J. Mater. Sci. Technol. ›› 2022, Vol. 131: 185-194.DOI: 10.1016/j.jmst.2022.06.003
• Research Article • Previous Articles Next Articles
Jiahao Lia, Kejie Lua, Xiaojun Zhaoa, Xinkai Maa,b,*(
), Fuguo Lic, Hongbo Pand, Jieming Chene
Received:2022-03-15
Revised:2022-06-03
Accepted:2022-06-03
Published:2022-06-17
Online:2022-06-17
Contact:
Xinkai Ma
About author:*E-mail address: sdutmakai@swjtu.edu.cn (X. Ma)Jiahao Li, Kejie Lu, Xiaojun Zhao, Xinkai Ma, Fuguo Li, Hongbo Pan, Jieming Chen. A superior strength-ductility synergy of Al0.1CrFeCoNi high-entropy alloy with fully recrystallized ultrafine grains and annealing twins[J]. J. Mater. Sci. Technol., 2022, 131: 185-194.
Fig. 1. Microstructural characterization of Al0.1CoCrFeNi annealed at 900 °C for 2 h. (a) IPF map. (b) EDS maps, confirming the chemical homogeneity in the CG sample. (c) Misorientation distribution. (d) Grain size distribution. The fraction of twin boundaries (TBs) is 45.8% and the average grain size is 17.5 μm. (e) TEM image, showing the dislocation-free microstructure and the annealing twins.
Fig. 3. Microstructural evolution with increasing annealing time for (a) CR900-1.5, (b) CR900-2.5, (c) CR900-5, and (d) CR900-30. For GB maps, the blue line means the low-angle grain boundary, the black line means the high-angle grain boundary, and the red line means the ATs (Σ3, 60° <111>).
Fig. 4. Mechanical response of the annealed Al0.1CoCrFeNi. (a) Engineering stress-strain curves. (b) Corresponding work hardening rate as a function of true strain. (c) Yield strength σy vs uniform elongation δu for FCC HEAs with a single phase. Our data are marked as the red stars, while all the literature data are collected from Refs. [28], [29], [30], [31], [32], [33]. (d) Product of ultimate tensile strength σb and δu as a function of σy normalized by Young's modulus (220 GPa) for Al0.1CoCrFeNi, other FCC HEAs, and the selected metals [14].
| Samples | d (µm) | d0 (µm) | σy (MPa) | σb (MPa) | δu (%) | σb·δu (GPa%) |
|---|---|---|---|---|---|---|
| CR | - | - | 990 ± 10 | 1511 ± 16 | 5.3 ± 2 | 7.93 |
| CR900-1.5 | 0.58 | 1.2 | 885 ± 15 | 998 ± 11 | 23.4 ± 4 | 23.4 |
| CR900-2.5 | 1.4 | 2.9 | 656 ± 9 | 907 ± 10 | 38.7 ± 2 | 35.1 |
| CR900-5 | 2.5 | 4.4 | 453 ± 11 | 805 ± 9 | 48.1 ± 1 | 38.7 |
| CR900-30 | 4.2 | 13.3 | 328 ± 7 | 726 ± 13 | 53.5 ± 2 | 38.8 |
| CG | 17.5 | 47.6 | 180 ± 13 | 539 ± 17 | 52.9 ± 3 | 28.5 |
Table 1. Mechanical properties (yield strength σy, ultimate tensile strength σb, uniform elongation δu, and the product of σb and δu) of Al0.1CoCrFeNi.
| Samples | d (µm) | d0 (µm) | σy (MPa) | σb (MPa) | δu (%) | σb·δu (GPa%) |
|---|---|---|---|---|---|---|
| CR | - | - | 990 ± 10 | 1511 ± 16 | 5.3 ± 2 | 7.93 |
| CR900-1.5 | 0.58 | 1.2 | 885 ± 15 | 998 ± 11 | 23.4 ± 4 | 23.4 |
| CR900-2.5 | 1.4 | 2.9 | 656 ± 9 | 907 ± 10 | 38.7 ± 2 | 35.1 |
| CR900-5 | 2.5 | 4.4 | 453 ± 11 | 805 ± 9 | 48.1 ± 1 | 38.7 |
| CR900-30 | 4.2 | 13.3 | 328 ± 7 | 726 ± 13 | 53.5 ± 2 | 38.8 |
| CG | 17.5 | 47.6 | 180 ± 13 | 539 ± 17 | 52.9 ± 3 | 28.5 |
Fig. 5. Inverse pole figure (IPF) maps, grain boundary (GB) maps, and the corresponding grain size statistics of the annealed Al0.1CoCrFeNi after tension failure: (a) CR900-1.5, (b) CR900-2.5, (c) CR900-5, (d) CR900-30, (e) CG.
Fig. 7. Geometrically necessary dislocation (GND) density maps and the corresponding distributions in the annealed Al0.1CoCrFeNi after tension failure: (a) and (f) CR900-1.5, (b) and (g) CR900-2.5, (c) and (h) CR900-5, (d) and (i) CR900-30, (e) and (j) CG.
Fig. 8. {111} pole figures of the annealed Al0.1CoCrFeNi before and after tension failure, showing the evolution of the 〈111〉 texture: (a) and (f) CR900-1.5, (b) and (g) CR900-2.5, (c) and (h) CR900-5, (d) and (i) CR900-30, (e) and (j) CG.
Fig. 9. Fractography of the annealed Al0.1CoCrFeNi after tensile deformation: (a) CR, (b) CR900-1.5, (c) CR900-2.5, (d) CR900-5, (e) CR900-30, (f) CG.
Fig. 10. TEM characterizations of deformed substructures for CR900-1.5 at different tensile strains. (a) ε = 0, showing the fully recrystallized UFGs and ATs. (b) ε = 3%, showing the dislocations pile-up at GBs and ATs. (c) and (d) ε = 10%, showing the deformation-induced NTs. (e) SAED pattern of (d) along zone axis [011]. (f) ε = 20%, showing the hindering effect of TBs and GBs on dislocation slip.
Fig. 11. TEM characterizations of deformed substructures for CR900-5 at different tensile strains. (a) ε = 0%, showing the ATs. (b) ε = 3%, showing the deformation-induced twins. (c) Corresponding high-resolution TEM (HRTEM) of (b). (d) ε = 10%, showing the deformation-induced secondary deformation twins. (e) SAED pattern of (d). (f) ε = 20%, showing the dislocation tangles around GBs and ATs.
Fig. 12. Yield strength vs inverse square root of grain size d (including the annealing twin boundaries), showing the contributions from different strengthening mechanisms in the annealed Al0.1CoCrFeNi.
| [1] |
J. Su, D. Raabe, Z.M. Li, Acta Mater. 163 (2019) 40-54.
DOI URL |
| [2] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
| [3] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
| [4] | J. Li, H.T. Chen, Q.H. Fang, C. Jiang, Y. Liu, P.K. Liaw, Int. J. Plast. 133 (2020) 102819. |
| [5] |
Q.H. Fang, Y. Chen, J. Li, C. Jiang, B. Liu, Y. Liu, P.K. Liaw, Int. J. Plast. 114 (2019) 161-173.
DOI URL |
| [6] |
X.B. Feng, J.Y. Zhang, Y.Q. Wang, Z.Q. Hou, K. Wu, G. Liu, J. Sun, Int. J. Plast. 95 (2017) 264-277.
DOI URL |
| [7] |
M. Komarasamy, N. Kumar, Z. Tang, R. Mishra, P. Liaw, Mater. Res. Lett. 3 (2015) 30-34.
DOI URL |
| [8] |
B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Acta Mater. 96 (2015) 258-268.
DOI URL |
| [9] |
J. Yang, J.W. Qiao, S.G. Ma, G.Y. Wu, D. Zhao, Z.H. Wang, J. Alloy. Compd. 795 (2019) 269-274.
DOI |
| [10] |
Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81 (2014) 428-441.
DOI URL |
| [11] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
| [12] |
S.W. Wu, G. Wang, Q. Wang, Y.D. Jia, J. Yi, Q.J. Zhai, J.B. Liu, B.A. Sun, H.J. Chu, J. Shen, P.K. Liaw, C.T. Liu, T.Y. Zhang, Acta Mater. 165 (2019) 444-458.
DOI |
| [13] |
Y. Jo, S. Jung, W. Choi, S.S. Sohn, H. Kim, B. Lee, N.J. Kim, S. Lee, Nat. Commun. 8 (2017) 15719.
DOI PMID |
| [14] |
Q.S. Pan, L.X. Zhang, R. Feng, Q.H. Lu, K. An, A.C. Chuang, J.D. Poplawsky, P.K. Liaw, L. Lu, Science 374 (2021) 984-989.
DOI URL |
| [15] |
A. Zaddach, C. Niu, C. Koch, D. Irving, JOM 65 (2013) 1780-1789.
DOI URL |
| [16] |
N.B. Zhang, J. Xu, Z.D. Feng, Y.F. Sun, J.Y. Huang, X.J. Zhao, X.H. Yao, S. Chen, L. Lu, S.N. Luo, J. Mater. Sci. Technol. 128 (2022) 1-9.
DOI |
| [17] |
S.J. Sun, Y.Z. Tian, H.R. Lin, H.J. Yang, X.G. Dong, Y.H. Wang, Z.F. Zhang, Mater. Sci. Eng. A 712 (2018) 603-607.
DOI URL |
| [18] |
S.W. Wu, G. Wang, J. Yi, Y.D. Jia, I. Hussain, Q.J. Zhai, P.K. Liaw, Mater. Res. Lett. 5 (2017) 276-283.
DOI URL |
| [19] |
H. Jeong, W. Kim, J. Mater. Sci. Technol. 111 (2022) 152-166.
DOI |
| [20] | R.E. Kubilay, W. Curtin, Acta Mater. 216 (2021) 117119. |
| [21] | J. Gordon, R. Lim, M. Wilkin, D. Pagan, R. Lebensohn, A. Rollett, Acta Mater. 215 (2021) 117120. |
| [22] |
Z. Chen, H.B. Xie, H.L. Yan, X.Y. Pang, Y.H. Wang, G.L. Wu, L.J. Zhang, H. Tang, B. Gao, B. Yang, Y.Z. Tian, H.Y. Gou, G.W. Qin, J. Mater. Sci. Technol. 126 (2022) 228-236.
DOI URL |
| [23] |
Y.Z. Tian, Y. Bai, L.J. Zhao, S. Gao, H.K. Yang, A. Shibata, Z.F. Zhang, N. Tsuji, Mater. Charact. 126 (2017) 74-80.
DOI URL |
| [24] |
S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Zhang, Z.F. Zhang, Mater. Des. 133 (2017) 122-127.
DOI URL |
| [25] |
P.J. Shi, W.L. Ren, T.X. Zheng, Z.M. Ren, X.L. Hou, J.C. Peng, P.F. Hu, Y.F. Gao, Y.B. Zhong, P.K. Liaw, Nat. Commun. 10 (2019) 489.
DOI URL |
| [26] |
Q.F. Wu, Z.J. Wang, F. He, Z.S. Yang, J.J. Li, J.C. Wang, J. Mater. Sci. Technol. 128 (2022) 71-81.
DOI URL |
| [27] |
W. Zhang, Z.C. Ma, C.F. Li, C.W. Guo, D.N. Liu, H.W. Zhao, L.Q. Ren, J. Mater. Sci. Technol. 114 (2022) 102-110.
DOI |
| [28] | S.W. Wu, L. Xu, X.D. Ma, Y.F. Jia, Y.K. Mu, Y.D. Jia, G. Wang, C.T. Liu, Mater. Sci. Eng. A 805 (2021) 140523. |
| [29] | S.J. Sun, Y.Z. Tian, X.H. An, H.R. Lin, J.W. Wang, Z.F. Zhang, Mater. Today Nano 4 (2018) 46-53. |
| [30] | S.G. Ma, Y.J. Li, S. Li, B. Xu, T.W. Zhang, Z.M. Jiao, D. Zhao, Z.H. Wang, Mater. Sci. Eng. A 829 (2022) 142165. |
| [31] |
B.B. He, B.M. Huang, S.H. He, Y. Qi, H.W. Yen, M.X. Huang, Mater. Sci. Eng. A 724 (2018) 11-16.
DOI URL |
| [32] |
N. Kumar, M. Komarasamy, P. Nelaturu, Z. Tang, P. Liaw, R. Mishra, JOM 67 (2015) 1007-1013.
DOI URL |
| [33] |
A. Zaddach, R. Scattergood, C. Koch, Mater. Sci. Eng. A 636 (2015) 373-378.
DOI URL |
| [34] | D.D. Zhang, J.Y. Zhang, J. Kuang, G. Liu, J. Sun, Acta Mater. 220 (2021) 117288. |
| [35] |
C. Slone, S. Chakraborty, J. Miao, E.P. George, M.J. Mills, S. Niezgoda, Acta Mater. 158 (2018) 38-52.
DOI URL |
| [36] | X.L. Wu, M.X. Yang, F.P. Yuan, G.L. Wu, Y.J. Wei, X.X. Huang, Y.T. Zhu, Proc. Natl. Acad. Sci. 112 (2015) 14501-14505. |
| [37] |
M. Schneider, E. George, T. Manescau, T. Záležák, J. Hunfeld, A. Dlouhý, G. Eggeler, G. Laplanche, Int. J. Plast. 124 (2020) 155-169.
DOI URL |
| [38] | Z. Cheng, L.F. Bu, Y. Zhang, H.A. Wu, T. Zhu, H.J. Gao, L. Lu, Proc. Natl. Acad. Sci. 119 (2022) e2116808119. |
| [39] | H. Ran, R.R. Jin, Y.F. Wang, M.S. Wang, Q. He, F.J. Guo, Y. Wen, C.X. Huang, Mater. Sci. Eng. A 807 (2021) 140906. |
| [40] |
G. Chen, J.W. Qiao, Z.M. Jiao, D. Zhao, T.W. Zhang, S.G. Ma, Z.H. Wang, Scr. Mater. 167 (2019) 95-100.
DOI URL |
| [41] | X.L. Wu, Y.T. Zhu, MRS Bull. 46 (2021) 244-249. |
| [42] | J. Peng, L. Li, F. Li, B. Liu, S. Zherebtsov, Q.H. Fang, J. Li, N. Stepanov, Y. Liu, F. Liu, Int. J. Plast. 145 (2021) 103073. |
| [43] | X.X. Wu, D. Mayweg, D. Ponge, Z.M. Li, Mater. Scie. Eng. A 802 (2021) 140661. |
| [44] | X.Z. Gao, Y.P. Lu, J.Z. Liu, J. Wang, T.M. Wang, Y.H. Zhao, Materialia 8 (2019) 100485. |
| [45] | Z.M. Yang, D.S. Yan, W.J. Lu, Z.M. Li, Mater. Sci. Eng. A 801 (2021) 140441. |
| [46] |
F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61 (2013) 5743-5755.
DOI URL |
| [47] | K. Lu, Nat. Rev. Mater. 1 (2016) 1-13. |
| [48] |
Z. Cheng, H.F. Zhou, Q.H. Lu, H.J. Gao, L. Lu, Science 362 (2018) eaau1925.
DOI URL |
| [49] |
W.H. Liu, Y. Wu, J.Y. He, T. Nieh, Z.P. Lu, Scr. Mater. 68 (2013) 526-529.
DOI URL |
| [50] |
S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Scr. Mater. 134 (2017) 33-36.
DOI URL |
| [51] |
X.D. Xu, P. Liu, A. Hirata, S.X. Song, T. Nieh, M.W. Chen, Materialia 4 (2018) 395-405.
DOI URL |
| [52] | X.M. Wang, Y.T. Ding, Y.B. Gao, Y.J. Ma, J.J. Chen, B. Gan, Mater. Sci. Eng. A 823 (2021) 141739. |
| [53] | Y.B. Gao, Y.T. Ding, J.J. Chen, J.Y. Xu, Y.J. Ma, X.M. Wang, Mater. Sci. Eng. A 767 (2019) 138361. |
| [54] |
Z.J. Wang, Q.J. Li, Y. Li, L.C. Huang, L. Lu, M. Dao, J. Li, E. Ma, S. Suresh, Z.W. Shan, Nature Commun. 8 (2017) 1108.
DOI URL |
| [1] | X. Li, X.N. Wang, K. Liu, G.H. Cao, M.B. Li, Z.S. Zhu, S.J. Wu. Hierarchical structure and deformation behavior of a novel multicomponent β titanium alloy with ultrahigh strength [J]. J. Mater. Sci. Technol., 2022, 107(0): 227-242. |
| [2] | Xinfeng Li, Jing Yin, Jin Zhang, Yanfei Wang, Xiaolong Song, Yong Zhang, Xuechong Ren. Hydrogen embrittlement and failure mechanisms of multi-principal element alloys: A review [J]. J. Mater. Sci. Technol., 2022, 122(0): 20-32. |
| [3] | Z. QU, Z.J. Zhang, J.X. Yan, P. Zhang, B.S. Gong, S.L. Liu, Z.F. Zhang, T.G. Langdan. Examining the effect of the aging state on strength and plasticity of wrought aluminum alloys [J]. J. Mater. Sci. Technol., 2022, 122(0): 54-67. |
| [4] | H.L. Zhang, D.D. Cai, X. Sun, H. Huang, S. Lu, Y.Z. Wang, Q.M. Hu, L. Vitos, X.D. Ding. Solid solution strengthening of high-entropy alloys from first-principles study [J]. J. Mater. Sci. Technol., 2022, 121(0): 105-116. |
| [5] | Bingqian Jin, Nannan Zhang, Shuo Yin. Strengthening behavior of AlCoCrFeNi(TiN)x high-entropy alloy coatings fabricated by plasma spraying and laser remelting [J]. J. Mater. Sci. Technol., 2022, 121(0): 163-173. |
| [6] | Y. Lei, J. Sun, X.G. Song, M.X. Yang, T.L. Yang, J. Yin. Eutectic-reaction brazing of Al0.3CoCrFeNi high-entropy alloys using Ni/Nb/Ni interlayers [J]. J. Mater. Sci. Technol., 2022, 121(0): 245-255. |
| [7] | Qianqian Fu, Bing Li, Minqiang Gao, Ying Fu, Rongzhou Yu, Changfeng Wang, Renguo Guan. Quantitative mechanisms behind the high strength and electrical conductivity of Cu-Te alloy manufactured by continuous extrusion [J]. J. Mater. Sci. Technol., 2022, 121(0): 9-18. |
| [8] | Mingkun Jiang, Ying Han, Xiangyi Chen, Guoqing Zu, Weiwei Zhu, Xu Ran. Cu-rich nanoprecipitates modified using Al to simultaneously enhance the strength and ductility of ferritic stainless steel [J]. J. Mater. Sci. Technol., 2022, 121(0): 93-98. |
| [9] | Wenjie Lu, Kang Yan, Xian Luo, Yuetang Wang, Le Hou, Pengtao Li, Bin Huang, Yanqing Yang. Superb strength and ductility balance of a Co-free medium-entropy alloy with dual heterogeneous structures [J]. J. Mater. Sci. Technol., 2022, 98(0): 197-204. |
| [10] | Yu Liao, Junhua Bai, Fuwen Chen, Guanglong Xu, Yuwen Cui. Microstructural strengthening and toughening mechanisms in Fe-containing Ti-6Al-4V: A comparison between homogenization and aging treated states [J]. J. Mater. Sci. Technol., 2022, 99(0): 114-126. |
| [11] | Huang Chunping, Liang Renyu, Liu Fenggang, Yang Haiou, Lin Xin. Effect of dimensionless heat input during laser solid forming of high-strength steel [J]. J. Mater. Sci. Technol., 2022, 99(0): 127-137. |
| [12] | Tianyi Han, Yong Liu, Mingqing Liao, Danni Yang, Nan Qu, Zhonghong Lai, Jingchuan Zhu. Refined microstructure and enhanced mechanical properties of AlCrFe2Ni2 medium entropy alloy produced via laser remelting [J]. J. Mater. Sci. Technol., 2022, 99(0): 18-27. |
| [13] | Heng Duan, Bin Liu, Ao Fu, Junyang He, Tao Yang, C.T. Liu, Yong Liu. Segregation enabled outstanding combination of mechanical and corrosion properties in a FeCrNi medium entropy alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 99(0): 207-214. |
| [14] | Wanting Sun, Bo Wu, Hui Fu, Xu-Sheng Yang, Xiaoguang Qiao, Mingyi Zheng, Yang He, Jian Lu, San-Qiang Shi. Combining gradient structure and supersaturated solid solution to achieve superior mechanical properties in WE43 magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 223-238. |
| [15] | Yang Jianyan, Ren Weijun, Zhao Xinguo, Kikuchi Tatsuya, Miao Ping, Nakajima Kenji, Li Bing, Zhang Zhidong. Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi [J]. J. Mater. Sci. Technol., 2022, 99(0): 55-60. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
