J. Mater. Sci. Technol. ›› 2022, Vol. 127: 89-97.DOI: 10.1016/j.jmst.2022.03.025
• Research Article • Previous Articles Next Articles
Guangkai Hu, Dong Liu, Sidi Yin, Bin Yu, Tao Huang(), Hao Yu(
), Meifang Zhu
Received:
2022-01-13
Revised:
2022-03-10
Accepted:
2022-03-13
Published:
2022-11-10
Online:
2022-11-10
Contact:
Tao Huang,Hao Yu
About author:
yh@dhu.edu.cn (H. Yu)Guangkai Hu, Dong Liu, Sidi Yin, Bin Yu, Tao Huang, Hao Yu, Meifang Zhu. Recyclable Joule heated low shrinkage carbon nanofiber aerogels for microscale oil/water separation[J]. J. Mater. Sci. Technol., 2022, 127: 89-97.
Fig. 2. Mechanical compression performance of the CNFA. (a) Compressive stress-strain curves for the CNFA-0, CNFA-50, CNFA-75, and CNFA-100 at a strain of 50%, (b) comparison of the specific strengths of the CNFA-0, CNFA-50, CNFA-75, and CNFA-100, (c) plastic deformation of the CNFA-0, CNFA-50, CNFA-75, and CNFA-100 after 10 cycles at 50% strain, and (d) stress-strain curves obtained from the CNFA-75 after 10 cycles at 30%, 50%, and 70% strain.
Fig. 3. SEM images of the (a1-a3) CNFA-0, (b1-b3) CNFA-50, (c1-c3) CNFA-75, and (d1-d3) CNFA-100 aerogels. (a1-d1) Surfaces perpendicular to the growth direction of ice crystals and (a2-d2) surfaces parallel to the growth direction of ice crystals. (a3-d3) are enlarged views of (a2-d2), respectively.
Fig. 4. (a) Diagram of the aerogel Joule-heating setup, (b) I-V curve obtained from the CNFA, (c) diagram of the resistance heating mechanism, (d) Joule-heating cycling performance of the CNFA at a power input of 14 W, (e) diagram and photographic image of simulated electrical heated clothing (57 mm diameter, 6 mm height, approximately 360 mg), (f) infrared thermal images acquired a different power inputs, (g) infrared thermal imaging of a commercial hair dryer (rated power: 1200 W) operating at an alternating current (AC) voltage of 220 V and a photograph showing its internal structure, (h) photograph of the custom-made Joule-heating device and its infrared thermal image acquired at 9 W power input (inset: an infrared thermal image of the CNFA with diameter: 23.5 mm, height: 9 mm, density: 20.58 mg cm-3), and (i) plots of temperature against time for the hair dryer and CNFA according to Videos S1 and S2 after power-on and power-off, operating at AC 220 V and 1200 W for the hair dryer, direct current (DC) 11 V and 9 W (actual calculated power) for the CNFA. Test conditions: open system and ambient temperature (21.3 °C).
Fig. 5. (a) Schematic diagram of the separator apparatus, (b) saturated adsorption capacities of the CNFA for different solvents at room temperature (RT: 20 °C), (c) times required for different solvents to reach saturated adsorption capacity at RT and 70 °C. Photographic images showing the adsorption of organic solvents ((d1-d4) for H2O (dyed with copper nitrate) + blend oil, (e1-e4) for H2O (dyed with copper nitrate) + CCl4 (stained with methyl red)), using an H2O: blend oil or CCl4vol ratio of 2:1; (f1) diagram showing the separation process, (f2) photographic images of the removal process; and (g) removal percentages of acetone and DMF (3 g L-1) from water over repeated treatment using open systems at ambient temperature (20 °C).
Materials | Source of contaminated water | Initial COD (mg L-1) | Removal percentage of COD/% | Refs. |
---|---|---|---|---|
Carbon nanofiber aerogel (CNFA) | Acetone + Water | 4990 | 87 | This work |
DMF + Water | 4351 | 92 | ||
Single chamber microbial fuel cell (SCMFC) | Wastewater treatment plant | 210-220 | 80 | 2004 [ |
Cellulose acetate - polyethersulphone blend membrane (CA-PES) | Permeated palm oil mill effluent | 15,000 | 41 | 2007 [ |
Closed, cylindrical acrylic reactor | Supernatant of livestock wastewater | 100-800 | O3: 54 O3/H2O2: 62 O3/UV: 78 O3/H2O2/UV: 88 | 2011 [ |
Bio-trickling filter (volcanic rock + polyvinyl chloride) | DMF wastewater | 300-400 | 80-90 | 2016 [ |
Composite of nano-MgO, CNT and Graphite | Pesticide-laden wastewater | 6173 | 82 | 2020 [ |
Hybrid system combining Floating, Vertical, and Horizontal Flow Constructed Wetlands (gravel + pebble) | Urban wastewater | -a | 77 | 2020 [ |
Bacterial community | Acetone, propionic and hexanoic acids-components of wastewater | 4000-6000 8000-10,000 | 5 g COD/L: 89 9.53 g COD/L: 82 | 2020 [ |
Lectin protein isolated | Coffee cherry pulping wastewater | 29,460 | 80 | 2021 [ |
Micro-packed bed reactor (Zirconia ceramic beads, g-Al2O3 pellets) | Organic pollutants (including phenols, antibiotics, and dyes) | 1450 | 70-80 | 2021 [ |
TiO2, boron carbon nitride (BCN) nanosheets | Gasfield produced water | 9500 | 81 | 2021 [ |
Multiple phenyl iron tetraamino ligand | Dye wastewater | - | catalyst A: 52-61 catalyst B: 45-58 | 2021 [ |
Microflora in hybrid constructed wetland | Landfill leachate treatment | 640-984 | 55-76 | 2021 [ |
Table 1. Removal characteristics of microscale organic matter and comparison of its parameters.
Materials | Source of contaminated water | Initial COD (mg L-1) | Removal percentage of COD/% | Refs. |
---|---|---|---|---|
Carbon nanofiber aerogel (CNFA) | Acetone + Water | 4990 | 87 | This work |
DMF + Water | 4351 | 92 | ||
Single chamber microbial fuel cell (SCMFC) | Wastewater treatment plant | 210-220 | 80 | 2004 [ |
Cellulose acetate - polyethersulphone blend membrane (CA-PES) | Permeated palm oil mill effluent | 15,000 | 41 | 2007 [ |
Closed, cylindrical acrylic reactor | Supernatant of livestock wastewater | 100-800 | O3: 54 O3/H2O2: 62 O3/UV: 78 O3/H2O2/UV: 88 | 2011 [ |
Bio-trickling filter (volcanic rock + polyvinyl chloride) | DMF wastewater | 300-400 | 80-90 | 2016 [ |
Composite of nano-MgO, CNT and Graphite | Pesticide-laden wastewater | 6173 | 82 | 2020 [ |
Hybrid system combining Floating, Vertical, and Horizontal Flow Constructed Wetlands (gravel + pebble) | Urban wastewater | -a | 77 | 2020 [ |
Bacterial community | Acetone, propionic and hexanoic acids-components of wastewater | 4000-6000 8000-10,000 | 5 g COD/L: 89 9.53 g COD/L: 82 | 2020 [ |
Lectin protein isolated | Coffee cherry pulping wastewater | 29,460 | 80 | 2021 [ |
Micro-packed bed reactor (Zirconia ceramic beads, g-Al2O3 pellets) | Organic pollutants (including phenols, antibiotics, and dyes) | 1450 | 70-80 | 2021 [ |
TiO2, boron carbon nitride (BCN) nanosheets | Gasfield produced water | 9500 | 81 | 2021 [ |
Multiple phenyl iron tetraamino ligand | Dye wastewater | - | catalyst A: 52-61 catalyst B: 45-58 | 2021 [ |
Microflora in hybrid constructed wetland | Landfill leachate treatment | 640-984 | 55-76 | 2021 [ |
[1] |
J. Zhu, S.S. Lv, T.H. Yang, T. Huang, H. Yu, Q.H. Zhang, M.F. Zhu, Adv. Sustain. Syst. 4 (2020) 1900141.
DOI URL |
[2] |
J.J. Wang, W.H. Zhang, C.S. Zhang, Carbon N Y 155 (2019) 16-24.
DOI URL |
[3] | B.N. Yuan, L. Li, V. Murugadoss, S. Vupputuri, J.W. Wang, N. Alikhani, Z.H. Guo, ES Food Agrofor. 1 (2020) 41-52. |
[4] |
C.L. Lin, B.Y. Liu, L.Y. Pu, Y. Sun, Y.L. Xue, M.L. Chang, X. Li, X.Y. Lu, R. Chen, J.X. Zhang, Adv. Compos. Hybrid Mater. 4 (2021) 339-349.
DOI URL |
[5] |
C.Z. Yin, C. Wang, Q. Hu, Adv. Compos. Hybrid Mater. 4 (2021) 360-370.
DOI URL |
[6] |
L. Guo, Y.F. Zhang, J.J. Zheng, L.Q. Shang, Y.J. Shi, Q. Wu, X.X. Liu, Y.M. Wang, L.Q. Shi, Q. Shao, Adv. Compos. Hybrid Mater. 4 (2021) 819-829.
DOI URL |
[7] |
Z. Sun, K.Q. Qu, J.H. Li, S. Yang, B.N. Yuan, Z.H. Huang, Z.H. Guo, Adv. Compos. Hybrid Mater. 4 (2021) 1413-1424.
DOI URL |
[8] |
X.Q. Cheng, S.W. Li, H.F. Bao, X.B. Yang, Z.X. Li, Y.J. Zhang, K. Wang, J. Ma, A. Ullah, L. Shao, Adv. Compos. Hybrid Mater. 4 (2021) 562-573.
DOI URL |
[9] |
G. Duoerkun, Y. Zhang, Z. Shi, X.F. Shen, W. Cao, T. Liu, J.S. Liu, Q.Y. Chen, L.S. Zhang, Adv. Fiber Mater. 2 (2020) 13-23.
DOI URL |
[10] | M.Y. Yu, T. Yu, S.G. Chen, Z.H. Guo, I. Seok, E.S. Mater. Manuf. 7 (2020) 64-69. |
[11] | P. Vairale, V. Sharma, B. Bade, A. Waghmare, P. Shinde, A. Punde, V. Doiphode, R. Aher, S. Pandharkar, S. Nair, V. Jadkar, P. Shelke, M. Prasad, S. Jadkar, Eng. Sci. 11 (2020) 76-84. |
[12] |
W. Cheng, Y.M. Wang, S.S. Ge, X.Q. Ding, Z.W. Cui, Q. Shao, Adv. Compos. Hybrid Mater. 4 (2021) 150-161.
DOI URL |
[13] | F.H. Zhang, W. Cheng, Z.H. Yu, S.S. Ge, Q. Shao, D. Pan, B. Liu, X.J. Wang, Z.H. Guo, Adv. Compos. Hybrid Mater. 4 (2021) 330-1342. |
[14] |
Q. Hu, J. Zhou, B. Qiu, Q. Wang, G. Song, Z.H. Guo, Adv. Compos. Hybrid Mater. 4 (2021) 265-273.
DOI URL |
[15] |
L.A. Shi, J. Ge, B.C. Hu, T. Ma, H.Y. Zhao, Y.H. Song, C. Li, S.H. Yu, Nano Res. 14 (2021) 2697-2702.
DOI URL |
[16] |
X.Y. Meng, W.L. Xu, Z.H. Li, J.H. Yang, J.W. Zhao, X.X. Zou, Y.M. Sun, Y.Q. Dai, Adv. Fiber Mater. 2 (2020) 93-104.
DOI URL |
[17] |
J. Ge, L.A. Shi, Y.C. Wang, H.Y. Zhao, H.B. Yao, Y.B. Zhu, Y. Zhang, H.W. Zhu, H.A. Wu, S.H. Yu, Nat. Nanotechnol. 12 (2017) 434-440.
DOI URL |
[18] |
Y.Z. Lin, L.B. Zhong, S. Dou, Z.D. Shao, Q. Liu, Y.M. Zheng, Environ. Int. 128 (2019) 37-45.
DOI URL |
[19] |
X. Jin, A. Al-Qatatsheh, K. Subhani, N.V. Salim, Chem. Eng. J. 412 (2021) 128635.
DOI URL |
[20] |
P. Song, J. Di, H.P. Chen, S.R. Zhao, C. Wu, X. Cao, M.L. Wang, J. Xiong, X.L. Ye, Mater. Adv. 1 (2020) 760-766.
DOI URL |
[21] |
H. Liu, X.Y. Chen, Y.J. Zheng, D.B. Zhang, Y. Zhao, C.F. Wang, C.F. Pan, C.T. Liu, C.Y. Shen, Adv. Funct. Mater. 31 (2021) 2008006.
DOI URL |
[22] |
S.C. Hou, X.Y. Wu, Y. Lv, W. Jia, J.X. Guo, L.X. Wang, F.L. Tong, D.Z. Jia, Appl. Surf. Sci. 509 (2020) 144818.
DOI URL |
[23] | P. Song, M.L. Wang, J. Di, J. Xiong, S.R. Zhao, Z. Li, A.C.S. Appl, Nano Mater. 3 (2020) 8176-8181. |
[24] |
X.Y. Zhang, Y.F. Zhang, Y.N. Qu, J.M. Wu, S.E. Zhang, J.L. Yang, Nano Lett. 21 (2021) 4167-4175.
DOI URL |
[25] |
F.L. Lai, Y.P. Huang, L.Z. Zuo, H.H. Gu, Y.E. Miao, T.X. Liu, J. Mater. Chem. A 4 (2016) 15861-15869.
DOI URL |
[26] |
J.Y. Hong, E.H. Sohn, S. Park, H.S. Park, Chem. Eng. J. 269 (2015) 229-235.
DOI URL |
[27] |
P. Song, J.W. Cui, J. Di, D.B. Liu, M.Z. Xu, B.J. Tang, Q.S. Zeng, J. Xiong, C.D. Wang, Q. He, L.X. Kang, J.D. Zhou, R.H. Duan, B.B. Chen, S.S. Guo, F.C. Liu, J. Shen, Z. Liu, ACS Nano 14 (2020) 595-602.
DOI PMID |
[28] |
Y.F. Zhang, Z.H. Zeng, X.Y.D. Ma, C.Y. Zhao, J.M. Ang, B.F. Ng, M.P. Wan, S.C. Wong, Z. Wang, X. Lu, Appl. Surf. Sci. 479 (2019) 700-708.
DOI URL |
[29] |
T.T. Bai, Y. Guo, D.D. Wang, H. Liu, G. Song, Y.M. Wang, Z.H. Guo, C.T. Liu, C.Y. Shen, J. Mater. Chem. A 9 (2021) 5566-5577.
DOI URL |
[30] |
Y.P. Huang, F.L. Lai, L.S. Zhang, H.Y. Lu, Y.E. Miao, T.X. Liu, Sci. Rep. 6 (2016) 31541-31552.
DOI URL |
[31] |
J.L. Yu, L.H. Meng, D.P. Fan, C.H. Zhang, F. Yu, Y.D. Huang, Compos. Part. B Eng. 60 (2014) 261-267.
DOI URL |
[32] | J.W. Lu, Y. Li, W. Song, M.D. Losego, R. Monikandan, K.I. Jacob, R. Xiao, ACS Nano 7 (2020) 7999-8011. |
[33] |
N. Dell’Osbel, G.S. Colares, G.A. Oliveira, L.R. Rodrigues, F.P. da Silva, A.L. Ro-driguez, D.A.R. López, C.A. Lutterbeck, E.O. Silveira, L.T. Kist, Ê.L. Machado, Ecol. Eng. 158 (2020) 106072.
DOI URL |
[34] |
D. Xia, Y.F. Xu, J. Mannering, X.L. Ma, M.S. Ismail, B. Duncan, D.L. Baker, M. Pourkashanian, R. Menzel, Chem. Mater. 33 (2020) 392-402.
DOI URL |
[35] |
R. Menzel, S. Barg, M. Miranda, D.B. Anthony, S.M. Bawaked, M. Mokhtar, S.A. Al-Thabaiti, S.N. Basahel, E. Saiz, M.S.P. Shaffer, Adv. Funct. Mater. 25 (2015) 28-35.
DOI URL |
[36] |
Y.L. Tan, B.R. Hu, Z.Y. Chu, W.J. Wu, Adv. Funct. Mater. 29 (2019) 1900266.
DOI URL |
[37] |
T. Huang, Y. Zhu, J. Zhu, H. Yu, Q.H. Zhang, M.F. Zhu, Adv. Fiber Mater. 2 (2020) 338-347.
DOI URL |
[38] |
H.L. Gao, Y.B. Zhu, L.B. Miao, F.C. Wang, X.S. Luo, Y.Y. Liu, Y. Lu, Z. Pan, J. Ge, W. Shen, Y.R. Zheng, L. Xu, L.J. Wang, W.H. Xu, H.A. Wu, S.H. Yu, Nat. Commun. 7 (2016) 12920.
DOI URL |
[39] |
Y. Si, X.Q. Wang, L.Y. Dou, J.Y. Yu, B. Ding, Sci. Adv. 4 (2018) eaas8925.
DOI URL |
[40] |
J. Mannering, R. Stones, D. Xia, D. Sykes, N. Hondow, E. Flahaut, T.W. Chamber-lain, R. Brydson, G.A. Cairns, R. Menzel, Adv. Mater. 33 (2021) 2008307.
DOI URL |
[41] |
L.S. Zhang, M. Baima, T.L. Andrew, ACS Appl. Mater. Interfaces 9 (2017) 32299-32307.
DOI URL |
[42] |
M.C. Zhang, C.Y. Wang, X.P. Liang, Z. Yin, K.L. Xia, H.M. Wang, M.Q. Jian, Y.Y. Zhang, Adv. Electron. Mater. 3 (2017) 1700193-1700199.
DOI URL |
[43] | H. Park, S.K. Hwang, J.Y. Lee, J.T. Fan, Y.J. Jeong, Int. J. Cloth. Sci. Technol. 28 (2016) 254-264. |
[44] |
F.M. Wang, C.S. Gao, K. Kuklane, I. Holmer, Int. J. Occup. Saf. Ergon. 16 (2010) 387-404.
DOI URL |
[45] | S.L. Li, R. Zhou, W.J. Zhao, H.G. Du, Appl. Organomet. Chem. 35 (2021) 6252. |
[46] |
Q. Cao, L. Sang, J.C. Tu, Y.S. Xiao, N. Liu, L.D. Wu, J.S. Zhang, Chemosphere 270 (2021) 128621.
DOI URL |
[47] |
H. Liu, R. Ramnarayanan, B.E. Logan, Environ. Sci. Technol. 38 (2004) 2281-2285.
DOI URL |
[48] |
Y.W. Chen, B. Li, Y. Qiu, X.L. Xu, S.B. Shen, Environ. Technol. 37 (2016) 1088-1093.
DOI URL |
[49] |
E. Lee, H. Lee, Y.K. Kim, K. Sohn, K. Lee, Int. J. Environ. Sci. Technol. 8 (2011) 381-388.
DOI URL |
[50] |
T.P. Malematja, G.N. Ijoma, R. Selvarajan, T. Matambo, Int. Microbiol. 23 (2020) 313-324.
DOI PMID |
[51] |
T. Saeed, M.J. Miah, N. Majed, M.K. Alam, T. Khan, J. Clean. Prod. 282 (2021) 125427.
DOI URL |
[52] |
S. Ebadi, K. Ghasemipanah, E. Alaie, A. Rashidi, A. Khataee, J. Ind. Eng. Chem. 98 (2021) 262-269.
DOI URL |
[53] |
A.A. Jenifer, M. Vasanthy, C. Thamarai selvi, B. Ravindran, W.J. Chung, S.W. Chang, J. Water Process. Eng. 39 (2021) 101742.
DOI URL |
[54] |
G. Asgari, A. Seidmohammadi, J. Faradmal, A. Esrafili, S.M. Noori, M. Jafarinia, J. Water Process. Eng. 33 (2020) 101082.
DOI URL |
[55] | A. Idris, I. Ahmed, H.W. Jye, Water Sci. Technol. 56 (2007) 169-177. |
[1] | Yan Xing, Wenqing Dan, Yicun Fan, Xing'ao Li. Low temperature synthesis of high-entropy (Y0.2Yb0.2Sm0.2Eu0.2Er0.2)2O3 nanofibers by a novel electrospinning method [J]. J. Mater. Sci. Technol., 2022, 103(0): 215-220. |
[2] | Jeong In Kim, Ju Yeon Kim, Sung-Ho Kook, Jeong-Chae Lee. A novel electrospinning method for self-assembled tree-like fibrous scaffolds: Microenvironment-associated regulation of MSC behavior and bone regeneration [J]. J. Mater. Sci. Technol., 2022, 115(0): 52-70. |
[3] | Mi Wu, Wen Liu, Jinrong Yao, Zhengzhong Shao, Xin Chen. Silk microfibrous mats with long-lasting antimicrobial function [J]. J. Mater. Sci. Technol., 2021, 63(0): 203-209. |
[4] | Xuepeng Ni, Zhe Cui, Ning Jiang, Huifang Chen, Qilin Wu, Anqi Ju, Meifang Zhu. Hollow multi-nanochannel carbon nanofiber/MoS2 nanoflower composites as binder-free lithium-ion battery anodes with high capacity and ultralong-cycle life at large current density [J]. J. Mater. Sci. Technol., 2021, 77(0): 169-177. |
[5] | Jianxu Bao, Hang Li, Yuanting Xu, Shengqiu Chen, Zhoujun Wang, Chunji Jiang, Huilin Li, Zhiwei Wei, Shudong Sun, Weifeng Zhao, Changsheng Zhao. Multi-functional polyethersulfone nanofibrous membranes with ultra-high adsorption capacity and ultra-fast removal rates for dyes and bacteria [J]. J. Mater. Sci. Technol., 2021, 78(0): 131-143. |
[6] | Jin-Sung Park, Gi Dae Park, Yun Chan Kang. Exploration of cobalt selenite-carbon composite porous nanofibers as anode for sodium-ion batteries and unveiling their conversion reaction mechanism [J]. J. Mater. Sci. Technol., 2021, 89(0): 24-35. |
[7] | Hui Fang, Chenxi Wang, Daoyuan Li, Shicheng Zhou, Yu Du, He Zhang, Chunjin Hang, Yanhong Tian, Tadatomo Suga. Fabrication of Ag@Ag2O-MnOx composite nanowires for high-efficient room-temperature removal of formaldehyde [J]. J. Mater. Sci. Technol., 2021, 91(0): 5-16. |
[8] | Min-Woo Kim, Yong-Il Kim, Chanwoo Park, Ali Aldalbahi, Hamdah S. Alanazi, Seongpil An, Alexander L. Yarin, Sam S. Yoon. Reusable and durable electrostatic air filter based on hybrid metallized microfibers decorated with metal-organic-framework nanocrystals [J]. J. Mater. Sci. Technol., 2021, 85(0): 44-55. |
[9] | Wencheng Liang, Mingli Jiang, Junyong Zhang, Xiaoming Dou, Yan Zhou, Yun Jiang, Li Zhao, Meidong Lang. Novel antibacterial cellulose diacetate-based composite 3D scaffold as potential wound dressing [J]. J. Mater. Sci. Technol., 2021, 89(0): 225-232. |
[10] | Xianrui Xie, Yujie Chen, Xiaoyu Wang, Xiaoqing Xu, Yihong Shen, Atta ur Rehman Khan, Ali Aldalbahi, Allison E. Fetz, Gary L. Bowlin, Mohamed El-Newehy, Xiumei Mo. Electrospinning nanofiber scaffolds for soft and hard tissue regeneration [J]. J. Mater. Sci. Technol., 2020, 59(0): 243-261. |
[11] | Meng-Jie Chang, Wen-Na Cui, Jun Liu, Kang Wang, Hui-Ling Du, Lei Qiu, Si-Meng Fan, Zhen-Min Luo. Construction of novel TiO2/Bi4Ti3O12/MoS2 core/shell nanofibers for enhanced visible light photocatalysis [J]. J. Mater. Sci. Technol., 2020, 36(0): 97-105. |
[12] | Rongan He, Haijuan Liu, Huimin Liu, Difa Xu, Liuyang Zhang. S-scheme photocatalyst Bi2O3/TiO2 nanofiber with improved photocatalytic performance [J]. J. Mater. Sci. Technol., 2020, 52(0): 145-151. |
[13] | Xingxing Liang, Ying Yang, Xin Jin, Jie Cheng. Polyethylene Oxide-Coated Electrospun Polyimide Fibrous Seperator for High-Performance Lithium-Ion Battery [J]. J. Mater. Sci. Technol., 2016, 32(3): 200-206. |
[14] | Sadat-Shojai Mehdi. Electrospun Polyhydroxybutyrate/Hydroxyapatite Nanohybrids: Microstructure and Bone Cell Response [J]. J. Mater. Sci. Technol., 2016, 32(10): 1013-1020. |
[15] | Di Zhou, Youhua Zhou, Yu Tian, Yafang Tu, Guang Zheng, Haoshuang Gu. Structure and Piezoelectric Properties of Lead-Free Na0.5Bi0.5TiO3 Nanofibers Synthesized by Electrospinning [J]. J. Mater. Sci. Technol., 2015, 31(12): 1181-1185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||