J. Mater. Sci. Technol. ›› 2022, Vol. 130: 124-135.DOI: 10.1016/j.jmst.2022.03.037
• Research Article • Previous Articles Next Articles
Yupeng Suna,b, Xin Weib, Junhua Dongb,*(
), Nan Chenb, Hanyu Zhaoa,b, Qiying Renb, Wei Kec,*(
)
Received:2021-12-14
Revised:2022-02-21
Accepted:2022-03-13
Published:2022-12-10
Online:2022-12-07
Contact:
Junhua Dong,Wei Ke
About author:E-mail addresses: jhdong@imr.ac.cn (J. Dong)Yupeng Sun, Xin Wei, Junhua Dong, Nan Chen, Hanyu Zhao, Qiying Ren, Wei Ke. Understanding the role of alloyed Ni and Cu on improving corrosion resistance of low alloy steel in the simulated Beishan groundwater[J]. J. Mater. Sci. Technol., 2022, 130: 124-135.
| Coupons | C | Si | Mn | P | S | Cu | Ni | Fe |
|---|---|---|---|---|---|---|---|---|
| Q235 | 0.21 | 0.21 | 0.58 | 0.017 | 0.036 | 0.02 | - | Balance |
| NiCu | 0.06 | 0.51 | 0.61 | 0.009 | 0.002 | 0.47 | 3.29 | Balance |
Table 1. Chemical compositions of Q235 low carbon steel and NiCu low alloy steel (wt.%).
| Coupons | C | Si | Mn | P | S | Cu | Ni | Fe |
|---|---|---|---|---|---|---|---|---|
| Q235 | 0.21 | 0.21 | 0.58 | 0.017 | 0.036 | 0.02 | - | Balance |
| NiCu | 0.06 | 0.51 | 0.61 | 0.009 | 0.002 | 0.47 | 3.29 | Balance |
Fig. 2. Cross-sectional morphology, element distribution and EPMA surface mapping of rust layer on the surface of Q235 low carbon steel (a) and NiCu low alloy steel (b), (c) after immersed in the simulated Beishan groundwater for 120 days.
Fig. 4. Schematic of E-pH in the system of Fe-H2O-HCO3?-SO42?, in which T = 298.15 K, P = Pθ = 101.325 kPa, [Fe2+] = [Fe3+]=10?5 mol/L, [HCO3?] = 0.0017 mol/L, [SO42?] = 0.0134 mol/L.
| No. | Electrode reaction | Equilibrium potential equation (vs. SCE) | E (V vs. SCE) |
|---|---|---|---|
| 2 | 2H+ + 2e → H2 | E = −0.2438 - 0.05916 pH - 0.02958 lgPH2 | −0.7260 |
| 3 | 2Fe + 2H2O + HCO3− → Fe2(OH)2CO3 + 3H+ + 4e | E = −0.5220 - 0.04437 pH - 0.01479 lg[HCO3−] | −0.8422 |
| 4 | 6Fe + 12H2O + HCO3− → Fe6(OH)12CO3 + 13H++ 14e | E = −0.4021 - 0.05493 pH - 0.004226 lg[HCO3−] | −0.8379 |
| 5 | 6Fe + 12H2O + SO42− → Fe6(OH)12SO4 + 13H+ + 14e | E = −0.3955 - 0.5071 pH - 0.004226 lg[SO42−] | −0.7996 |
| 6 | Fe + 2H2O → α-FeOOH + 3H+ + 3e | E = −0.2658 - 0.05916 pH | −0.7480 |
| 7 | Fe + 2H2O → γ-FeOOH + 3H+ + 3e | E = −0.2315 - 0.05916 pH | −0.7136 |
| 8 | 3Fe + 4H2O → Fe3O4 + 8H+ + 8e | E = −0.3304 - 0.05916 pH | −0.8126 |
| 9 | Fe + 2H2O → Fe(OH)2 + 2H+ + 2e | E = −0.3072 - 0.05916 pH | −0.7893 |
| 10 | Fe(OH)2 →α-FeOOH + H+ + e | E = −0.1830 - 0.05916 pH | −0.6652 |
| 11 | Fe(OH)2 →γ-FeOOH + H+ + e | E = −0.0801 - 0.05916 pH | −0.5622 |
| 12 | 3α-FeOOH + H+ + e → Fe3O4 + 2H2O | E = 0.2511 - 0.05916 pH | −0.2310 |
| 13 | 3γ-FeOOH + H+ + e → Fe3O4 + 2H2O | E = 0.5599 - 0.05916 pH | 0.0778 |
| 14 | 8α-FeOOH + Fe3+ + 3e → 3Fe3O4 + 4H2O | E = 0.2569 + 0.01972 lg[Fe3+] | 0.1583 |
| 15 | 8γ-FeOOH + Fe3+ + 3e → 3Fe3O4 + 4H2O | E = 0.5314 + 0.01972 lg[Fe3+] | 0.4328 |
| 16 | 8α-FeOOH + Fe2+ + 2e → 3Fe3O4 + 4H2O | E = 0.1227 + 0.02958 lg[Fe3+] | −0.0252 |
| 17 | 8γ-FeOOH + Fe2+ + 2e → 3Fe3O4 + 4H2O | E = 0.5345 + 0.02958 lg[Fe3+] | 0.3866 |
| 18 | 5α-FeOOH + Fe3+ + HCO3− + 2H2O + 2H+ + 4e → Fe6(OH)12CO3 | E = 0.2153 - 0.02958 pH + 0.01479 lg[HCO3−] + 0.01479 lg[Fe3+] | −0.1411 |
| 19 | 5γ-FeOOH + Fe3+ + HCO3− + 2H2O + 2H+ + 4e → Fe6(OH)12CO3 | E = 0.3350 - 0.02958 pH + 0.01479 lg[HCO3−] + 0.01479 lg[Fe3+] | −0.0125 |
| 20 | 5α-FeOOH + Fe2+ + HCO3− + 2H2O + 2H+ + 3e → Fe6(OH)12CO3 | E = 0.1121 - 0.03944 pH + 0.01972 lg[HCO3−] + 0.01972 lg[Fe2+] | −0.3632 |
| 21 | 5γ-FeOOH + Fe2+ + HCO3− + 2H2O + 2H+ + 3e → Fe6(OH)12CO3 | E = 0.2836 - 0.03944 pH + 0.01972 lg[HCO3−] + 0.01972 lg[Fe2+] | −0.1917 |
| 22 | 5α-FeOOH + Fe3+ + SO42− + 2H2O + 3H+ + 4e → Fe6(OH)12SO4 | E = 0.1923 - 0.04437 pH + 0.01479 lg[SO42−] + 0.01479 lg[Fe3+] | −0.2755 |
| 23 | 5γ-FeOOH + Fe3+ + SO42− + 2H2O + 3H+ + 4e → Fe6(OH)12SO4 | E = 0.3210 - 0.04437 pH + 0.01479 lg[SO42−] + 0.01479 lg[Fe3+] | −0.1468 |
| 24 | 5α-FeOOH + Fe2+ + SO42− + 2H2O + 3H+ + 3e → Fe6(OH)12SO4 | E = 0.0814 - 0.05916 pH + 0.01972 lg[SO42−] + 0.01972 lg[Fe3+] | −0.5424 |
| 25 | 5γ-FeOOH + Fe2+ + SO42− + 2H2O + 3H+ + 3e → Fe6(OH)12SO4 | E = 0.2530 - 0.05916 pH + 0.01972 lg[SO42−] + 0.01972 lg[Fe3+] | −0.3708 |
| 26 | 6α-FeOOH + HCO3− + 5H+ + 4e → Fe6(OH)12CO3 | E = 0.1696 - 0.07395 pH + 0.01479 lg[HCO3−] | −0.4331 |
| 27 | 6γ-FeOOH + HCO3− + 5H+ + 4e → Fe6(OH)12CO3 | E = 0.3653 - 0.07395 pH + 0.01479 lg[HCO3−] | −0.2787 |
| 28 | 6α-FeOOH + SO42−+ 6H++ 4e → Fe6(OH)12SO4 | E = 0.1880 - 0.08874 pH + 0.01479 lg[SO42−] | −0.5675 |
| 29 | 6γ-FeOOH + SO42−+ 6H++ 4e → Fe6(OH)12SO4 | E = 0.3424 - 0.08874 pH + 0.01479 lg[SO42−] | −0.4131 |
Table 2. Possible electrochemical reactions of Q235 low carbon steel and NiCu low alloy steel in the simulated Beishan groundwater with pH value of 8.15.
| No. | Electrode reaction | Equilibrium potential equation (vs. SCE) | E (V vs. SCE) |
|---|---|---|---|
| 2 | 2H+ + 2e → H2 | E = −0.2438 - 0.05916 pH - 0.02958 lgPH2 | −0.7260 |
| 3 | 2Fe + 2H2O + HCO3− → Fe2(OH)2CO3 + 3H+ + 4e | E = −0.5220 - 0.04437 pH - 0.01479 lg[HCO3−] | −0.8422 |
| 4 | 6Fe + 12H2O + HCO3− → Fe6(OH)12CO3 + 13H++ 14e | E = −0.4021 - 0.05493 pH - 0.004226 lg[HCO3−] | −0.8379 |
| 5 | 6Fe + 12H2O + SO42− → Fe6(OH)12SO4 + 13H+ + 14e | E = −0.3955 - 0.5071 pH - 0.004226 lg[SO42−] | −0.7996 |
| 6 | Fe + 2H2O → α-FeOOH + 3H+ + 3e | E = −0.2658 - 0.05916 pH | −0.7480 |
| 7 | Fe + 2H2O → γ-FeOOH + 3H+ + 3e | E = −0.2315 - 0.05916 pH | −0.7136 |
| 8 | 3Fe + 4H2O → Fe3O4 + 8H+ + 8e | E = −0.3304 - 0.05916 pH | −0.8126 |
| 9 | Fe + 2H2O → Fe(OH)2 + 2H+ + 2e | E = −0.3072 - 0.05916 pH | −0.7893 |
| 10 | Fe(OH)2 →α-FeOOH + H+ + e | E = −0.1830 - 0.05916 pH | −0.6652 |
| 11 | Fe(OH)2 →γ-FeOOH + H+ + e | E = −0.0801 - 0.05916 pH | −0.5622 |
| 12 | 3α-FeOOH + H+ + e → Fe3O4 + 2H2O | E = 0.2511 - 0.05916 pH | −0.2310 |
| 13 | 3γ-FeOOH + H+ + e → Fe3O4 + 2H2O | E = 0.5599 - 0.05916 pH | 0.0778 |
| 14 | 8α-FeOOH + Fe3+ + 3e → 3Fe3O4 + 4H2O | E = 0.2569 + 0.01972 lg[Fe3+] | 0.1583 |
| 15 | 8γ-FeOOH + Fe3+ + 3e → 3Fe3O4 + 4H2O | E = 0.5314 + 0.01972 lg[Fe3+] | 0.4328 |
| 16 | 8α-FeOOH + Fe2+ + 2e → 3Fe3O4 + 4H2O | E = 0.1227 + 0.02958 lg[Fe3+] | −0.0252 |
| 17 | 8γ-FeOOH + Fe2+ + 2e → 3Fe3O4 + 4H2O | E = 0.5345 + 0.02958 lg[Fe3+] | 0.3866 |
| 18 | 5α-FeOOH + Fe3+ + HCO3− + 2H2O + 2H+ + 4e → Fe6(OH)12CO3 | E = 0.2153 - 0.02958 pH + 0.01479 lg[HCO3−] + 0.01479 lg[Fe3+] | −0.1411 |
| 19 | 5γ-FeOOH + Fe3+ + HCO3− + 2H2O + 2H+ + 4e → Fe6(OH)12CO3 | E = 0.3350 - 0.02958 pH + 0.01479 lg[HCO3−] + 0.01479 lg[Fe3+] | −0.0125 |
| 20 | 5α-FeOOH + Fe2+ + HCO3− + 2H2O + 2H+ + 3e → Fe6(OH)12CO3 | E = 0.1121 - 0.03944 pH + 0.01972 lg[HCO3−] + 0.01972 lg[Fe2+] | −0.3632 |
| 21 | 5γ-FeOOH + Fe2+ + HCO3− + 2H2O + 2H+ + 3e → Fe6(OH)12CO3 | E = 0.2836 - 0.03944 pH + 0.01972 lg[HCO3−] + 0.01972 lg[Fe2+] | −0.1917 |
| 22 | 5α-FeOOH + Fe3+ + SO42− + 2H2O + 3H+ + 4e → Fe6(OH)12SO4 | E = 0.1923 - 0.04437 pH + 0.01479 lg[SO42−] + 0.01479 lg[Fe3+] | −0.2755 |
| 23 | 5γ-FeOOH + Fe3+ + SO42− + 2H2O + 3H+ + 4e → Fe6(OH)12SO4 | E = 0.3210 - 0.04437 pH + 0.01479 lg[SO42−] + 0.01479 lg[Fe3+] | −0.1468 |
| 24 | 5α-FeOOH + Fe2+ + SO42− + 2H2O + 3H+ + 3e → Fe6(OH)12SO4 | E = 0.0814 - 0.05916 pH + 0.01972 lg[SO42−] + 0.01972 lg[Fe3+] | −0.5424 |
| 25 | 5γ-FeOOH + Fe2+ + SO42− + 2H2O + 3H+ + 3e → Fe6(OH)12SO4 | E = 0.2530 - 0.05916 pH + 0.01972 lg[SO42−] + 0.01972 lg[Fe3+] | −0.3708 |
| 26 | 6α-FeOOH + HCO3− + 5H+ + 4e → Fe6(OH)12CO3 | E = 0.1696 - 0.07395 pH + 0.01479 lg[HCO3−] | −0.4331 |
| 27 | 6γ-FeOOH + HCO3− + 5H+ + 4e → Fe6(OH)12CO3 | E = 0.3653 - 0.07395 pH + 0.01479 lg[HCO3−] | −0.2787 |
| 28 | 6α-FeOOH + SO42−+ 6H++ 4e → Fe6(OH)12SO4 | E = 0.1880 - 0.08874 pH + 0.01479 lg[SO42−] | −0.5675 |
| 29 | 6γ-FeOOH + SO42−+ 6H++ 4e → Fe6(OH)12SO4 | E = 0.3424 - 0.08874 pH + 0.01479 lg[SO42−] | −0.4131 |
Fig. 5. XRD patterns of the corrosion products of Q235 low carbon steel and NiCu low alloy steel in the simulated Beishan groundwater for different immersion times: (a) 20 days, (b) 40 days, (c) 80 days and (d) 120 days.
Fig. 7. Cross-sectional morphology (a) and Raman line scanning results (b) of rust layer of NiCu steel after immersed in the simulated Beishan groundwater for 120 days.
Fig. 8. Detailed XPS spectra of the NiCu low alloy steel after immersed in the simulated Beishan groundwater for 120 days: (a) Fe 2p, (b) Ni 2p, (c) Cu 2p, (d) O 1 s.
Fig. 9. Potentiodynamic polarization curves of Q235 low carbon steel (a) and NiCu low alloy steel (b) immersed in the simulated Beishan groundwater for 0 days and 120 days.
Fig. 10. EIS and Equivalent circuit of Q235 low carbon steel and NiCu low alloy steel in the simulated Beishan groundwater: (a, a1) |Z|-frequency plots, (b, b1) Phase angle-frequency plots, (c) Equivalent circuit (Rs-solution resistance, Qc-CPE of cathodic reduction reaction, Rc-Faraday resistance of cathodic reduction reaction, Qa-CPE of the dissolution of iron, Ra-Faraday resistance of the dissolution of iron).
| Time (day) | Rs (Ω cm2) | Y0-c (mS sn cm−2) | nc | Rc (Ω cm2) | Y0-a (mS sn cm−2) | na | Ra (Ω cm2) |
|---|---|---|---|---|---|---|---|
| 4 | 62.74 | 2.539 | 0.6719 | 590.6 | 0.6662 | 0.7229 | 1085 |
| 10 | 66.42 | 5.103 | 0.6652 | 625.0 | 0.6715 | 0.7615 | 1069 |
| 17 | 64.95 | 6.546 | 0.6833 | 778.0 | 0.6229 | 0.7934 | 1123 |
| 34 | 68.85 | 1.385 | 0.7078 | 739.3 | 0.6911 | 0.9247 | 974.1 |
| 50 | 68.64 | 1.923 | 0.6854 | 889.1 | 0.7473 | 0.9394 | 1128 |
| 65 | 60.55 | 1.813 | 0.7184 | 951.2 | 1.006 | 0.9206 | 1460 |
| 80 | 63.35 | 1.398 | 0.7995 | 1124 | 0.7469 | 1.000 | 1839 |
| 100 | 62.72 | 2.464 | 0.7405 | 1059 | 1.003 | 0.8640 | 1833 |
| 120 | 55.01 | 1.702 | 0.7436 | 1239 | 1.309 | 0.9280 | 1864 |
Table 3. Fitting results for the EIS of Q235 low carbon steel in the simulated Beishan groundwater.
| Time (day) | Rs (Ω cm2) | Y0-c (mS sn cm−2) | nc | Rc (Ω cm2) | Y0-a (mS sn cm−2) | na | Ra (Ω cm2) |
|---|---|---|---|---|---|---|---|
| 4 | 62.74 | 2.539 | 0.6719 | 590.6 | 0.6662 | 0.7229 | 1085 |
| 10 | 66.42 | 5.103 | 0.6652 | 625.0 | 0.6715 | 0.7615 | 1069 |
| 17 | 64.95 | 6.546 | 0.6833 | 778.0 | 0.6229 | 0.7934 | 1123 |
| 34 | 68.85 | 1.385 | 0.7078 | 739.3 | 0.6911 | 0.9247 | 974.1 |
| 50 | 68.64 | 1.923 | 0.6854 | 889.1 | 0.7473 | 0.9394 | 1128 |
| 65 | 60.55 | 1.813 | 0.7184 | 951.2 | 1.006 | 0.9206 | 1460 |
| 80 | 63.35 | 1.398 | 0.7995 | 1124 | 0.7469 | 1.000 | 1839 |
| 100 | 62.72 | 2.464 | 0.7405 | 1059 | 1.003 | 0.8640 | 1833 |
| 120 | 55.01 | 1.702 | 0.7436 | 1239 | 1.309 | 0.9280 | 1864 |
| Time (day) | Rs (Ω cm2) | Y0-c (mS sn cm−2) | nc | Rc (Ω cm2) | Y0-a (mS sn cm−2) | na | Ra (Ω cm2) |
|---|---|---|---|---|---|---|---|
| 4 | 49.49 | 0. 2208 | 0.7969 | 5180 | 2.475 | 0.9451 | 1663 |
| 10 | 51.92 | 0. 2944 | 0.8223 | 9013 | 1.683 | 0.8942 | 4379 |
| 17 | 44.98 | 0. 6012 | 0.9626 | 10,620 | 1.341 | 0.8718 | 4428 |
| 34 | 45.75 | 0. 7171 | 0.9323 | 9362 | 1.381 | 0.9082 | 4384 |
| 50 | 43.75 | 1.1225 | 0.8912 | 7658 | 1.510 | 0.8669 | 3983 |
| 65 | 42.76 | 0.9152 | 0.9114 | 7851 | 1.672 | 0.8905 | 4263 |
| 80 | 38.04 | 1.046 | 0.9071 | 6890 | 1.772 | 0.8760 | 4054 |
| 100 | 38.03 | 1.136 | 0.8874 | 7090 | 1.587 | 0.8230 | 4192 |
| 120 | 35.29 | 1.428 | 0.8526 | 6368 | 1.447 | 0.8406 | 4024 |
Table 4. Fitting results for the EIS of NiCu low alloy steel in the simulated Beishan groundwater.
| Time (day) | Rs (Ω cm2) | Y0-c (mS sn cm−2) | nc | Rc (Ω cm2) | Y0-a (mS sn cm−2) | na | Ra (Ω cm2) |
|---|---|---|---|---|---|---|---|
| 4 | 49.49 | 0. 2208 | 0.7969 | 5180 | 2.475 | 0.9451 | 1663 |
| 10 | 51.92 | 0. 2944 | 0.8223 | 9013 | 1.683 | 0.8942 | 4379 |
| 17 | 44.98 | 0. 6012 | 0.9626 | 10,620 | 1.341 | 0.8718 | 4428 |
| 34 | 45.75 | 0. 7171 | 0.9323 | 9362 | 1.381 | 0.9082 | 4384 |
| 50 | 43.75 | 1.1225 | 0.8912 | 7658 | 1.510 | 0.8669 | 3983 |
| 65 | 42.76 | 0.9152 | 0.9114 | 7851 | 1.672 | 0.8905 | 4263 |
| 80 | 38.04 | 1.046 | 0.9071 | 6890 | 1.772 | 0.8760 | 4054 |
| 100 | 38.03 | 1.136 | 0.8874 | 7090 | 1.587 | 0.8230 | 4192 |
| 120 | 35.29 | 1.428 | 0.8526 | 6368 | 1.447 | 0.8406 | 4024 |
| [1] | J. Wang, G.Q. Xu, H.L. Zheng, X.H. Fan, C.Z. Wang, Z.W. Fan, World Nucl. Geosci. 22 (2005) 5-16 in chinese. |
| [2] | M. Gascoyne, R. Alexander, N. Chapman, I. McKinley, J. Smellie, J. Environ. Ra-dioact. 61 (2002) 241-243. |
| [3] | Y.H. Guo, J. Wang, Chin. J. Rock, Mech. Eng. 26 (2007) 3926-3931 in Chinese. |
| [4] |
X.L. Guo, S. Gin, G.S. Frankel, Npj Mater. Degrad. 4 (2020) 34-50.
DOI URL |
| [5] |
H. El Hajj, A. Abdelouas, Y. El Mendili, G. Karakurt, B. Grambow, C. Martin, Corros. Sci. 76 (2013) 432-440.
DOI URL |
| [6] | C. Liang, J. Wang, Y.M. Liu, F. Collin, J.L. Xie, J. Rock Mech. Eng. 4 (2012) 183-192 in chinese. |
| [7] | J.J.P. Bel, S.M. Wickham, R.M.F. Gens, Mat. Res. Soc. Symp. Proc. 932 (2005) 122.1. |
| [8] |
C.R. Palmgren, M.G. Morgan, W.B. Debruin, D.W. Keith, Environ. Sci. Technol. 38 (2004) 6441-6450.
PMID |
| [9] |
F. King, C. Padovani, Corros. Eng. Sci. Technol. 46 (2011) 82-90.
DOI URL |
| [10] |
D.G. Bennett, R. Gens, J. Nucl. Mater. 379 (2008) 1-8.
DOI URL |
| [11] |
G.R. Choppin, P.J. Wong, J. Radioanal. Nucl. Chem. 203 (1996) 575-590.
DOI URL |
| [12] | D.C. Russet, V. Deydier, S. Necib, J.M. Gras, P. Combrade, D. Féron, E. Burger, Corros. Eng., Sci. Technol. 52 (2017) 17-24. |
| [13] | Y.F. Lu, J.F. Yang, J.H. Dong, W. Ke, Acta Metall. Sin. 51 (2015) 4 40-4 48 in Chi-nese. |
| [14] |
G.P. Marsh, K.J. Taylor, Corros. Sci. 28 (1988) 289-320.
DOI URL |
| [15] |
X. Xia, K. Idemitsu, T. Arima, Y. Inagaki, H. Sato, Appl. Clay Sci. 28 (2004) 89-100.
DOI URL |
| [16] |
K. Fraser, Corrosion 69 (2013) 986-1011.
DOI URL |
| [17] |
K. Miyahara, Y. Tachi, H. Makino, A. Takasu, M. Naito, H. Umeki, Shigen to Sozai 117 (2001) 801-807.
DOI URL |
| [18] | B. Kursten, F. Druyts, D.D. Macdonald, N.R. Smart, J. Govaerts, Corros. Eng., Sci. Technol. 46 (2011) 91-97. |
| [19] | H.L. Wen, J.H. Dong, W. Ke, W.J. Chen, J.F. Yang, N. Chen, Acta Metall. Sin. 50 (2014) 275-284 in Chinese. |
| [20] | F. Xue, X. Wei, J.H. Dong, I.I.N. Etim, C.G. Wang, W. Ke, J. Mater. Sci.Technol. 34 (2018) 1349-1358. |
| [21] | J.H. Dong, T. Nishimura, T. Kodama, Res. Soc. Symp. Proc. 713 (2002) 105-112. |
| [22] |
S. Savoye, L. Legrand, G. Sagon, S. Lecomte, A. Chausse, R. Messina, P. Toulhoat, Corros. Sci. 43 (2001) 2049-2064.
DOI URL |
| [23] | F. Xue, X. Wei, J.H. Dong, C.G. Wang, W. Ke, J. Mater. Sci. Technol. 35 (2019) 596-603. |
| [24] | M. Zheng, Y.L. Huang, D. Xifang, D.Z. Lu, Y.M. Liu, J. Chin. Soc. Corros. Prot. 36 (2016) 398-406 in chinese. |
| [25] |
D.W. Shoesmith, Corrosion 62 (2006) 703-722.
DOI URL |
| [26] |
S. Kaufhold, A.W. Hassel, D. Sanders, R. Dohrmann, J. Hazard. Mater. 285 (2015) 464-473.
DOI PMID |
| [27] | Y.H. Guo, J. Wang, L.C. He, S.F. Liu, Earth Sci. Front. 12 (2005) 117-123 in chi-nese. |
| [28] | J.F. Yang, J.H. Dong, W. Ke, Acta Metall. Sin. 47 (2011) 132-1327 in Chinese. |
| [29] | H.L. Wen, M.S. Thesis, University of Science and Technology of China, 2014. (in Chinese) |
| [30] |
L. Johnson, F. King, J. Nucl. Mater. 379 (2008) 9-15.
DOI URL |
| [31] |
W. Wu, Z.P. Zeng, X.Q. Cheng, X.G. Li, B. Liu, J. Mater. Eng. Perform. 26 (2017) 6075-6086.
DOI URL |
| [32] |
I. Diaz, H. Cano, P. Lopesino, D. de la Fuente, B. Chico, J.A. Jimenez, S.F. Medina, M. Morcillo, Corros. Sci. 141 (2018) 146-157.
DOI URL |
| [33] |
T.Y. Zhang, W. Liu, Z. Yin, B.J. Dong, Y.G. Zhao, Y.M. Fan, J.S. Wu, Z. Zhang, X.G. Li, J. Mater. Eng. Perform. 29 (2020) 2531-2541.
DOI URL |
| [34] |
X.Q. Cheng, Z. Jin, M. Liu, X.G. Li, Corros. Sci. 115 (2017) 135-142.
DOI URL |
| [35] |
M. Kimura, H. Kihira, N. Ohta, M. Hashimoto, T. Senuma, Corros. Sci. 47 (2005) 2499-2509.
DOI URL |
| [36] | G.L. Cao, G.M. Li, S. Chen, W.S. Chang, X.Q. Chen, Acta Metall. Sin. 47 (2011) 145-151 in Chinese. |
| [37] |
X.H. Chen, J.H. Dong, E.H. Han, W. Ke, Can. Metall. Q. 46 (2007) 195-205.
DOI URL |
| [38] | T.Y. Zhang, W. Liu, Y.M. Fan, S.M. Li, B.j. Dong, B. Wongpat, C. Thee, J. Chin. Soc. Corros. Prot. 39 (2019) 511-518 in Chinese. |
| [39] | M. Zheng, Q.C. Zhang, Y.L. Huang, D.Z. Lu, Y.M. Liu, J. Chin. Soc. Corros. Prot. 36 (2016) 185-190 in Chinese. |
| [40] |
H. Liu, J. Wei, J.H. Dong, Y.Q. Chen, Y.M. Wu, Y.T. Zhou, S.D. Babu, W. Ke, J. Mater. Sci. Technol. 61 (2021) 234-246.
DOI |
| [41] |
Y.P. Sun, C.T. Yang, C.G. Yang, D.K. Xu, Q. Li, L. Yin, C. Qiu, D. Liu, K. Yang, Acta Metall. Sin. (Engl. Lett.). 32 (2019) 1483-1489.
DOI URL |
| [42] |
S. Li, L.H. Hihara, J. Electrochem. Soc. 159 (2012) C147-C154.
DOI URL |
| [43] | Y.F. Lu, J.H. Dong, W. Ke, J. Mater. Sci.Technol. 32 (2016) 341-348. |
| [44] |
Y.F. Lu, J.H. Dong, W. Ke, J. Mater. Sci. Technol. 31 (2015) 1047-1058.
DOI URL |
| [45] |
S. Peulon, H. Antony, L. Legrand, A.J.E.A. Chausse, Electrochim. Acta 49 (2004) 2891-2899.
DOI URL |
| [46] |
P. Refait, M. Abdelmoula, J.M.R. Genin, R. Sabot, Comptes Rendus Geosci. 338 (2006) 476-487.
DOI URL |
| [47] |
J. Detournay, L. Demiranda, R. Derie, M. Ghodsi, Corros. Sci. 15 (1975) 295-306.
DOI URL |
| [48] |
S.H. Drissi, P. Refait, M. Abdelmoula, J.M.R. Genin, Corros. Sci. 37 (1995) 2025-2041.
DOI URL |
| [49] |
J.M.R. Genin, A.A. Olowe, P. Refait, L. Simon, Corros. Sci. 38 (1996) 1751-1762.
DOI URL |
| [50] |
P. Refait, J. Génin, Corros. Sci. 34 (1993) 797-819.
DOI URL |
| [51] |
M. Abdelmoula, P. Refait, S.H. Drissi, J.P. Mihe, J.M.R. Genin, Corros. Sci. 38 (1996) 623-633.
DOI URL |
| [52] | N.N. Semenov, Some Problems in Chemical Kinetics and Reactivity, Princeton University Press, 1958. |
| [53] | L. Eberson, Adv. Phys. Org. Chem. 18 (1982) 79-185. |
| [54] | R.W. Revie, in: Uhlig’s Corrosion Handbook, 3rd ed, John Wiley and Sons, Inc. Canada, 2011, pp. 1101-1102. |
| [55] |
X. Wei, J.H. Dong, W. Ke, Corros. Commun. 1 (2021) 10-17.
DOI URL |
| [56] | L. Legrand, R. Maksoub, G. Sagon, S. Lecomte, J.P. Dallas, A. Chausse, J.Electrochem. Soc. 150 (2003) B45-B51. |
| [57] | A.A. Olowe, B. Pauron, J. Génin, Corros. Sci. 32 (1991) 985-1001. |
| [58] | A.A. Olowe, J.Mr Génin, Corros. Sci. 32 (1991) 1021-1028. |
| [59] | A.A. Olowe, J. Génin, Corros. Sci. 32 (1991) 965-984. |
| [60] |
P. Refait, J. Génin, Corros. Sci. 39 (1997) 539-553.
DOI URL |
| [61] |
P. Refait, O. Benali, M. Abdelmoula, J.M.R. Genin, Corros. Sci. 45 (2003) 2435-2449.
DOI URL |
| [62] |
P. Refait, J.B. Memet, C. Bon, R. Sabot, J.M.R. Genin, Corros. Sci. 45 (2003) 833-845.
DOI URL |
| [63] |
L. Chaves, J.E. Curry, D.A. Stone, M. Carducci, J. Chorover, Rev. Bras. Cienc. Solo. 33 (2009) 1115-1123.
DOI URL |
| [64] |
J.D. Bernal, F.R. S, D.R. Dasgupta, A.L. Mackay, Clay Miner. 4 (1959) 15-30.
DOI URL |
| [65] |
J.M.R. Génin, C. Ruby, Solid State Sci 6 (2004) 705-718.
DOI URL |
| [66] |
S.S. Suzuki, S. Fujieda, K. Shinoda, S. Suzuki, Corros. Sci. 53 (2011) 2446-2452.
DOI URL |
| [67] |
P. Refait, P. Bauer, A.A. Olowe, J. Genin, Hyperfine Interact 57 (1990) 2061-2066.
DOI URL |
| [68] |
P. Refaita, M. Abdelmoulab, L. Simonb, J.R. Ge ´ninb, J. Phys. Chem. Solids 66 (2005) 911-917.
DOI URL |
| [69] |
K. Inoue, K. Shinoda, S. Suzuki, Y. Waseda, Mater. Trans. 49 (2008) 466-470.
DOI URL |
| [70] |
Y. Wang, X. Mu, J.H. Dong, A.J. Umoh, W. Ke, J. Mater. Sci. Technol. 76 (2021) 41-50.
DOI |
| [71] | Y. Wang, X. Mu, Z.Y. Chen, Z.G. Lin, J.H. Dong, E.F. Daniel, J.J. Qi, W. Ke, Corros. Sci. 193 (2021). |
| [72] |
S.J. Oh, D.C. Cook, H.E. Townsend, Hyperfine Interact 112 (1998) 59-65.
DOI URL |
| [73] |
J. Dunnwald, A. Otto, Corros. Sci. 29 (1989) 1167-1176.
DOI URL |
| [74] |
M.B. Leban, T. Kosec, Eng. Failure Anal. 79 (2017) 940-950.
DOI URL |
| [75] |
D.L.A. deFaria, S.V. Silva, M.T. deOliveira, J. Raman Spectrosc. 28 (1997) 873-878.
DOI URL |
| [76] |
J. Andrade, R. Machado, M. Macêdo, F.G.C. Cunha, Polimeros 23 (2013) 19-23.
DOI URL |
| [77] |
X.H. Chen, J.H. Dong, E.H. Han, W. Ke, Mater. Lett. 61 (2007) 4050-4053.
DOI URL |
| [78] | C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, Handbook of X ray Photoelec-tron Spectroscopy, 1st ed,Eden Prairie, Minnesota, 1979. |
| [79] |
W. Wu, Z.Y. Dai, Z.Y. Liu, C. Liu, X.G. Li, Corros. Sci. 183 (2021) 109353-109356.
DOI URL |
| [80] |
L. Hao, S.X. Zhang, J.H. Dong, W. Ke, Corros. Sci. 53 (2011) 4187-4192.
DOI URL |
| [1] | Yonghua Sun, Yuyu Zhao, He Zhang, Youjie Rong, Runhua Yao, Yi Zhang, Xiaohong Yao, Ruiqiang Hang. Corrosion behavior, antibacterial ability, and osteogenic activity of Zn-incorporated Ni-Ti-O nanopore layers on NiTi alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 69-78. |
| [2] | Lei Li, Huanzheng Jiao, Congfu Liu, Lin Yang, Yusong Suo, Ruixue Zhang, Tie Liu, Jianzhong Cui. Microstructures, mechanical properties and in vitro corrosion behavior of biodegradable Zn alloys microalloyed with Al, Mn, Cu, Ag and Li elements [J]. J. Mater. Sci. Technol., 2022, 103(0): 244-260. |
| [3] | Pan Liu, Lulu Hu, Qinhao Zhang, Cuiping Yang, Zuosi Yu, Jianqing Zhang, Jiming Hu, Fahe Cao. Effect of aging treatment on microstructure and corrosion behavior of Al-Zn-Mg aluminum alloy in aqueous solutions with different aggressive ions [J]. J. Mater. Sci. Technol., 2021, 64(0): 85-98. |
| [4] | Baoxian Su, Binbin Wang, Liangshun Luo, Liang Wang, Yanqing Su, Fuxin Wang, Yanjin Xu, Baoshuai Han, Haiguang Huang, Jingjie Guo, Hengzhi Fu. The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Effects of HCl concentration and temperature [J]. J. Mater. Sci. Technol., 2021, 74(0): 143-154. |
| [5] | Yu Fu, Jun Li, Hong Luo, Cuiwei Du, Xiaogang Li. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 80(0): 217-233. |
| [6] | Xin Wei, Junhua Dong, Nan Chen, Amar Prasad Yadav, Qiying Ren, Jie Wei, Changgang Wang, Rongyao Ma, Wei Ke. Effects of bentonite content on the corrosion evolution of low carbon steel in simulated geological disposal environment [J]. J. Mater. Sci. Technol., 2021, 66(0): 46-56. |
| [7] | Huabao Yang, Liang Wu, Bin Jiang, Wenjun Liu, Jiangfeng Song, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries [J]. J. Mater. Sci. Technol., 2021, 62(0): 128-138. |
| [8] | Baoxian Su, Liangshun Luo, Binbin Wang, Yanqing Su, Liang Wang, Robert O. Ritchie, Enyu Guo, Ting Li, Huimin Yang, Haiguang Huang, Jingjie Guo, Hengzhi Fu. Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 234-248. |
| [9] | Tao Xiang, Zeyun Cai, Peng Du, Kun Li, Zongwei Zhang, Guoqiang Xie. Dual phase equal-atomic NbTaTiZr high-entropy alloy with ultra-fine grain and excellent mechanical properties fabricated by spark plasma sintering [J]. J. Mater. Sci. Technol., 2021, 90(0): 150-158. |
| [10] | Xiang Peng, Shihao Xu, Dehua Ding, Guanglan Liao, Guohua Wu, Wencai Liu, Wenjiang Ding. Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg-5Li-3Al-2Zn alloy with different Sn and Y addition [J]. J. Mater. Sci. Technol., 2021, 72(0): 16-22. |
| [11] | Heng Chen, Zebang He, Lin Lu. Correlation of surface features with corrosion behaviors of interstitial free steel processed by temper rolling [J]. J. Mater. Sci. Technol., 2020, 36(0): 37-44. |
| [12] | Chunduo Dai, Tianliang Zhao, Cuiwei Du, Zhiyong Liu, Dawei Zhang. Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMox high-entropy alloys [J]. J. Mater. Sci. Technol., 2020, 46(0): 64-73. |
| [13] | Zhangweijia Qiu, Zhengkun Li, Huameng Fu, Hongwei Zhang, Zhengwang Zhu, Aimin Wang, Hong Li, Long Zhang, Haifeng Zhang. Corrosion mechanisms of Zr-based bulk metallic glass in NaF and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 46(0): 33-43. |
| [14] | Jing Liu, Lixin Yang, Chunyan Zhang, Bo Zhang, Tao Zhang, Yang Li, Kaiming Wu, Fuhui Wang. Significantly improved corrosion resistance of Mg-15Gd-2Zn-0.39Zr alloys: Effect of heat-treatment [J]. J. Mater. Sci. Technol., 2019, 35(8): 1644-1654. |
| [15] | Fang Xue, Xin Wei, Junhua Dong, Changgang Wang, Wei Ke. Effect of chloride ion on corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution with different dissolved oxygen concentrations [J]. J. Mater. Sci. Technol., 2019, 35(4): 596-603. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
