J. Mater. Sci. Technol. ›› 2021, Vol. 91: 5-16.DOI: 10.1016/j.jmst.2021.02.054
• Research Article • Previous Articles Next Articles
Hui Fanga, Chenxi Wanga,*(), Daoyuan Lia, Shicheng Zhoua, Yu Dua, He Zhanga, Chunjin Hanga, Yanhong Tiana, Tadatomo Sugab
Received:
2020-12-18
Revised:
2021-01-30
Accepted:
2021-02-22
Published:
2021-11-20
Online:
2021-11-20
Contact:
Chenxi Wang
About author:
*E-mail address: wangchenxi@hit.edu.cn (C. Wang).Hui Fang, Chenxi Wang, Daoyuan Li, Shicheng Zhou, Yu Du, He Zhang, Chunjin Hang, Yanhong Tian, Tadatomo Suga. Fabrication of Ag@Ag2O-MnOx composite nanowires for high-efficient room-temperature removal of formaldehyde[J]. J. Mater. Sci. Technol., 2021, 91: 5-16.
Fig. 1. Schematic illustration of electrospinning, thermal calcination, solution treatment, Ag NWs doping, plasma treatment and as-synthesized Ag@Ag2O-MnOx NWs.
Sample | Mn2+ | Mn3+ | Mn4+ |
---|---|---|---|
C-MnOx | 10.8% | 74.0% | 15.2% |
S-MnOx | 23.8% | 64.5% | 12.7% |
C/S-MnOx | 3.0% | 75.0% | 22.0% |
Table 1 Compositional percentage of Mnn+ in the as-synthesized MnOx based on XPS analysis.
Sample | Mn2+ | Mn3+ | Mn4+ |
---|---|---|---|
C-MnOx | 10.8% | 74.0% | 15.2% |
S-MnOx | 23.8% | 64.5% | 12.7% |
C/S-MnOx | 3.0% | 75.0% | 22.0% |
Fig. 7. SEM images combined with element mapping of EDS analysis of (a) as-electrospun Ag@Ag2O-MnOx NWs, (b) Ag@Ag2O—C-MnOx NWs, (c) Ag@Ag2O--S-MnOx NWs and (d) Ag@Ag2O—C/S-MnOx NWs. (Red, yellow, green and blue for C, Mn, O and Ag elements, respectively).
Fig. 8. TEM images of (a) Ag@Ag2O—C/S-MnOx NWs and corresponded Mn, O, and Ag elemental distribution regions. (b) and (c) HRTEM images of C/S-MnOx and Ag@Ag2O NWs, respectively.
Sample | Mn2+ | Mn3+ | Mn4+ | Ag | Ag2O |
---|---|---|---|---|---|
Ag@Ag2O—C-MnOx | 9.5% | 71.4% | 19.1% | 75.7% | 24.3% |
Ag@Ag2O—S-MnOx | 11.8% | 72.1% | 16.1% | 75.2% | 24.8% |
Ag@Ag2O—C/S-MnOx | 2.7% | 71.6% | 26.7% | 74.6% | 25.4% |
Table 2 Compositional information (percentage of Mnn+, Ag and Ag2O) in the as-synthesized Ag@Ag2O-MnOx based on XPS analysis.
Sample | Mn2+ | Mn3+ | Mn4+ | Ag | Ag2O |
---|---|---|---|---|---|
Ag@Ag2O—C-MnOx | 9.5% | 71.4% | 19.1% | 75.7% | 24.3% |
Ag@Ag2O—S-MnOx | 11.8% | 72.1% | 16.1% | 75.2% | 24.8% |
Ag@Ag2O—C/S-MnOx | 2.7% | 71.6% | 26.7% | 74.6% | 25.4% |
Fig. 11. (a) and (b) the HCHO removal efficiencies of various MnOx catalysts. (c) Removal efficiencies-catalytic time curve of Ag@Ag2O—C/S-MnOx NWs. (d) and (e) XPS spectra of Mn 2p and Ag 3d for Ag@Ag2O—C/S-MnOx NWs after HCHO removal.
Sample | Mn2+ | Mn3+ | Mn4+ | Ag | Ag2O |
---|---|---|---|---|---|
Ag@Ag2O—C/S-MnOx | 4.7% | 70.1% | 25.2% | 73.8% | 26.2% |
Table 3 Compositional information (percentage of Mnn+, Ag and Ag2O) in the Ag@Ag2O—C/S-MnOx after catalytic reaction.
Sample | Mn2+ | Mn3+ | Mn4+ | Ag | Ag2O |
---|---|---|---|---|---|
Ag@Ag2O—C/S-MnOx | 4.7% | 70.1% | 25.2% | 73.8% | 26.2% |
[1] | C. Yu, D. Crump, Build. Environ. 33(1998) 357-374. |
[2] | R. Maddalena, M. Russell, D.P. Sullivan, M.G. Apte, Environ. Sci. Technol. 43(2009) 5626-5632. |
[3] | B. Hileman, Environ. Sci. Technol. 18(1984) 216-221. |
[4] | F. Shiraishi, D. Ohkubo, K. Toyoda, S. Yamaguchi, Chem. Eng. J. 114(2005) 153-159. |
[5] | S.J. Xia, G.H. Zhang, Y. Meng, C. Yang, Z.M. Ni, J. Hu, Appl. Catal. B-Environ. 278(2020) 119266. |
[6] | F. Holzer, U. Roland, F.D. Kopinke, Appl. Catal. B-Environ. 38(2002) 163-181. |
[7] | M.B. Chang, C.C. Lee, Environ. Sci. Technol. 29(1995) 181-186. |
[8] | Y. Huang, M. Han, J. Hazard. Mater. 193(2011) 90-94. |
[9] | D. Kibanova, M. Sleiman, J. Cervini-Silva, H. Destaillats, J. Hazard. Mater. 211- 212(2012) 233-239. |
[10] | Y. Huang, Y. Liu, W. Wang, M.J. Chen, H.W. Li, S.C. Lee, W.K. Ho, T.T. Huang, J.J. Cao, Appl. Catal. B-Environ. 278(2020) 119294. |
[11] | J. Ji, X.L. Lu, C. Chen, M. He, H.B. Huang, Appl. Catal. B-Environ. 260(2020) 118210. |
[12] | H. Huang, D.Y.C. Leung . J. Catal. 280(2011) 60-67. |
[13] | S. Colussi, M. Boaro, L. de Rogatis, A. Pappacena, C. de Leitenburg, J. Llorca, A. Trovarelli, Catal. Today 253 (2015) 163-171. |
[14] | J. Chen, D.X. Yan, Z. Xu, X. Chen, X. Chen, W.J. Xu, H.P. Jia, J. Chen, Environ. Sci. Technol. 52(2018) 4728-4737. |
[15] | Z. Qu, S. Shen, D. Chen, Y. Wang. J. Mol. Catal. A-Chem. 356(2012) 171-177. |
[16] | C.Y. Wang, Y.B. Li, C.B. Zhang, X.Y. Chen, C.L. Liu, W.Z. Weng, W.P. Shan, H. He, Appl. Catal. B-Environ. 282(2021) 119540. |
[17] | F.J. Varela-Gandía, Á. Berenguer-Murcia, D. Lozano-Castelló, D. CazorlaAmorós, D.R. Sellick, S.H. Taylor, Appl. Catal. B-Environ. 129(2013) 98-105. |
[18] | J. Lu, B. Fu, M.C. Kung, G. Xiao, J.W. Elam, H.H. Kung, P.C. Stair, Science 335 (2012) 1205-1208. |
[19] | S.P. Rong, T.H. He, P.Y. Zhang, Appl. Catal. B-Environ. 267(2020) 118375. |
[20] | Y. Du, Z. Hua, W. Huang, M. Wu, M. Wang, J. Wang, X. Cui, L. Zhang, H. Chen, J. Shi, Chem. Commun. 51(2015) 5887-5889. |
[21] | S. Liang, F.T.G. Bulgan, R. Zong, Y. Zhu, J. Phys. Chem. C 112 (2008) 5307-5315. |
[22] | P.W. Menezes, A. Indra, P. Littlewood, M. Schwarze, C. Goebel, R. Schomaecker, M. Driess, Chem Sus Chem 7(2014) 2202-2211. |
[23] | J. Zhang, Y. Li, L. Wang, C. Zhang, H. He, Catal. Sci. Technol. 5(2015) 2305-2313. |
[24] | H. Tian, J. He, X. Zhang, L. Zhou, D. Wang, Microporous Mesoporous Mater 138(2011) 118-122. |
[25] | Z.W. Huang, X. Gu, Q.Q. Cao, P.P.J.M. Hao, J.H. Li, X.F. Tang, Angew. Chem. Int. Ed. 51(2012) 4198-4203. |
[26] | X.P. Li, J. Liu, Y.H. Zhao, H.J. Zhang, F.P. Du, C. Lin, T.J. Zhao, Y.H. Sun, Chem- CatChem 7 (2015) 1848-1856. |
[27] | S. Ramakrishna, R. Jose, P.S. Archana, A.S. Nair, R. Balamurugan, J. Venugopal, W.E. Teo. J. Mater. Sci. 45(2010) 6283-6312. |
[28] | X. Lu, C. Wang, F. Favier, N. Pinna, Adv. Energy Mater. 7(2017) 1601301. |
[29] | B. Bayram, O. Akar, T. Akin, Diamond Relat. Mater. 19(2010) 1431-1435. |
[30] | C.X. Wang, Y. Liu, T. Soga, J ECS, Solid State Sci. Technol. 6(2017) 7-13. |
[31] | N.P. Chen, Guizhou Chem. Ind. 2(1999) 36-43. |
[32] | J.L. Wang, J.G. Li, C.J. Jiang, P. Zhou, P.Y. Zhang, J.G. Yu, Appl. Catal. B-Environ. 204(2017) 147-155. |
[33] | J.L. Wang, D.D. Li, P.L. Li, P.Y. Zhang, Q.L. Xu, J.G. Yu, RSC Adv 5(2015) 100434-100442. |
[34] | T. Mathew, K. Suzuki, Y. Ikuta, N. Takahashi, H. Shinjoh, Chem. Commun. 48(2012) 10987-10989. |
[35] | F. Cheng, J. Shen, B. Peng, Y. Pan, Z. Tao, J. Chen, Nat. Chem. 3(2011) 79-84. |
[36] | M. Wang, L.X. Zhang, W.M. Huang, T.P. Xiu, C.G. Zhuang, J.L. Shi, Chem. Eng. J. 320(2017) 667-676. |
[37] | S.W. Gaarenstroom, N. Winograd. J. Chem. Phys. 67(1977) 3500-3506. |
[38] | V. KumarKaushik. J. Electron. Spectrosc. 56(1991) 273-277. |
[39] | B.J. Murray, Q. Li, J.T. Newberg, E.J. Menke, J.C. Hemminger, R.M. Penner, Nano Lett 5(2005) 2319-2324. |
[40] | P. Yu, X. Zhang, Yao Chen, Zhiping Qi , Mater. Chem. Phys. 118(2009) 303. |
[41] | J.H. Lee, T.Y. Yang, H.Y. Kang, D.H. Nam, N.R. Kim, Y.Y. Lee, S.H. Lee., Y.C. Joo, J. Mater. Chem. A 2(2014) 7197. |
[42] | S.N. Guan, W.Z. Li, J.R. Ma, Y.Y. Lei, Y.S. Zhu, Q.F. Huang, X.M. Dou. J. Ind. Eng. Chem. 66(2018) 126-140. |
[43] | X.F. Yang, A.Q. Wang, B.T. Qiao, J. Li, J.Y. Liu, T. Zhang, Acc. Chem. Res. 46(2013) 1740-1748. |
[44] | Z. Yu, B. Duong, D. Abbitt, J. Thomas, Adv. Mater. 25(2013) 3302-3306. |
[45] | J. Zhou, L. Qin, W. Xiao, C. Zeng, N. Li, T. Lv, H. Zhu, Appl. Catal. B: Environ. 207(2017) 233. |
[46] | X. Tang, Y. Li, X. Huang, Y. Xu, H. Zhu, J. Wang, W. Shen, Appl. Catal. B Environ. 62 (3) (2006) 265. |
[47] | Y. Sekine, Atmos. Environ. 36(2002) 5543. |
[48] | Y.F. Guo, Z. Huang, Ind. Catal. 25(3) (2017) 1-6. |
[49] | B. Bai, Q. Qiao, J. Li, J. Hao, Chin. J. Catal. 37(1) (2016) 27. |
[50] | L. Lu, H. Tian, J.H. He, Q.W. Yang, J. Phys. Chem. C 120(41) (2016) 23660. |
[51] | H. Tian, J. He, X. Zhang, L. Zhou, D. Wang, Microporous Mesoporous Mater 138(2011) 118. |
[52] | X. Yu, J. He, D. Wang, Y. Hu, H. Tian, Z. He, J. Phys. Chem. C 116(2012) 851. |
[53] | Y. Chen, J. He, H. Tian, D. Wang, Q. Yang, J. Colloid Interface Sci. 428(2014) 1. |
[54] | M.A. Sidheswaran, H. Destaillats, D.P. Sullivan, J. Larsen, W.J. Fisk, Appl. Catal. B 107(2011) 34. |
[55] | X.F. Tang, J.L. Chen, Y.G. Li, Y. Li, Y.D. Xu, W.J. Shen, Chem. Eng. J. 118(2006) 119-125. |
[56] | J.F. Zheng, H. Shi, N. Xiang, Y.L. Miao, T. Zhang, H. Ge, Z.G. Huang, Appl. Surf. Sci. 523(2020) 146488. |
[57] | A. Andreasen, H. Lynggaard, C. Stegelmann, P. Stoltze, Surf. Sci. 544(2003) 5-23. |
[58] | L. Kundakovic, M. Flytzani-Stephanopoulos, Appl. Catal. A 183(1999) 35-51. |
[59] | J. Pei, J.S. Zhang, Hvac&R Res 17(2011) 476-503. |
[60] | P. Liu, H. He, G. Wei, X. Liang, F. Qi, F. Tan, W. Tan, J. Zhu, R. Zhu, Appl. Catal. B-Environ. 182(2016) 476-484. |
[1] | Min-Woo Kim, Yong-Il Kim, Chanwoo Park, Ali Aldalbahi, Hamdah S. Alanazi, Seongpil An, Alexander L. Yarin, Sam S. Yoon. Reusable and durable electrostatic air filter based on hybrid metallized microfibers decorated with metal-organic-framework nanocrystals [J]. J. Mater. Sci. Technol., 2021, 85(0): 44-55. |
[2] | Xuepeng Ni, Zhe Cui, Ning Jiang, Huifang Chen, Qilin Wu, Anqi Ju, Meifang Zhu. Hollow multi-nanochannel carbon nanofiber/MoS2 nanoflower composites as binder-free lithium-ion battery anodes with high capacity and ultralong-cycle life at large current density [J]. J. Mater. Sci. Technol., 2021, 77(0): 169-177. |
[3] | Mi Wu, Wen Liu, Jinrong Yao, Zhengzhong Shao, Xin Chen. Silk microfibrous mats with long-lasting antimicrobial function [J]. J. Mater. Sci. Technol., 2021, 63(0): 203-209. |
[4] | Jianxu Bao, Hang Li, Yuanting Xu, Shengqiu Chen, Zhoujun Wang, Chunji Jiang, Huilin Li, Zhiwei Wei, Shudong Sun, Weifeng Zhao, Changsheng Zhao. Multi-functional polyethersulfone nanofibrous membranes with ultra-high adsorption capacity and ultra-fast removal rates for dyes and bacteria [J]. J. Mater. Sci. Technol., 2021, 78(0): 131-143. |
[5] | Wencheng Liang, Mingli Jiang, Junyong Zhang, Xiaoming Dou, Yan Zhou, Yun Jiang, Li Zhao, Meidong Lang. Novel antibacterial cellulose diacetate-based composite 3D scaffold as potential wound dressing [J]. J. Mater. Sci. Technol., 2021, 89(0): 225-232. |
[6] | Jin-Sung Park, Gi Dae Park, Yun Chan Kang. Exploration of cobalt selenite-carbon composite porous nanofibers as anode for sodium-ion batteries and unveiling their conversion reaction mechanism [J]. J. Mater. Sci. Technol., 2021, 89(0): 24-35. |
[7] | Rongan He, Haijuan Liu, Huimin Liu, Difa Xu, Liuyang Zhang. S-scheme photocatalyst Bi2O3/TiO2 nanofiber with improved photocatalytic performance [J]. J. Mater. Sci. Technol., 2020, 52(0): 145-151. |
[8] | Xianrui Xie, Yujie Chen, Xiaoyu Wang, Xiaoqing Xu, Yihong Shen, Atta ur Rehman Khan, Ali Aldalbahi, Allison E. Fetz, Gary L. Bowlin, Mohamed El-Newehy, Xiumei Mo. Electrospinning nanofiber scaffolds for soft and hard tissue regeneration [J]. J. Mater. Sci. Technol., 2020, 59(0): 243-261. |
[9] | Meng-Jie Chang, Wen-Na Cui, Jun Liu, Kang Wang, Hui-Ling Du, Lei Qiu, Si-Meng Fan, Zhen-Min Luo. Construction of novel TiO2/Bi4Ti3O12/MoS2 core/shell nanofibers for enhanced visible light photocatalysis [J]. J. Mater. Sci. Technol., 2020, 36(0): 97-105. |
[10] | Juan Du, Aibing Chen, Yue Zhang, Shuang Zong, Haixia Wu, Lei Liu. PVP-assisted preparation of nitrogen doped mesoporous carbon materials for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 58(0): 197-204. |
[11] | Dongha Im, Donghyun Kim, Dasol Jeong, Woon Ik Park, Myoungpyo Chun, Joon-Shik Park, Hyunjung Kim, Hyunsung Jung. Improved formaldehyde gas sensing properties of well-controlled Au nanoparticle-decorated In2O3 nanofibers integrated on low power MEMS platform [J]. J. Mater. Sci. Technol., 2020, 38(0): 56-63. |
[12] | Xingxing Liang, Ying Yang, Xin Jin, Jie Cheng. Polyethylene Oxide-Coated Electrospun Polyimide Fibrous Seperator for High-Performance Lithium-Ion Battery [J]. J. Mater. Sci. Technol., 2016, 32(3): 200-206. |
[13] | Wei Xu, Qingsong Xu, Qijin Huang, Ruiqin Tan, Wenfeng Shen, Weijie Song. Fabrication of Flexible Transparent Conductive Films with Silver Nanowire by Vacuum Filtration and PET Mold Transfer [J]. J. Mater. Sci. Technol., 2016, 32(2): 158-161. |
[14] | Sadat-Shojai Mehdi. Electrospun Polyhydroxybutyrate/Hydroxyapatite Nanohybrids: Microstructure and Bone Cell Response [J]. J. Mater. Sci. Technol., 2016, 32(10): 1013-1020. |
[15] | Xiangfeng Chu, Xiaohua Zhu, Yongping Dong, Wangbing Zhang, Linshan Bai. Formaldehyde Sensing Properties of SnO-Graphene Composites Prepared via Hydrothermal Method [J]. J. Mater. Sci. Technol., 2015, 31(9): 913-917. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||