J. Mater. Sci. Technol. ›› 2022, Vol. 131: 177-184.DOI: 10.1016/j.jmst.2022.06.001
• Research Article • Previous Articles Next Articles
Xiaorong Liua, Sihan Jianga, Jianlin Lua, Jie Weib, Daixiu Weic, Feng Hea,*(
)
Received:2022-05-19
Revised:2022-06-02
Accepted:2022-06-08
Published:2022-06-15
Online:2022-06-15
Contact:
Feng He
About author:*E-mail addresses:fenghe1991@nwpu.edu.cn, fenghe@mail.nwpu.edu.cn (F. He)Xiaorong Liu, Sihan Jiang, Jianlin Lu, Jie Wei, Daixiu Wei, Feng He. The dual effect of grain size on the strain hardening behaviors of Ni-Co-Cr-Fe high entropy alloys[J]. J. Mater. Sci. Technol., 2022, 131: 177-184.
Fig. 1. Microstructures and tensile properties of NiCoCrFe with different grain sizes. (a-c) BSE images for the NiCoCrFe HEAs with grain sizes of 11, 84, and 125 μm, (d) tensile stress-strain curves of the NiCoCrFe HEAs, and (e) strain hardening rate vs true strain plots for the curves in (d).
Fig. 2. Deformation substructures of fine-grain NiCoCrFe. (a) ECCI images at ~10% strain, (b) ECCI images at ~30% strain, and (c) ECCI images at ~50% strain.
Fig. 3. Deformation substructures of small-grain NiCoCrFe. (a) ECCI images at ~10% strain, (b) ECCI images at ~30% strain, and (c) ECCI images at ~50% strain.
Fig. 4. Deformation substructures of large-grain NiCoCrFe. (a) ECCI images at ~10% strain, (b) ECCI images at ~30% strain, and (c) ECCI images at ~50% strain.
Fig. 5. EBSD analysis for the deformation mechanisms of NiCoCrFe HEAs with different grain sizes at a strain of ~50%. (a-c) IQ maps of the fine, small, and large-grain samples, (d-f) inverse pole figure (IPF) maps of the fine, small, and large-grain samples, and (g-i) KAM maps of the fine, small, and large-grain samples.
Fig. 6. Tensile properties of Ni2CoCrFe with different grain sizes. (a) Tensile stress-strain curves and (b) strain hardening rate vs true strain plots for the curves in (a).
Fig. 7. Deformation substructures of fine-grain NiCoCrFe. (a) ECCI images at ~10% strain, (b) ECCI images at ~20% strain, and (c) ECCI images at ~30% strain.
Fig. 8. Deformation substructures of large-grain Ni2CoCrFe. (a) ECCI images at ~10% strain, (b) ECCI images at ~20% strain, and (c) ECCI images at ~30% strain.
Fig. 9. Comparison of strain hardening behaviors of the NiCoCrFe (~65 μm) and Ni2CoCrFe (~84 μm) HEAs with similar grain sizes. (a) Stress-strain curves and (b) strain hardening rate vs. true strain plots.
Fig. 10. EBSD analysis of the fractured NiCoCrFe and Ni2CoCrFe with similar grain size; (a1-a3) IQ, IPF, and KAM maps for NiCoCrFe and (b1-b3) IQ, IPF, and KAM maps for Ni2CoCrFe.
| Grain sizec (µm) | 11 | 84 | 125 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Strain (%) | 10 | 30 | 50 | 10 | 30 | 50 | 10 | 30 | 50 |
| Percentage of twined grains (%) | 0 | 13 | 22 | 0 | 79 | 100 | 0 | 100 | 100 |
Table 1. Statistical results of the twining behaviors of NiCoCrFe based on ECCI results.
| Grain sizec (µm) | 11 | 84 | 125 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Strain (%) | 10 | 30 | 50 | 10 | 30 | 50 | 10 | 30 | 50 |
| Percentage of twined grains (%) | 0 | 13 | 22 | 0 | 79 | 100 | 0 | 100 | 100 |
| [1] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
| [2] |
B. Cai, B. Liu, S. Kabra, Y.Q. Wang, K. Yan, P.D. Lee, Y. Liu, Acta Mater. 127 (2017) 471-480.
DOI URL |
| [3] |
D. Choudhuri, B. Gwalani, S. Gorsse, M. Komarasamy, S.A. Mantri, S.G. Srini-vasan, R.S. Mishra, R. Banerjee, Acta Mater. 165 (2019) 420-430.
DOI |
| [4] |
W.J. Lu, C.H. Liebscher, F.K. Yan, X.F. Fang, L.L. Li, J.J. Li, W.Q. Guo, G. Dehm, D. Raabe, Z.M. Li, Acta Mater. 185 (2020) 218-232.
DOI URL |
| [5] |
J. Miao, C.E. Slone, T.M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.M. Pharr, M.J. Mills, Acta Mater. 132 (2017) 35-48.
DOI URL |
| [6] |
J. Su, D. Raabe, Z.M. Li, Acta Mater. 163 (2019) 40-54.
DOI URL |
| [7] |
Y.Q. Wang, B. Liu, K. Yan, M.S. Wang, S. Kabra, Y.L. Chiu, D. Dye, P.D. Lee, Y. Liu, B. Cai, Acta Mater. 154 (2018) 79-89.
DOI URL |
| [8] |
E.P. George, W.A. Curtin, C.C. Tasan, Acta Mater. 188 (2020) 435-474.
DOI URL |
| [9] |
Z.F. Lei, X.J. Liu, Y. Wu, H. Wang, S.H. Jiang, S.D. Wang, X.D. Hui, Y.D. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q.H. Zhang, H.W. Chen, H.T. Wang, J.B. Liu, K. An, Q.S. Zeng, T.G. Nieh, Z.P. Lu, Nature 563 (2018) 546-550.
DOI URL |
| [10] | Q.Q. Ding, Y. Zhang, X. Chen, X.Q. Fu, D.K. Chen, S.J. Chen, L. Gu, F. Wei, H.B. Bei, Y.F. Gao, M.R. Wen, J.X. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Na-ture 574 (2019) 223-227. |
| [11] |
F. He, D. Chen, B. Han, Q.F. Wu, Z.J. Wang, S.L. Wei, D.X. Wei, J.C. Wang, C.T. Liu, J.J. Kai, Acta Mater. 167 (2019) 275-286.
DOI URL |
| [12] | F. He, Z.S. Yang, S.F. Liu, D. Chen, W.T. Lin, T. Yang, D.X. Wei, Z.J. Wang, J.C. Wang, J.J. Kai, Int. J. Plast. 144 (2021) 103022. |
| [13] |
R.W. Armstrong, Mater. Trans. 55 (2014) 2-12.
DOI URL |
| [14] |
A.W. Thompson, Acta Metall. 25 (1977) 83-86.
DOI URL |
| [15] |
T. Tabata, K. Takagi, H. Fujita, Trans. Jpn. Inst. Met. 16 (1975) 569-579.
DOI URL |
| [16] | T.L. Johnston, C.E. Feltner, Metall. Mater. Trans. B 1 (1970) 1161. |
| [17] |
P. Asghari-Rad, P. Sathiyamoorthi, J.W. Bae, J. Moon, J.M. Park, A. Zargaran, H.S. Kim, Mater. Sci. Eng. A 744 (2019) 610-617.
DOI URL |
| [18] |
S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Scr. Mater. 134 (2017) 33-36.
DOI URL |
| [19] |
W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, Z.P. Lu, Scr. Mater. 68 (2013) 526-529.
DOI URL |
| [20] |
S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Wang, Z.F. Zhang, J. Alloy. Compd. 806 (2019) 992-998.
DOI |
| [21] |
S.W. Wu, G. Wang, J. Yi, Y.D. Jia, I. Hussain, Q.J. Zhai, P.K. Liaw, Mater. Res. Lett. 5 (2017) 276-283.
DOI URL |
| [22] |
S.J. Sun, Y.Z. Tian, H.R. Lin, H.J. Yang, X.G. Dong, Y.H. Wang, Z.F. Zhang, Mater. Sci. Eng. A 712 (2018) 603-607.
DOI URL |
| [23] |
Z. Li, C.C. Tasan, K.G. Pradeep, D. Raabe, Acta Mater. 131 (2017) 323-335.
DOI URL |
| [24] |
M.A. Meyers, O. Vöhringer, V.A. Lubarda, Acta Mater. 49 (2001) 4025-4039.
DOI URL |
| [25] |
B. Wang, H.Y. He, M. Naeem, S. Lan, S. Harjo, T. Kawasaki, Y.X. Nie, H.W. Kui, T. Ungár, D. Ma, A.D. Stoica, Q. Li, Y.B. Ke, C.T. Liu, X.L. Wang, Scr. Mater. 155 (2018) 54-57.
DOI URL |
| [26] |
S. Wei, C.C. Tasan, Acta Mater. 200 (2020) 992-1007.
DOI URL |
| [27] | F. He, S.L. Wei, J.L. Cann, Z.J. Wang, J.C. Wang, C.C. Tasan, Acta Mater. 220 (2021) 117314. |
| [28] |
D.X. Wei, X.Q. Li, S. Schönecker, J. Jiang, W.M. Choi, B.J. Lee, H.S. Kim, A. Chiba, H. Kato, Acta Mater. 181 (2019) 318-330.
DOI URL |
| [29] |
F. He, Z.J. Wang, Q.F. Wu, J.J. Li, J.C. Wang, C.T. Liu, Scr. Mater. 126 (2017) 15-19.
DOI URL |
| [30] |
S.J. Zhao, G.M. Stocks, Y.W. Zhang, Acta Mater. 134 (2017) 334-345.
DOI URL |
| [31] |
Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81 (2014) 428-441.
DOI URL |
| [32] |
U.F. Kocks, H. Mecking, Prog. Mater. Sci. 48 (2003) 171-273.
DOI URL |
| [33] |
D. Kuhlmann-Wilsdorf, Philos. Mag. A 79 (1999) 955-1008.
DOI URL |
| [34] |
S. Zaefferer, N.N. Elhami, Acta Mater. 75 (2014) 20-50.
DOI URL |
| [35] |
B. Bay, N. Hansen, D.A. Hughes, D. Kuhlmann-Wilsdorf, Acta Metall. Mater. 40 (1992) 205-219.
DOI URL |
| [36] |
E. El-Danaf, S.R. Kalidindi, R.D. Doherty, Metall. Mater. Trans. A 30 (1999) 1223-1233.
DOI URL |
| [37] |
Y.Z. Tian, L.J. Zhao, S. Chen, A. Shibata, Z.F. Zhang, N. Tsuji, Sci. Rep. 5 (2015) 16707.
DOI PMID |
| [38] |
C.L. Yang, Z.J. Zhang, T. Cai, P. Zhang, Z.F. Zhang, Sci. Rep. 5 (2015) 15532.
DOI PMID |
| [1] | Lixia Ma, Min Wan, Weidong Li, Jie Shao, Xiaoning Han, Jichun Zhang. On the superplastic deformation mechanisms of near-α TNW700 titanium alloy [J]. J. Mater. Sci. Technol., 2022, 108(0): 173-185. |
| [2] | Xiaoru Liu, Hao Feng, Jing Wang, Xuefei Chen, Ping Jiang, Fuping Yuan, Huabing Li, En Ma, Xiaolei Wu. Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels [J]. J. Mater. Sci. Technol., 2022, 108(0): 256-269. |
| [3] | Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. J. Mater. Sci. Technol., 2022, 110(0): 109-116. |
| [4] | Yang Liu, Samuel C.V. Lim, Chen Ding, Aijun Huang, Matthew Weyland. Unravelling the competitive effect of microstructural features on the fracture toughness and tensile properties of near beta titanium alloys [J]. J. Mater. Sci. Technol., 2022, 97(0): 101-112. |
| [5] | Bijin Zhou, Leyun Wang, Jinhui Wang, Alireza Maldar, Gaoming Zhu, Hailong Jia, Peipeng Jin, Xiaoqin Zeng, Yanjun Li. Dislocation behavior in a polycrystalline Mg-Y alloy using multi-scale characterization and VPSC simulation [J]. J. Mater. Sci. Technol., 2022, 98(0): 87-98. |
| [6] | Zhaoxin Du, Qiwei He, Ruirun Chen, Fei Liu, Jingyong Zhang, Fei Yang, Xueping Zhao, Xiaoming Cui, Jun Cheng. Rolling reduction -dependent deformation mechanisms and tensile properties in a β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 104(0): 183-193. |
| [7] | Young-Kyun Kim, Kee-Ahn Lee. Stabilized sub-grain and nano carbides-driven 1.2 GPa grade ultra-strong CrMnFeCoNi high-entropy alloy additively manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 117(0): 8-22. |
| [8] | Y.W. Qi, Z.P. Luo, X.Y. Li, K. Lu. Transition of deformation mechanisms from twinning to dislocation slip in nanograined pure cobalt [J]. J. Mater. Sci. Technol., 2022, 121(0): 124-129. |
| [9] | S.Y. Liu, J.Y. Zhang, J. Kuang, X.Y. Bao, D.D. Zhang, C.L. Zhang, J.K. Yang, G. Liu, J. Sun. Designing hetero-structured ultra-strong and ductile Zr-2.5Nb alloys: Utilizing the grain size-dependent martensite transformation during quenching [J]. J. Mater. Sci. Technol., 2022, 125(0): 198-211. |
| [10] | Lin Chen, Guo-Hui Meng, Chang-Jiu Li, Guan-Jun Yang. Critical scale grain size for optimal lifetime of TBCs [J]. J. Mater. Sci. Technol., 2022, 115(0): 241-250. |
| [11] | Xipeng Tao, Yunling Du, Xinguang Wang, Jie Meng, Yizhou Zhou, Jinguo Li, Xiaofeng Sun. Effect of solution cooling rate on the microstructure and creep deformation mechanism of a rhenium-free second-generation single crystal superalloy [J]. J. Mater. Sci. Technol., 2022, 131(0): 14-29. |
| [12] | Z.W. Wang, J.F. Zhang, G.M. Xie, L.H. Wu, H. Zhang, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 102(0): 213-223. |
| [13] | Jiahui Li, Yvonne Durandet, Xiaodong Huang, Guangyong Sun, Dong Ruan. Additively manufactured fiber-reinforced composites: A review of mechanical behavior and opportunities [J]. J. Mater. Sci. Technol., 2022, 119(0): 219-244. |
| [14] | Kaiju Lu, Ankur Chauhan, Dimitri Litvinov, Aditya Srinivasan Tirunilai, Jens Freudenberger, Alexander Kauffmann, Martin Heilmaier, Jarir Aktaa. Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 237-245. |
| [15] | S.J. Tsianikas, Y. Chen, J. Jeong, S. Zhang, Z. Xie. Forging strength-ductility unity in a high entropy steel [J]. J. Mater. Sci. Technol., 2022, 113(0): 158-165. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
