J. Mater. Sci. Technol. ›› 2021, Vol. 91: 1-4.DOI: 10.1016/j.jmst.2021.03.018
• Letter • Next Articles
Yongjian Zhanga,b, Guangzhu Baia,c, Xiaoyan Liua, Jingjie Daib, Xitao Wangd,e, Hailong Zhanga,b,*()
Revised:
2021-02-28
Published:
2021-11-20
Online:
2021-11-20
Contact:
Hailong Zhang
About author:
*E-mail address: hlzhang@ustb.edu.cn (H. Zhang)Yongjian Zhang, Guangzhu Bai, Xiaoyan Liu, Jingjie Dai, Xitao Wang, Hailong Zhang. Reinforcement size effect on thermal conductivity in Cu-B/diamond composite[J]. J. Mater. Sci. Technol., 2021, 91: 1-4.
Fig. 1. Characterization of the diamond particles: (a) morphology, (b) particle size histogram of the 272 μm batch, and (c) surface-area-to-volume ratio.
Average diameter (μm) | 66 | 116 | 272 | 528 | 701 |
---|---|---|---|---|---|
Nitrogen content (ppm) | 220 | 130 | 130 | 220 | 200 |
Thermal conductivity (W/(m K)) | 1481 | 1775 | 1775 | 1481 | 1546 |
Diamond volume fraction (%) | 64.6 | 66.2 | 68.3 | 68.0 | 68.7 |
Table 1 Characteristics of the diamond particles in the composites.
Average diameter (μm) | 66 | 116 | 272 | 528 | 701 |
---|---|---|---|---|---|
Nitrogen content (ppm) | 220 | 130 | 130 | 220 | 200 |
Thermal conductivity (W/(m K)) | 1481 | 1775 | 1775 | 1481 | 1546 |
Diamond volume fraction (%) | 64.6 | 66.2 | 68.3 | 68.0 | 68.7 |
Fig. 2. Microstructures of the Cu-B/diamond composite: (a) backscattered electron (BSE) image, secondary electron (SE) images of the extracted diamond particles with particle sizes of (b) 66 μm and (c) 701 μm, and (d) TEM image of the Cu-B/diamond interface. The inset displays the STEM annular bright field (ABF) image of the carbide/diamond interface.
Fig. 3. (a) Measured thermal conductivity and predicted thermal conductivity by the DEM model for the Cu-B/diamond composites reinforced with various diamond particle sizes, along with the corresponding interfacial thermal conductance; (b) Comparison of thermal conductivity with literature.
[1] | E. Pop, Nano Res. 3(2010) 147-169. |
[2] | K. Yoshida, H. Morigami, Microelectron. Reliab. 44(2004) 303-308. |
[3] | G.Z. Bai, N. Li, X.T. Wang, J.G. Wang, M.J. Kim, H.L. Zhang. J. Alloys Compd. 735(2018) 1648-1653. |
[4] | L.H. Wang, J.W. Li, Z.F. Che, X.T. Wang, H.L. Zhang, J.G. Wang, M.J. Kim. J. Alloys Compd. 749(2018) 1098-1105. |
[5] | J.W. Li, X.T. Wang, Y. Qiao, Y. Zhang, Z.B. He, H.L. Zhang. Scr. Mater. 109(2015) 72-75. |
[6] | L.H. Wang, J.W. Li, M. Catalano, G.Z. Bai, N. Li, J.J. Dai, X.T. Wang, H.L. Zhang, J.G. Wang, M.J. Kim. Compos. Part A 113(2018) 76-82. |
[7] | X.Y. Shen, X.B. He, S.B. Ren, H.M. Zhang, X.H. Qu. J. Alloys Compd. 529(2012) 134-139. |
[8] | A.M. Abyzov, S.V. Kidalov, F.M. Shakhov. J. Mater. Sci. 46(2011) 1424-1438. |
[9] | Y.P. Wu, J.B. Luo, Y. Wang, G.L. Wang, H. Wang, Z.Q. Yang, G.F. Ding, Ceram. Int. 45(2019) 13225-13234. |
[10] | E.A. Ekimov, N.V. Suetin, A.F. Popovich, V.G. Ralchenko, Diam. Relat. Mater. 17(2008) 838-843. |
[11] | L. Chen, S.T. Chen, Y. Hou, Carbon. 148(2019) 249-257. |
[12] | L. Weber, R. Tavangar, Scr. Mater. 57(2007) 988-991. |
[13] | Y.M. Fan, H. Guo, J. Xu, K. Chu, X.X. Zhu, C.C. Jia, Int. J. Min. Met. Mater. 18(2011) 472-478. |
[14] | T. Schubert, B. Trindade, T. Weisgarber, B. Kieback, Mater. Sci. Eng. A 475 (2008) 39-44. |
[15] | K. Chu, C.C. Jia, H. Guo, W.S. Li. J. Compos. Mater. 47(2012) 2945-2953. |
[16] | J.S. He, H.L. Zhang, Y. Zhang, Y.M. Zhao, X.T. Wang, Phys. Status Solidi A. 211 (2014) 587-594. |
[17] | G.X. Dong, Q.X. Liu, L. Dong, S.J. Li, H. Chen, Adv. Mater. Res. 997(2014) 415-418. |
[18] | C. Azina, I. Cornu, J.F. Silvain, Y.F. Lu, J.L. Battaglia, AIP Adv. 9(2019) 055315. |
[19] | A.M. Abyzov, M.J. Kruszewski, Ł. Ciupin ski, M. Mazurkiewicz, A. Michalski, K.J. Kurzydłowski , Mater. Des. 76(2015) 97-109. |
[20] | Y. Yamamoto, T. Imai, K. Tanabe, T. Tsuno, Y. Kumazawa, N. Fujimori, Diam. Relat. Mater. 6(1997) 1057-1061. |
[21] | D.L. Zhao, X. Qian, X.K. Gu, A.A. Jajja, R.G. Yang, J. Electron. Packaging. 138 (2016) 040802. |
[22] | I.M. Abdulagatov, Z.Z. Abdulagatova, S.N. Kallaev, A.G. Bakmaev, P.G. Ranjith, Int. J. Thermophys. 36(2015) 658-691. |
[23] | J.S. Wang, L. Wan, J. Chen, J.W. Yan, Appl. Surf. Sci. 346(2015) 388-393. |
[24] | H.D. Zhang, J.J. Zhang, Y. Liu, F. Zhang, T.X. Fan, D. Zhang, Scr. Mater. 152(2018) 84-88. |
[25] | L.H. Wang, J.W. Li, G.Z. Bai, N. Li, X.T. Wang, H.L. Zhang, J.G. Wang, M.J. Kim, J. Alloys Compd. 781(2019) 800-809. |
[26] | G.Z. Bai, L.H. Wang, Y.J. Zhang, X.T. Wang, J.G. Wang, M.J. Kim, H.L. Zhang, Mater. Charact. 152(2019) 265-275. |
[27] | H. Bai, D. Dai, J.H. Yu, K. Nishimura, S. Sasaoka, N. Jiang, Appl. Surf. Sci. 292(2014) 790-794. |
[28] | Y.H. Sun, L.K. He, C. Zhang, Q.N. Meng, B.C. Liu, K. Gao, M. Wen, W.T. Zheng, Sci. Rep. 7(2017) 10727. |
[29] | H.B. Hu, J. Kong, J. Mater. Eng. Perform. 23(2014) 651-657. |
[30] | H. Bai, N.G. Ma, J. Lang, C.X. Zhu, J. Alloys Compd. 580(2013) 382-385. |
[31] | R. Tavangar, J.M. Molina, L. Weber, Scr. Mater. 56(2007) 357-360. |
[32] | M.Y. Yuan, Z.Q. Tan, G.L. Fan, D.B. Xiong, Q. Guo, C.P. Guo, Z.Q. Li, D. Zhang, Diam. Relat. Mater. 81(2018) 38-44. |
[33] | I.E. Monje, E. Louis, J.M. Molina. J. Mater. Sci. 51(2016) 8027-8036. |
[34] | Z.Q. Tan, Z.Q. Li, D.B. Xiong, G.L. Fan, G. Ji, D. Zhang, Mater. Des. 55(2014) 257-262. |
[1] | Longkang Cong, Shouyang Zhang, Shengyue Gu, Wei Li. Thermophysical properties of a novel high entropy hafnate ceramic [J]. J. Mater. Sci. Technol., 2021, 85(0): 152-157. |
[2] | Xutong Yang, Xiao Zhong, Junliang Zhang, Junwei Gu. Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance [J]. J. Mater. Sci. Technol., 2021, 68(0): 209-215. |
[3] | Ying Lin, Jin Chen, Shian Dong, Guangning Wu, Pingkai Jiang, Xingyi Huang. Wet-resilient graphene aerogel for thermal conductivity enhancement in polymer nanocomposites [J]. J. Mater. Sci. Technol., 2021, 83(0): 219-227. |
[4] | Shuaihang Qiu, Mingliang Li, Gang Shao, Hailong Wang, Jinpeng Zhu, Wen Liu, Bingbing Fan, Hongliang Xu, Hongxia Lu, Yanchun Zhou, Rui Zhang. (Ca,Sr,Ba)ZrO3: A promising entropy-stabilized ceramic for titanium alloys smelting [J]. J. Mater. Sci. Technol., 2021, 65(0): 82-88. |
[5] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[6] | Yue Zhou, William G. Fahrenholtz, Joseph Graham, Gregory E. Hilmas. From thermal conductive to thermal insulating: Effect of carbon vacancy content on lattice thermal conductivity of ZrCx [J]. J. Mater. Sci. Technol., 2021, 82(0): 105-113. |
[7] | Ying Li, Changdan Gong, Chenggong Li, Kunpeng Ruan, Chao Liu, Huan Liu, Junwei Gu. Liquid crystalline texture and hydrogen bond on the thermal conductivities of intrinsic thermal conductive polymer films [J]. J. Mater. Sci. Technol., 2021, 82(0): 250-256. |
[8] | Ximeng Dong, Wenlin Cui, Wei-Di Liu, Shuqi Zheng, Lei Gao, Luo Yue, Yue Wu, Boyi Wang, Zipei Zhang, Liqiang Chen, Zhi-Gang Chen. Synergistic band convergence and defect engineering boost thermoelectric performance of SnTe [J]. J. Mater. Sci. Technol., 2021, 86(0): 204-209. |
[9] | Nan Sun, Pei-Long Li, Ming Wen, Jiang-Feng Song, Zhi Zhang, Wen-Bin Yang, Yuan-Lin Zhou, De-Li Luo, Quan-Ping Zhang. Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials [J]. J. Mater. Sci. Technol., 2021, 76(0): 200-206. |
[10] | Samuel Kimani Kihoi, Joseph Ngugi Kahiu, Hyunji Kim, U. Sandhya Shenoy, D. Krishna Bhat, Seonghoon Yi, Ho Seong Lee. Optimized Mn and Bi co-doping in SnTe based thermoelectric material: A case of band engineering and density of states tuning [J]. J. Mater. Sci. Technol., 2021, 85(0): 76-86. |
[11] | J.F. Zhang, X.X. Zhang, H. Andrä, Q.Z. Wang, B.L. Xiao, Z.Y. Ma. A fast numerical method of introducing the strengthening effect of residual stress and strain to tensile behavior of metal matrix composites [J]. J. Mater. Sci. Technol., 2021, 87(0): 167-175. |
[12] | Xiong Yang, Daquan Liu, Jianbo Li, Ruonan Min, Huijun Kang, Linwei Li, Zongning Chen, Enyu Guo, Tongmin Wang. Top-down method to fabricate TiNi1+xSn half-Heusler alloy with high thermoelectric performance [J]. J. Mater. Sci. Technol., 2021, 87(0): 39-45. |
[13] | Lei Lei, Yu Su, Leandro Bolzoni, Fei Yang. Evaluation on the interface characteristics, thermal conductivity, and annealing effect of a hot-forged Cu-Ti/diamond composite [J]. J. Mater. Sci. Technol., 2020, 49(0): 7-14. |
[14] | Zifan Zhao, Heng Chen, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Wei Xu, Kuang Sun, Zhijian Peng, Yanchun Zhou. High-entropy (Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3: A promising thermal/environmental barrier material for oxide/oxide composites [J]. J. Mater. Sci. Technol., 2020, 47(0): 45-51. |
[15] | Heng Chen, Zifan Zhao, Huimin Xiang, Fu-Zhi Dai, Wei Xu, Kuang Sun, Jiachen Liu, Yanchun Zhou. High entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12: A novel high temperature stable thermal barrier material [J]. J. Mater. Sci. Technol., 2020, 48(0): 57-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||