr, (b) 5Mo-0V-0Zr, (c) (c1) 0Mo-3V-0Zr, (d) 0Mo-0V-4Zr, (e) 5Mo-3V-0Zr, (f) 5Mo-0V-4Zr, (g) 0Mo-3V-4Zr and (h) 5Mo-3V-4Zr.
| Alloy | Area fraction (%) | ||||
|---|---|---|---|---|---|
| Primary γNb5Si3 | Eutectic | Dark regions | |||
| Eutectic I | Eutectic II | Eutectic III | |||
| 0Mo-3V-0Zr | 11.7 | 31.8 | 10.2 | 40.2 | 6.1 |
| 0Mo-0V-4Zr | 16.6 | 35.3 | 22.4 | 19.3 | 6.4 |
| 5Mo-3V-0Zr | 9.8 | 26.8 | 21.2 | 37.9 | 4.3 |
| 5Mo-0V-4Zr | 12.8 | 29.1 | 31.3 | 22.6 | 4.2 |
| 0Mo-3V-4Zr | 20.3 | 38.7 | 10.6 | 24.3 | 6.1 |
| 5Mo-3V-4Zr | 16.3 | 29.3 | 24.3 | 26.2 | 3.9 |
Table 2. Area fractions of microstructural constituents in the six arc-melted hypereutectic alloys.
| Alloy | Area fraction (%) | ||||
|---|---|---|---|---|---|
| Primary γNb5Si3 | Eutectic | Dark regions | |||
| Eutectic I | Eutectic II | Eutectic III | |||
| 0Mo-3V-0Zr | 11.7 | 31.8 | 10.2 | 40.2 | 6.1 |
| 0Mo-0V-4Zr | 16.6 | 35.3 | 22.4 | 19.3 | 6.4 |
| 5Mo-3V-0Zr | 9.8 | 26.8 | 21.2 | 37.9 | 4.3 |
| 5Mo-0V-4Zr | 12.8 | 29.1 | 31.3 | 22.6 | 4.2 |
| 0Mo-3V-4Zr | 20.3 | 38.7 | 10.6 | 24.3 | 6.1 |
| 5Mo-3V-4Zr | 16.3 | 29.3 | 24.3 | 26.2 | 3.9 |
Fig. 3. Typical SE (secondary electron) images and EBSD results of dark regions in the arc-melted alloys. (a) (a1) Nbss/Cr2Nb/(Nb,X)5Si3 eutectic and (b) (b1) Nbss/Cr2Nb eutectic.
| Arc-melted alloy | Phases or microstructural constituents | Compositions (at.%) | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Nb | Ti | Si | Cr | Al | Hf | Mo | V | Zr | ||
| 0Mo-0V-0Zr | α(Nb,X)5Si3 | 51.6 | 12.4 | 33.6 | 0.1 | 0.5 | 1.8 | - | - | - |
| γ(Nb,X)5Si3 | 41.1 | 19.5 | 33.9 | 0.7 | 2.2 | 2.6 | - | - | - | |
| Nbss | 66.9 | 20.4 | 3.2 | 5.1 | 3.4 | 1.0 | - | - | - | |
| 5Mo-0V-0Zr | Primary γ(Nb,X)5Si3 blocks | 43.7 | 15.9 | 34.4 | 0.5 | 2.3 | 2.2 | 1.0 | - | - |
| Nbss | 65.5 | 15.1 | 2.3 | 2.6 | 3.0 | 0.9 | 10.6 | - | - | |
| Regions containing Cr2Nb | 28.0 | 33.8 | 5.4 | 25.5 | 3.1 | 2.4 | 1.8 | - | - | |
| 0Mo-3V-0Zr | Primary γ(Nb,X)5Si3 blocks | 41.2 | 18.9 | 34.0 | 0.4 | 2.5 | 2.0 | - | 1.0 | - |
| Nbss | 68.6 | 18.4 | 2.5 | 3.9 | 3.4 | 1.0 | - | 2.2 | - | |
| α(Nb,X)5Si3 in eutectic | 50.8 | 11.6 | 33.5 | 0.4 | 1.2 | 1.8 | - | 0.7 | - | |
| γ(Nb,X)5Si3 in eutectic | 40.3 | 18.9 | 34.4 | 0.6 | 2.1 | 2.5 | - | 1.2 | - | |
| Regions containing Cr2Nb | 28.2 | 23.4 | 7.8 | 29.3 | 2.1 | 2.3 | - | 6.9 | - | |
| 0Mo-0V-4Zr | Primary γ(Nb,X)5Si3 blocks | 40.5 | 14.6 | 34.4 | 0.5 | 2.3 | 2.5 | - | - | 5.2 |
| Nbss | 70.9 | 18.7 | 2.0 | 4.1 | 3.2 | 0.9 | - | - | 0.2 | |
| Regions containing Cr2Nb | 36.0 | 36.2 | 7.8 | 12.2 | 3.6 | 1.4 | - | - | 2.8 | |
| 5Mo-3V-0Zr | Primary γ(Nb,X)5Si3 blocks | 41.0 | 15.9 | 34.7 | 0.4 | 2.3 | 2.8 | 2.0 | 0.9 | - |
| Nbss | 60.3 | 16.7 | 2.5 | 3.3 | 3.1 | 1.0 | 10.2 | 2.9 | - | |
| Regions containing Cr2Nb | 31.1 | 22.4 | 12.6 | 20.4 | 3.3 | 3.1 | 1.3 | 6.8 | - | |
| 5Mo-0V-4Zr | Primary γ(Nb,X)5Si3 blocks | 38.5 | 15.1 | 34.9 | 0.4 | 2.1 | 2.1 | 1.2 | - | 5.7 |
| Nbss | 64.5 | 16.0 | 2.1 | 3.5 | 2.8 | 0.9 | 10.1 | - | 0.1 | |
| Regions containing Cr2Nb | 29.8 | 31.3 | 5.6 | 22.2 | 3.1 | 2.2 | 2.2 | - | 3.6 | |
| 0Mo-3V-4Zr | Primary γ(Nb,X)5Si3 blocks | 37.3 | 15.5 | 34.6 | 0.4 | 2.6 | 2.7 | - | 1.1 | 5.8 |
| Nbss | 68.7 | 18.6 | 1.7 | 3.1 | 3.1 | 1.0 | - | 3.2 | 0.6 | |
| Regions containing Cr2Nb | 31.0 | 25.1 | 7.7 | 22.8 | 3.4 | 1.8 | - | 6.2 | 2.0 | |
| 5Mo-3V-4Zr | Primary γ(Nb,X)5Si3 | 36.4 | 16.0 | 35.2 | 0.5 | 2.0 | 2.7 | 0.5 | 0.9 | 5.8 |
| Nbss | 57.3 | 17.7 | 1.9 | 4.1 | 3.1 | 0.9 | 11.2 | 3.6 | 0.2 | |
| Regions containing Cr2Nb | 24.5 | 24.8 | 11.2 | 20.4 | 3.0 | 3.4 | 1.5 | 5.8 | 5.4 | |
Table 3. Chemical compositions of phases or microstructural constituents in the eight arc-melted alloys.
| Arc-melted alloy | Phases or microstructural constituents | Compositions (at.%) | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Nb | Ti | Si | Cr | Al | Hf | Mo | V | Zr | ||
| 0Mo-0V-0Zr | α(Nb,X)5Si3 | 51.6 | 12.4 | 33.6 | 0.1 | 0.5 | 1.8 | - | - | - |
| γ(Nb,X)5Si3 | 41.1 | 19.5 | 33.9 | 0.7 | 2.2 | 2.6 | - | - | - | |
| Nbss | 66.9 | 20.4 | 3.2 | 5.1 | 3.4 | 1.0 | - | - | - | |
| 5Mo-0V-0Zr | Primary γ(Nb,X)5Si3 blocks | 43.7 | 15.9 | 34.4 | 0.5 | 2.3 | 2.2 | 1.0 | - | - |
| Nbss | 65.5 | 15.1 | 2.3 | 2.6 | 3.0 | 0.9 | 10.6 | - | - | |
| Regions containing Cr2Nb | 28.0 | 33.8 | 5.4 | 25.5 | 3.1 | 2.4 | 1.8 | - | - | |
| 0Mo-3V-0Zr | Primary γ(Nb,X)5Si3 blocks | 41.2 | 18.9 | 34.0 | 0.4 | 2.5 | 2.0 | - | 1.0 | - |
| Nbss | 68.6 | 18.4 | 2.5 | 3.9 | 3.4 | 1.0 | - | 2.2 | - | |
| α(Nb,X)5Si3 in eutectic | 50.8 | 11.6 | 33.5 | 0.4 | 1.2 | 1.8 | - | 0.7 | - | |
| γ(Nb,X)5Si3 in eutectic | 40.3 | 18.9 | 34.4 | 0.6 | 2.1 | 2.5 | - | 1.2 | - | |
| Regions containing Cr2Nb | 28.2 | 23.4 | 7.8 | 29.3 | 2.1 | 2.3 | - | 6.9 | - | |
| 0Mo-0V-4Zr | Primary γ(Nb,X)5Si3 blocks | 40.5 | 14.6 | 34.4 | 0.5 | 2.3 | 2.5 | - | - | 5.2 |
| Nbss | 70.9 | 18.7 | 2.0 | 4.1 | 3.2 | 0.9 | - | - | 0.2 | |
| Regions containing Cr2Nb | 36.0 | 36.2 | 7.8 | 12.2 | 3.6 | 1.4 | - | - | 2.8 | |
| 5Mo-3V-0Zr | Primary γ(Nb,X)5Si3 blocks | 41.0 | 15.9 | 34.7 | 0.4 | 2.3 | 2.8 | 2.0 | 0.9 | - |
| Nbss | 60.3 | 16.7 | 2.5 | 3.3 | 3.1 | 1.0 | 10.2 | 2.9 | - | |
| Regions containing Cr2Nb | 31.1 | 22.4 | 12.6 | 20.4 | 3.3 | 3.1 | 1.3 | 6.8 | - | |
| 5Mo-0V-4Zr | Primary γ(Nb,X)5Si3 blocks | 38.5 | 15.1 | 34.9 | 0.4 | 2.1 | 2.1 | 1.2 | - | 5.7 |
| Nbss | 64.5 | 16.0 | 2.1 | 3.5 | 2.8 | 0.9 | 10.1 | - | 0.1 | |
| Regions containing Cr2Nb | 29.8 | 31.3 | 5.6 | 22.2 | 3.1 | 2.2 | 2.2 | - | 3.6 | |
| 0Mo-3V-4Zr | Primary γ(Nb,X)5Si3 blocks | 37.3 | 15.5 | 34.6 | 0.4 | 2.6 | 2.7 | - | 1.1 | 5.8 |
| Nbss | 68.7 | 18.6 | 1.7 | 3.1 | 3.1 | 1.0 | - | 3.2 | 0.6 | |
| Regions containing Cr2Nb | 31.0 | 25.1 | 7.7 | 22.8 | 3.4 | 1.8 | - | 6.2 | 2.0 | |
| 5Mo-3V-4Zr | Primary γ(Nb,X)5Si3 | 36.4 | 16.0 | 35.2 | 0.5 | 2.0 | 2.7 | 0.5 | 0.9 | 5.8 |
| Nbss | 57.3 | 17.7 | 1.9 | 4.1 | 3.1 | 0.9 | 11.2 | 3.6 | 0.2 | |
| Regions containing Cr2Nb | 24.5 | 24.8 | 11.2 | 20.4 | 3.0 | 3.4 | 1.5 | 5.8 | 5.4 | |
Fig. 4. BSE images of the eight heat-treated Nb-Si-based alloys. (a, a1) 0Mo-0V-0Zr, (b) 5Mo-0V-0Zr, (c, c1) 0Mo-3V-0Zr, (d, d1) 0Mo-0V-4Zr, (e) 5Mo-3V-0Zr, (f, f1)5Mo-0V-4Zr, (g, g1) 0Mo-3V-4Zr and (h, h1) 5Mo-3V-4Zr.
Fig. 5. Typical BSE images, EBSD result, and Kikuchi pattern of Nb3Si phase in the heat-treated alloys. (a) BSE image, (b) EBSD result and (c) Kikuchi pattern.
| Heat-treated alloy | Constituent phases | Compositions (at.%) | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Nb | Ti | Si | Cr | Al | Hf | Mo | V | Zr | ||
| 0Mo-0V-0Zr | α(Nb,X)5Si3 | 50.6 | 12.7 | 33.1 | 0.5 | 1.1 | 2.0 | - | - | - |
| γ(Nb,X)5Si3 | 36.2 | 21.6 | 34.9 | 0.8 | 2.6 | 3.9 | - | - | - | |
| Nbss | 61.3 | 24.7 | 0.8 | 8.1 | 4.0 | 1.1 | - | - | - | |
| 5Mo-0V-0Zr | γ(Nb,X)5Si3 | 38.0 | 19.3 | 35.2 | 0.8 | 2.2 | 3.1 | 1.4 | - | - |
| Nbss | 56.9 | 21.3 | 1.2 | 7.6 | 3.5 | 0.9 | 8.6 | - | - | |
| 0Mo-3V-0Zr | γ(Nb,X)5Si3 | 41.2 | 17.2 | 35.0 | 0.7 | 2.3 | 2.5 | - | 1.1 | - |
| Nbss | 59.8 | 23.0 | 1.1 | 7.5 | 3.5 | 0.8 | - | 4.3 | - | |
| α(Nb,X)5Si3 | 45.9 | 15.3 | 34.8 | 0.4 | 0.8 | 2.0 | - | 0.8 | - | |
| 0Mo-0V-4Zr | γ(Nb,X)5Si3 | 31.5 | 19.4 | 35.1 | 0.8 | 2.4 | 3.2 | - | - | 7.6 |
| Nbss | 62.5 | 23.9 | 1.0 | 7.3 | 3.5 | 1.2 | - | - | 0.6 | |
| (Nb,X)3Si | 63.4 | 13.9 | 18.7 | 2.5 | 0.4 | 1.1 | - | - | - | |
| 5Mo-3V-0Zr | γ(Nb,X)5Si3 | 39.3 | 17.8 | 34.5 | 0.6 | 2.4 | 2.5 | 1.8 | 1.1 | - |
| Nbss | 51.6 | 23.6 | 1.4 | 7.4 | 3.7 | 0.6 | 7.9 | 3.8 | - | |
| 5Mo-0V-4Zr | γ(Nb,X)5Si3 | 31.7 | 18.8 | 35.2 | 0.8 | 2.6 | 3.2 | 0.6 | - | 7.1 |
| Nbss | 54.3 | 22.6 | 1. | 7.8 | 3.4 | 0.7 | 9.4 | - | 0.8 | |
| (Nb,X)3Si | 58.3 | 14.6 | 19.6 | 2.6 | 0.3 | 1.2 | 3.4 | - | - | |
| 0Mo-3V-4Zr | γ(Nb,X)5Si3 | 33.5 | 16.5 | 35.6 | 0.5 | 2.4 | 3.2 | - | 0.9 | 7.4 |
| Nbss | 58.7 | 24.3 | 0.9 | 7.1 | 3.6 | 1.0 | - | 4.4 | - | |
| (Nb,X)3Si | 62.8 | 13.0 | 17.5 | 2.1 | 0.3 | 1.0 | - | 3.3 | - | |
| 5Mo-3V-4Zr | γ(Nb,X)5Si3 | 31.5 | 18.0 | 35.2 | 0.8 | 1.8 | 3.2 | 0.4 | 1.3 | 7.8 |
| Nbss | 46.5 | 25.0 | 0.6 | 8.5 | 4.7 | 1.2 | 9.4 | 4.1 | - | |
| (Nb,X)3Si | 57.1 | 14.1 | 17.5 | 2.7 | - | 0.8 | 4.1 | 3.7 | - | |
Table 4. Chemical compositions of constituent phases in the eight heat-treated alloys.
| Heat-treated alloy | Constituent phases | Compositions (at.%) | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Nb | Ti | Si | Cr | Al | Hf | Mo | V | Zr | ||
| 0Mo-0V-0Zr | α(Nb,X)5Si3 | 50.6 | 12.7 | 33.1 | 0.5 | 1.1 | 2.0 | - | - | - |
| γ(Nb,X)5Si3 | 36.2 | 21.6 | 34.9 | 0.8 | 2.6 | 3.9 | - | - | - | |
| Nbss | 61.3 | 24.7 | 0.8 | 8.1 | 4.0 | 1.1 | - | - | - | |
| 5Mo-0V-0Zr | γ(Nb,X)5Si3 | 38.0 | 19.3 | 35.2 | 0.8 | 2.2 | 3.1 | 1.4 | - | - |
| Nbss | 56.9 | 21.3 | 1.2 | 7.6 | 3.5 | 0.9 | 8.6 | - | - | |
| 0Mo-3V-0Zr | γ(Nb,X)5Si3 | 41.2 | 17.2 | 35.0 | 0.7 | 2.3 | 2.5 | - | 1.1 | - |
| Nbss | 59.8 | 23.0 | 1.1 | 7.5 | 3.5 | 0.8 | - | 4.3 | - | |
| α(Nb,X)5Si3 | 45.9 | 15.3 | 34.8 | 0.4 | 0.8 | 2.0 | - | 0.8 | - | |
| 0Mo-0V-4Zr | γ(Nb,X)5Si3 | 31.5 | 19.4 | 35.1 | 0.8 | 2.4 | 3.2 | - | - | 7.6 |
| Nbss | 62.5 | 23.9 | 1.0 | 7.3 | 3.5 | 1.2 | - | - | 0.6 | |
| (Nb,X)3Si | 63.4 | 13.9 | 18.7 | 2.5 | 0.4 | 1.1 | - | - | - | |
| 5Mo-3V-0Zr | γ(Nb,X)5Si3 | 39.3 | 17.8 | 34.5 | 0.6 | 2.4 | 2.5 | 1.8 | 1.1 | - |
| Nbss | 51.6 | 23.6 | 1.4 | 7.4 | 3.7 | 0.6 | 7.9 | 3.8 | - | |
| 5Mo-0V-4Zr | γ(Nb,X)5Si3 | 31.7 | 18.8 | 35.2 | 0.8 | 2.6 | 3.2 | 0.6 | - | 7.1 |
| Nbss | 54.3 | 22.6 | 1. | 7.8 | 3.4 | 0.7 | 9.4 | - | 0.8 | |
| (Nb,X)3Si | 58.3 | 14.6 | 19.6 | 2.6 | 0.3 | 1.2 | 3.4 | - | - | |
| 0Mo-3V-4Zr | γ(Nb,X)5Si3 | 33.5 | 16.5 | 35.6 | 0.5 | 2.4 | 3.2 | - | 0.9 | 7.4 |
| Nbss | 58.7 | 24.3 | 0.9 | 7.1 | 3.6 | 1.0 | - | 4.4 | - | |
| (Nb,X)3Si | 62.8 | 13.0 | 17.5 | 2.1 | 0.3 | 1.0 | - | 3.3 | - | |
| 5Mo-3V-4Zr | γ(Nb,X)5Si3 | 31.5 | 18.0 | 35.2 | 0.8 | 1.8 | 3.2 | 0.4 | 1.3 | 7.8 |
| Nbss | 46.5 | 25.0 | 0.6 | 8.5 | 4.7 | 1.2 | 9.4 | 4.1 | - | |
| (Nb,X)3Si | 57.1 | 14.1 | 17.5 | 2.7 | - | 0.8 | 4.1 | 3.7 | - | |
Fig. 8. Typical fractographies of the eight arc-melted alloys. (a) 0Mo-0V-0Zr, (b) 5Mo-0V-0Zr, (c) 0Mo-3V-0Zr, (d) 0Mo-0V-4Zr, (e) 5Mo-3V-0Zr, (f) 5Mo-0V-4Zr, (g) 0Mo-3V-4Zr and (h) 5Mo-3V-4Zr.
Fig. 9. BSE images of the eight arc-melted alloys after compression at 1250 °C. (a) 0Mo-0V-0Zr, (b) 5Mo-0V-0Zr, (c) 0Mo-3V-0Zr, (d) 0Mo-0V-4Zr, (e) 5Mo-3V-0Zr, (f) 5Mo-0V-4Zr, (g) 0Mo-3V-4Zr and (h) 5Mo-3V-4Zr.
Fig. 11. Cross-sectional BSE images of the scales of the eight arc-melted alloys after oxidation at 1250 °C for 1 h. (a) 0Mo-0V-0Zr, (b) 5Mo-0V-0Zr, (c) 0Mo-3V-0Zr, (d) 0Mo-0V-4Zr, (e) 5Mo-3V-0Zr, (f) 5Mo-0V-4Zr, (g) 0Mo-3V-4Zr and (h) 5Mo-3V-4Zr.
Fig. 12. Macrographs of the crucibles to hold the alloys for oxidation at 1250 °C for 1 h. (a) 0Mo-3V-0Zr, (b) 5Mo-3V-0Zr, (c) 0Mo-3V-4Zr and (d) 5Mo-3V-4Zr alloys.
| [1] |
B.P. Bewlay, M.R. Jackson, J.C. Zhao, P.R. Subramanian, Metall. Mater. Trans. A 34 (2003) 2043-2052.
DOI URL |
| [2] | B.P. Bewlay, J.J. Lewandowksi, M.R. Jackson, JOM 49 (1997) 44-67. |
| [3] | S.K. Gong, Y. Shang, J. Zhang, X.P. Guo, J.P. Lin, X.H. Zhao, Acta Metall. Sin. 55 (2019) 1067-1076. |
| [4] |
B.P. Bewlay, M.R. Jackson, J.C. Zhao, P.R. Subramanian, M.G. Mendiratta, J.J. Lewandowski, MRS Bull. 28 (2003) 646-653.
DOI URL |
| [5] | S. Zhang, X.P. Guo, Intermetallics 70 (2016) 33-44. |
| [6] |
S. Zhang, X.P. Guo, Mater. Sci. Eng. A 638 (2015) 121-131.
DOI URL |
| [7] | Y.X. Tian, J.T. Guo, L.Y. Sheng, G.M. Cheng, L.Z. Zhou, L.L. He, H.Q. Ye, Inter- metallics 16 (2008) 807-812. |
| [8] | Y.Q. Qiao, X.P. Guo, Y.X. Zeng, Intermetallics 88 (2017) 19-27. |
| [9] |
Y.W. Kang, S.Y. Qu, J.X. Song, Q. Huang, Y.F. Han, Mater. Sci. Eng. A 534 (2012) 323-328.
DOI URL |
| [10] |
Y.W. Kang, F.W. Guo, M. Li, Mater. Sci. Eng. A 760 (2019) 118-124.
DOI URL |
| [11] |
W.Y. Kim, I.D. Yeo, T.Y. Ra, G.S. Cho, M.S. Kim, J. Alloy. Compd. 364 (2004) 186-192.
DOI URL |
| [12] | W.Y. Kim, H. Tanaka, A. Kasama, R. Tanaka, S. Hanada, Intermetallics 9 (2001) 521-527. |
| [13] | K. Chattopadhyay, G. Balachandran, R. Mitra, K.K. Ray, Intermetallics 14 (2006) 1452-1460. |
| [14] |
J. Geng, P. Tsakiropoulos, G.S. Shao, Mater. Sci. Eng. A 441 (2006) 26-38.
DOI URL |
| [15] |
J.H. Kim, T. Tabaru, M. Sakamoto, S. Hanada, Mater. Sci. Eng. A 372 (2004) 137-144.
DOI URL |
| [16] |
W.Y. Kim, H. Tanaka, S. Hanada, J. Mater. Sci. 37 (2002) 2885-2891.
DOI URL |
| [17] |
Y.L. Li, X. Lin, Y.L. Hu, N. Kang, X.H. Gao, H.B. Dong, W.D. Huang, J. Alloy. Compd. 783 (2019) 66-76.
DOI URL |
| [18] |
M. Sankar, G. Phanikumar, V.V.S. Prasad, Mater. Sci. Eng. A 754 (2019) 224-231.
DOI URL |
| [19] |
R. Ma, X.P. Guo, J. Alloy. Compd. 870 (2021) 159437.
DOI URL |
| [20] |
R. Ma, X.P. Guo, Mater. Sci. Eng. A 813 (2021) 141175.
DOI URL |
| [21] |
B.W. Xiong, C.C. Cai, Z.J. Wang, J. Alloy. Compd. 583 (2014) 574-577.
DOI URL |
| [22] | W.Y. Kim, H. Tanaka, A. Kasama, S. Hanada, Intermetallics 9 (2001) 827-834. |
| [23] |
H.S. Guo, X.P. Guo, Scr. Mater. 64 (2011) 637-640.
DOI URL |
| [24] |
Y.H. Duan, Rare Met. Mater. Eng. 44 (2015) 18-23.
DOI URL |
| [25] |
T. Chihi, M. Fatmi, B. Ghebouli, M.A. Ghebouli, A. Bouhemadou, Braz. J. Phys. 45 (2015) 302-307.
DOI URL |
| [26] |
X.M. Tao, H.M. Chen, X.F. Tong, Y.F. Ouyang, P. Jund, J.C. Tedenac, Comp. Mater. Sci. 53 (2012) 169-174.
DOI URL |
| [27] |
Y. Pan, P. Wang, C.M. Zhang, Ceram. Int. 44 (2018) 12357-12362.
DOI URL |
| [28] |
B. Wan, F.R. Xiao, Y.K. Zhang, Y. Zhao, L.L. Wu, J.W. Zhang, H.Y. Gou, J. Alloy. Compd. 681 (2016) 412-420.
DOI URL |
| [29] |
R. Ma, X.P. Guo, J. Alloy. Compd. 845 (2020) 156254.
DOI URL |
| [30] | X. Fang, X.P. Guo, Y.Q. Qiao, Intermetallics 122 (2020) 106798. |
| [31] | G.J. Wang, X.P. Guo, Rare Met. Mater. Eng. 45 (2016) 387-392. |
| [32] |
G.E. Vignoul, J.K. Tien, J.M. Sanchez, Mater. Sci. Eng. A 170 (1993) 177-183.
DOI URL |
| [33] |
Y. Tang, X.P. Guo, Int. J. Refract. Met. Hard Mater. 84 (2019) 105015.
DOI URL |
| [34] |
Y. Tang, X.P. Guo, J. Alloy. Compd. 731 (2018) 985-994.
DOI URL |
| [35] |
K. Chattopadhyay, R. Mitra, K.K. Ray, Metall. Mater. Trans. A 39 (2008) 577-592.
DOI URL |
| [36] | G.B. Mi, K. Yao, P.F. Bai, C.Q. Cheng, X.H. Min, Metals 7 (2017) 226. |
| [37] |
T.M. Butler, K.J. Chaput, J.R. Dietrich, O.N. Senkov, J. Alloy. Compd. 729 (2017) 1004-1019.
DOI URL |
| [1] | Li Liu, Jian-Tang Jiang, Xiang-Yuan Cui, Bo Zhang, Liang Zhen, Simon P. Ringer. Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions [J]. J. Mater. Sci. Technol., 2022, 99(0): 61-72. |
| [2] | Seyedmohammad Tabaie, Farhad Rézaï-Aria, Bertrand C.D. Flipo, Mohammad Jahazi. Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730™: Evolution of strengthening phases [J]. J. Mater. Sci. Technol., 2022, 96(0): 248-261. |
| [3] | Zhuojie Shao, Zhen Wu, Luchao Sun, Xianpeng Liang, Zhaoping Luo, Haikun Chen, Junning Li, Jingyang Wang. High entropy ultra-high temperature ceramic thermal insulator (Zr1/5Hf1/5Nb1/5Ta1/5Ti1/5)C with controlled microstructure and outstanding properties [J]. J. Mater. Sci. Technol., 2022, 119(0): 190-199. |
| [4] | Lei Zhou, Jiaping Zhang, Dou Hu, Qiangang Fu, Wuqing Ding, Jiaqi Hou, Bing Liu, Mingde Tong. High temperature oxidation and ablation behaviors of HfB2-SiC/SiC coatings for carbon/carbon composites fabricated by dipping-carbonization assisted pack cementation [J]. J. Mater. Sci. Technol., 2022, 111(0): 88-98. |
| [5] | Kunming Pan, Yanping Yang, Shizhong Wei, Honghui Wu, Zhili Dong, Yuan Wu, Shuize Wang, Laiqi Zhang, Junping Lin, Xinping Mao. Oxidation behavior of Mo-Si-B alloys at medium-to-high temperatures [J]. J. Mater. Sci. Technol., 2021, 60(0): 113-127. |
| [6] | Haoxuan Wang, Shouye Wang, Yejie Cao, Wen Liu, Yiguang Wang. Oxidation behaviors of (Hf0.25Zr0.25Ta0.25Nb0.25)C and (Hf0.25Zr0.25Ta0.25Nb0.25)C-SiC at 1300-1500 °C [J]. J. Mater. Sci. Technol., 2021, 60(0): 147-155. |
| [7] | Hui Liang, Dongxu Qiao, Junwei Miao, Zhiqiang Cao, Hui Jiang, Tongmin Wang. Anomalous microstructure and tribological evaluation of AlCrFeNiW0.2Ti0.5 high-entropy alloy coating manufactured by laser cladding in seawater [J]. J. Mater. Sci. Technol., 2021, 85(0): 224-234. |
| [8] | Yujie Chen, Yan Fang, Xiaoqian Fu, Yiping Lu, Sijing Chen, Hongbin Bei, Qian Yu. Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 101-107. |
| [9] | Jiayi Zhang, Yan Jin Lee, Hao Wang. Mechanochemical effect on the microstructure and mechanical properties in ultraprecision machining of AA6061 alloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 228-238. |
| [10] | Z.C. Luo, H.P. Wang. Primary dendrite growth kinetics and rapid solidification mechanism of highly undercooled Ti-Al alloys [J]. J. Mater. Sci. Technol., 2020, 40(0): 47-53. |
| [11] | Xiaohua Sha, Wen Yue, Haichao Zhang, Wenbo Qin, Dingshun She, Chengbiao Wang. Enhanced oxidation and graphitization resistance of polycrystalline diamond sintered with Ti-coated diamond powders [J]. J. Mater. Sci. Technol., 2020, 43(0): 64-73. |
| [12] | Beibei Jiang, Donghui Wen, Qing Wang, Jinda Che, Chuang Dong, Peter K. Liaw, Fen Xu, Lixian Sun. Design of near-α Ti alloys via a cluster formula approach and their high-temperature oxidation resistance [J]. J. Mater. Sci. Technol., 2019, 35(6): 1008-1016. |
| [13] | Wei Sun, Fuzhi Dai, Huimin Xiang, Jiachen Liu, Yanchun Zhou. General trends in surface stability and oxygen adsorption behavior of transition metal diborides (TMB2) [J]. J. Mater. Sci. Technol., 2019, 35(4): 584-590. |
| [14] | Xuejin Yang, Bin Li, Duan Li, Changwei Shao, Changrui Zhang, Chunrong Zou, Kun Liu. Fabrication and oxidation resistance of silicon nitride fiber reinforced silica matrix wave-transparent composites [J]. J. Mater. Sci. Technol., 2019, 35(12): 2761-2766. |
| [15] | Zhiwu Xu, Zhengwei Li, Shude Ji, Liguo Zhang. Refill friction stir spot welding of 5083-O aluminum alloy [J]. J. Mater. Sci. Technol., 2018, 34(5): 878-885. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat

