J. Mater. Sci. Technol. ›› 2022, Vol. 126: 191-202.DOI: 10.1016/j.jmst.2022.03.017
Special Issue: Biomedical materials 2022; Polymers 2022
• Research Article • Previous Articles Next Articles
Liwei Suna,b, Lingjie Songa,*(
), Xu Zhanga, Shuaishuai Yuanc,*(
), Shifang Luana,b,d
Accepted:2022-01-05
Published:2022-11-01
Online:2022-11-10
Contact:
Lingjie Song,Shuaishuai Yuan
About author:ssyuan@qust.edu.cn (S. Yuan).Liwei Sun, Lingjie Song, Xu Zhang, Shuaishuai Yuan, Shifang Luan. Biocompatible hierarchical zwitterionic polymer brushes with bacterial phosphatase activated antibacterial activity[J]. J. Mater. Sci. Technol., 2022, 126: 191-202.
Scheme 1. (a) Schematic illustration for the fabrication of hierarchical surface with different zwitterionic structures. (b) Bactericidal mechanism on demand of the modified hierarchical meshes for combating an infected hernia.
Fig. 1. Surface characterization of the modified samples. (a) ATR-FTIR spectra of various sample surfaces. (b) XPS spectra of the modified samples. (c) Surface zeta potentials of different samples. (d) Core-level spectra of N 1s, Br 3d, and P 2p from different samples. (e) Water contact angles of the samples. (f) Schematic procedure for construction and indication of patterned PP-g-DS surface. (g) Fluorescent image of the patterned PP-g-DS surface via FITC-BSA selective adhesion. The error bars indicate the standard deviation (n = 3).
Fig. 2. (a) Schematic diagram of antifouling property of the hierarchical polymer brush modified surface with different zwitterionic structures. (b) Representative fluorescence microscopy images of different surfaces after adsorption of BSA and Fg proteins. (c) Fluorescence gray statistics of various samples.
Fig. 3. (a) Responsive bactericidal efficacies of various surfaces evaluated by colony-forming units (CFUs) of residual S. aureus and E. coli on sample surfaces, bacterial viability, and morphology (The bacteria in SEM images were processed with false-color). (b) Corresponding log reductions of S. aureus and E. coli in the bacterial number of various sample surfaces. The error bars indicated the standard deviation (n = 3).
Fig. 4. (a) Schematic illustration of the responsive bactericidal behaviors of different surfaces via co-incubation bacteria with phosphatase inhibitors. (b) LB-agar plates photographs of S. aureus and E. coli detached from different surfaces and bacterial viability and morphology evaluation via CLSM and SEM (The bacteria in SEM images were processed with false color).
Fig. 5. Biocompatibility evaluation of various samples in vitro and in vivo. (a) Hemolysis images and (b) hemolytic activities of different samples. (c) Cell viability after being incubated with various samples. (d) Histological images of the different samples treated tissues after H&E staining. The error bars indicate the standard deviation (n = 3).
Fig. 6. (a) In vivo therapeutic effect of different samples as anti-infected implantation materials in mice model. (b) Images of different samples as anti-infection implantation materials in visual. (c) LB-agar photographs of bacteria colonies harvested from different samples and tissues. (d) Log bacteria number of different samples and tissues. (e) Representative images of H&E staining.
Fig. 7. (a) In vivo evaluation of PP-g-DPS as an anti-infection mesh in a rat model of abdominal wall hernia. (b) Photographs of S. aureus-infected hernia mesh on the rat with different treatments after 3 days of therapy. (c) LB-agar photographs of bacteria colonies harvested from different meshes. (d) Bacteria number of different meshes. (e) Representative images of H&E staining. (f) Evaluation of adhesion resistance of different meshes.
| [1] | D.W. Grainger, H.C. Mei, P.C. Jutte, J.J.A.M. Dungen, M.J. Schultz, B.F.A.M. Laan, S.A.J. Zaat, H.J. Busscher, Biomaterials, 34 (2013), pp. 9237-9243. |
| [2] | Y. Liu, Y.F. Li, L.Q. Shi, J. Control. Release, 329 (2021), pp. 1102-1116. |
| [3] | Z.Y. Lu, Y.M. Wu, Z.H. Cong, Y.X. Qian, X. Wu, N. Shao, Z.Q. Qiao, H.D. Zhang, Y.R. She, K. Chen, H.X. Xiang, B. Sun, Q. Yu, Y. Yuan, H.D. Lin, M.F. Zhu, R.H. Liu, Bioact. Mater., 6 (2021), pp. 4531-4541. |
| [4] | J.L. Zhou, Z.X. Hu, F. Zabihi, Z.G. Chen, M.F. Zhu, Adv. Fiber Mater., 2 (2020), pp. 123-139. |
| [5] | A.F. Engelsman, H.C. Mei, R.J. Ploeg, H.J. Busscher, Biomaterials, 28 (2007), pp. 2314-2327. |
| [6] | O. Guillaume, A.H. Teuschl, S. Gruber-Blum, R.H. Fortelny, H. Redl, A. Petter-Puchner, Adv. Healthc. Mater., 4 (2015), pp. 1763-1789. |
| [7] | Á. Serrano-Aroca, S. Pous-Serrano, J. Biomed. Mater. Res. A, 109 (2021), pp. 2695-2719. |
| [8] | O. Guillaume, R. Pérez-Tanoira, R. Fortelny, H. Redl, T.F. Moriarty, R.G. Richards, D. Eglin, A. Petter Puchner, Biomaterials, 167 (2018), pp. 15-31. |
| [9] | L.D. Blackman, Y. Qu, P. Cass, K.E.S. Locock, Chem. Soc. Rev., 50 (2021), pp. 1587-1616. |
| [10] | Y.R. Wang, T. Wei, Y.C. Qu, Y. Zhou, Y.J. Zheng, C.B. Huang, Y.X. Zhang, Q. Yu, H. Chen, ACS Appl. Mater. Interfaces, 12 (2020), pp. 21283-21291. |
| [11] | C.R. Arciola, D. Campoccia, P. Speziale, L. Montanaro, J.W. Costerton, Biomaterials, 33 (2012), pp. 5967-5982. |
| [12] | Y. Liu, L. Shi, L. Su, H.C. Mei, P.C. Jutte, Y. Ren, H.J. Busscher, Chem. Soc. Rev., 48 (2019), pp. 428-446. |
| [13] | Y.P. Long, L. Li, T. Xu, X.Z. Wu, Y. Gao, J.B. Huang, C. He, T. Ma, L. Ma, C. Cheng, C.S. Zhao, Nat. Commun., 12 (2021), p. 6143. |
| [14] | M.C.A. Oliveira, F.A.G. Silva, M.M. Costa, N. Rakov, H.P. Oliveira, Adv. Fiber Mater., 2 (2020), pp. 256-264 |
| [15] | Z.N. Liu, N.N. Wei, R. Tang, ACS Biomater, Sci. Eng., 7 (2021), pp. 2064-2082. |
| [16] | H.R. Wang, M. Li, J.M. Hu, C.H. Wang, S.S. Xu, C.C Han, Biomacromolecules, 14 (2013), pp. 954-961. |
| [17] | W. Wu, R.Y. Cheng, J. Neves, J.C. Tang, J.Y. Xiao, Q. Ni, X.N. Liu, G.Q. Pan, D.C. Li, W.G. Cui, B. Sarmento, J. Control. Release, 261 (2017), pp. 318-336. |
| [18] | Y.Q. Zhao, Y.J. Sun, Y.D. Zhang, X.K. Ding, N.N. Zhao, B.R. Yu, H. Zhao, S. Duan, F.J. Xu, ACS Nano, 14 (2020), pp. 2265-2275. |
| [19] | Y.S. Qiao, Q. Zhang, Q. Wang, J. Lin, J.S. Wang, Y. Li, L. Wang, ACS Appl. Mater. Interfaces, 13 (2021), pp. 35456-35468. |
| [20] | Y.S. Qiao, Y. Li, Q. Zhang, Q. Wang, J. Gao, L. Wang, Langmuir, 36 (2020), pp. 5251-5261. |
| [21] | T. Laurent, I. Kacem, N. Blanchemain, F. Cazaux, C. Neut, H.F. Hildebrand, B. Martel, Acta Biomater., 7 (2011), pp. 3141-3149. |
| [22] | G. Vermet, S. Degoutin, F. Chai, M. Maton, C. Flores, C. Neut, P.E. Danjou, B. Martel, N. Blanchemain, Acta Biomater., 53 (2017), pp. 222-232. |
| [23] | Q. Yu, J. Cho, P. Shivapooja, L.K. Ista, G.P. Lopez, ACS Appl. Mater. Interfaces, 5 (2013), pp. 9295-9304. |
| [24] | Y.W. Zhu, C. Xu, N. Zhang, X.K. Ding, B.R. Yu, F.J. Xu, Adv. Funct. Mater., 28 (2018), Article 1706709. |
| [25] | X.Y. Zhang, Y.Q. Zhao, Y.D. Zhang, A.Z. Wang, X.K. Ding, Y. Li, S. Duan, X.J. Ding, F.J. Xu, Biomacromolecules, 20 (2019), pp. 4171-4179. |
| [26] | A. Shukla, K.E. Fleming, H.F. Chuang, T.M. Chau, C.R. Loose, G.N. Stephanopoulos, P.T. Hammond, Biomaterials, 31 (2010), pp. 2348-2357. |
| [27] | G.P. Liu, Y.L. Li, M. Yan, J.C. Feng, J. Cao, M. Lei, Q.W. Liu, X.W. Hu, W.Q. Wang, X.W. Li, J. Mater. Sci. Technol., 116 (2022), pp. 180-191. |
| [28] | M. He, Q. Wang, J. Zhang, W.F. Zhao, C.S. Zhao, ACS Appl. Mater. Interfaces, 9 (2017), pp. 44782-44791. |
| [29] | T. Wei, Z.C. Tang, Q. Yu, H. Chen, ACS Appl. Mater. Interfaces, 9 (2017), pp. 37511-37523. |
| [30] | T. Wei, Q. Yu, H. Chen, Adv. Healthc. Mater., 8 (2019), Article 1801381. |
| [31] | L. Li, L. Cao, X. Xiang, X. Wu, L. Ma, F. Chen, S. Cao, C. Cheng, D. Deng, L. Qiu, Adv. Funct. Mater., 32 (2022), Article 2107530. |
| [32] | X.H. Wang, S.J. Yan, L.J. Song, H.C. Shi, H.W. Yang, S.F. Luan, Y.B. Huang, J.H. Yin, A.F. Khan, J. Zhao, ACS Appl. Mater. Interfaces, 9 (2017), pp. 40930-40939. |
| [33] | S.J. Yan, H.C. Shi, L.J. Song, X.H. Wang, L. Liu, S.F. Luan, Y.M. Yang, J.H. Yin, ACS Appl. Mater. Interfaces, 8 (2016), pp. 24471-24481. |
| [34] | S.J. Yan, S.F. Luan, H.C. Shi, X.D. Xu, J.D. Zhang, S.S. Yuan, Y.M. Yang, J.H. Yin, Biomacromolecules, 17 (2016), pp. 1696-1704. |
| [35] | S. Milo, N.T. Thet, D. Liu, J. Nzakizwanayo, B.V. Jones, A.T.A. Jenkins, Biosens. Bioelectron., 81 (2016), pp. 166-172. |
| [36] | M.Z. Ye, Y. Zhao, Y.Y. Wang, N. Yodsanit, R.S. Xie, S.Q. Gong, Adv. Funct. Mater., 30 (2020), Article 2002655. |
| [37] | Y.M. Li, G.H. Liu, X.R. Wang, J.M. Hu, S.Y. Liu, Angew. Chem. Int. Ed., 55 (2016), pp. 1760-1764. |
| [38] | G.B. Qi, D. Zhang, F.H. Liu, Z.Y. Qiao, H. Wang, Adv. Mater., 29 (2017), Article 1703461. |
| [39] | C.Y. Zhang, J. Gao, Z.J. Wang, Adv. Mater., 30 (2018), Article 1803618. |
| [40] | M.H. Xiong, Z.Y. Han, Z.Y. Song, J. Yu, H.Z. Ying, L.C. Yin, J.J. Cheng, Angew. Chem. Int. Ed., 56 (2017), pp. 10826-10829. |
| [41] | J. Liu, R. Li, M. He, Z. Xu, L. Xu, Y. Kang, P. Xue, Biomaterials, 277 (2021), Article 121084. |
| [42] | A.Z. Wang, S. Duan, X.J. Ding, N.N. Zhao, Y. Hu, X.K. Ding, F.J. Xu, Adv. Funct. Mater., 31 (2021), Article 2011165. |
| [43] | M.H. Xiong, Y.J. Li, Y. Bao, X.Z. Yang, B. Hu, J. Wang, Adv. Mater., 24 (2012), pp. 6175-6180. |
| [44] | R.V. Ulijn, J. Mater. Chem., 16 (2006), pp. 2217-2225. |
| [45] | T.W. Liu, S.J. Yan, R.T. Zhou, X. Zhang, H.W. Yang, Q.Y. Yan, R. Yang, S.F. Luan, ACS Appl. Mater. Interfaces, 12 (2020), pp. 42576-42585. |
| [46] | L.J. Song, J. Zhao, S.F. Luan, J. Ma, J.C. Liu, X.D. Xu, J.H. Yin, ACS Appl. Mater. Interfaces, 5 (2013), pp. 13207-13215. |
| [47] | L.W. Sun, L.J. Song, X. Zhang, R.T. Zhou, J.H. Yin, S.F. Luan, Mater.Sci. Eng. C, 113 (2020), Article 110936. |
| [48] | H. Yu, L. Liu, X. Li, R.T. Zhou, S.J. Yan, C.S. Li, S.F. Luan, J.J. Yin, H.D. Shi, Chem. Eng. J., 360 (2019), pp. 1030-1041. |
| [49] | Z. Hou, Y. Wu, C. Xu, S. Reghu, Z.F. Shang, J.J. Chen, D. Pranantyo, K. Marimuth, P.P. De, O.T. Ng, K. Pethe, E.T. Kang, P. Li, M.B. Chan-Park, ACS Cent. Sci., 6 (2020), pp. 2031-2045. |
| [50] | J. Zhao, L.J. Song, Q. Shi, S.F. Luan, J.H. Yin, ACS Appl. Mater. Interfaces, 5 (2013), pp. 5260-5268. |
| [51] | M. Badv, F. Bayat, J.I. Weitz, T.F. Didar, Biomaterials, 258 (2020), Article 120291. |
| [52] | M. Rahmati, E.A. Silva, J.E. Reseland, C.A. Heyward, H.J. Haugen, Chem. Soc. Rev., 49 (2020), pp. 5178-5224. |
| [53] | Y. Zhao, Z.Z. Zhang, Z. Pan, Y. Liu, Exploration, 1 (2021), Article 20210089. |
| [54] | X.K. Ding, S. Duan, X.J. Ding, R.H. Liu, F.J. Xu, Adv. Funct. Mater., 28 (2018), Article 1802140. |
| [55] | Q. Chen, D.H. Zhang, J.W. Gu, H.D. Zhang, X. Wu, C.T. Cao, X.Y. Zhang, R.H. Liu, Acta Biomater., 126 (2021), pp. 45-62. |
| [56] | X. Zhang, C.H. Ren, F. Hu, Y. Gao, Z.Y. Wang, H.Q. Li, J. Liu, B. Liu, C.H. Yang, Anal. Chem., 92 (2020), pp. 5185-5190. |
| [57] | Y. Jiao, L.N. Niu, S. Ma, J. Li, F.R. Tay, J.H. Chen, Prog. Polym. Sci., 71 (2017), pp. 53-90. |
| [58] | S. Lanzalaco, L.J. Del Valle, P. Turon, C. Weis, F. Estrany, C. Alemán, E. Armelin, J. Mater. Chem. B, 8 (2020), pp. 1049-1059. |
| [59] | C. Labay, J.M. Canal, M. Modic, U. Cvelbar, M. Quiles, M. Armengol, M.A. Arbos, F.J. Gil, C. Canal, Biomaterials, 71 (2015), pp. 132-144. |
| [60] | B. Kheilnezhad, A. Hadjizadeh, Biomater. Sci., 9 (2021), pp. 2850-2873. |
| [61] | Y.S. Qiao, Q. Zhang, Q. Wang, Y. Li, L. Wang, Acta Biomater., 128 (2021), pp. 277-290. |
| [62] | S. Kalaba, E. Gerhard, J.S. Winder, E.M. Pauli, R.S. Haluck, J. Yang, Bioact. Mater., 1 (2016), pp. 2-17. |
| [1] | Peng Ju, Lei Hao, Yu Zhang, Jianchao Sun, Kunpeng Dou, Zhaoxia Lu, Dankui Liao, Xiaofan Zhai, Chengjun Sun. In-situ topotactic construction of novel rod-like Bi2S3/Bi5O7I p-n heterojunctions with highly enhanced photocatalytic activities [J]. J. Mater. Sci. Technol., 2023, 135(0): 126-141. |
| [2] | Peng Ju, Yu Zhang, Lei Hao, Jiazhen Cao, Xiaofan Zhai, Kunpeng Dou, Fenghua Jiang, Chengjun Sun. 1D Bi2S3 nanorods modified 2D BiOI nanoplates for highly efficient photocatalytic activity: Pivotal roles of oxygen vacancies and Z-scheme heterojunction [J]. J. Mater. Sci. Technol., 2023, 142(0): 45-59. |
| [3] | Luohuizi Li, Guize Li, Yong Wu, Yuancheng Lin, Yangcui Qu, Yan Wu, Kunyan Lu, Yi Zou, Hong Chen, Qian Yu, Yanxia Zhang. Dual-functional bacterial cellulose modified with phase-transitioned proteins and gold nanorods combining antifouling and photothermal bactericidal properties [J]. J. Mater. Sci. Technol., 2022, 110(0): 14-23. |
| [4] | Yiqian Lv, Yueqing Zheng, Honglin Zhu, Yinghao Wu. Designing a dual-functional material with barrier anti-corrosion and photocatalytic antifouling properties using g-C3N4 nanosheet with ZnO nanoring [J]. J. Mater. Sci. Technol., 2022, 106(0): 56-69. |
| [5] | Sepideh Pourhashem, Abdolvahab Seif, Farhad Saba, Elham Garmroudi Nezhad, Xiaohong Ji, Ziyang Zhou, Xiaofan Zhai, Majid Mirzaee, Jizhou Duan, Alimorad Rashidi, Baorong Hou. Antifouling nanocomposite polymer coatings for marine applications: A review on experiments, mechanisms, and theoretical studies [J]. J. Mater. Sci. Technol., 2022, 118(0): 73-113. |
| [6] | Jiawen Sun, Chao Liu, Jizhou Duan, Jie Liu, Xucheng Dong, Yimeng Zhang, Ning Wang, Jing Wang, Baorong Hou. Facile fabrication of self-healing silicone-based poly(urea-thiourea)/tannic acid composite for anti-biofouling [J]. J. Mater. Sci. Technol., 2022, 124(0): 1-13. |
| [7] | Chen Ya, Lin Jing, A.M. Mersal Gaber, Zuo Jianliang, Li Jialin, Wang Qiying, Feng Yuhong, Liu Jianwei, Liu Zili, Wang Bin, Bin Xu Ben, Guo Zhanhu. “Several birds with one stone” strategy of pH/thermoresponsive flame-retardant/photothermal bactericidal oil-absorbing material for recovering complex spilled oil [J]. J. Mater. Sci. Technol., 2022, 128(0): 82-97. |
| [8] | Mengjing Fu, Yijing Liang, Xue Lv, Chengnan Li, Yi Yan Yang, Peiyan Yuan, Xin Ding. Recent advances in hydrogel-based anti-infective coatings [J]. J. Mater. Sci. Technol., 2021, 85(0): 169-183. |
| [9] | Jing Zhang, Sunxiang Qian, Lingdong Chen, Liqun Chen, Liping Zhao, Jie Feng. Highly antifouling double network hydrogel based on poly(sulfobetaine methacrylate) and sodium alginate with great toughness [J]. J. Mater. Sci. Technol., 2021, 85(0): 235-244. |
| [10] | Xiaofan Zhai, Peng Ju, Fang Guan, Jizhou Duan, Nan Wang, Yimeng Zhang, Ke Li, Baorong Hou. Biofilm inhibition mechanism of BiVO4 inserted zinc matrix in marine isolated bacteria [J]. J. Mater. Sci. Technol., 2021, 75(0): 86-95. |
| [11] | Zhuo Chen, Shun Chen, Yufei Xiong, Yuping Yang, Yang Zhang, Lijie Dong. Flexible coatings with microphase separation structure attained by copolymers and ultra-fine nanoparticles for endurable antifouling [J]. J. Mater. Sci. Technol., 2021, 82(0): 179-186. |
| [12] | Jiansen Pan, Qingmei Peng, Guoliang Zhang, Qingyi Xie, Xiangjun Gong, Pei-Yuan Qian, Chunfeng Ma, Guangzhao Zhang. Antifouling mechanism of natural product-based coatings investigated by digital holographic microscopy [J]. J. Mater. Sci. Technol., 2021, 84(0): 200-207. |
| [13] | Jiajia Tian, Kangwei Xu, Junhua Hu, Shijie Zhang, Guoqin Cao, Guosheng Shao. Durable self-polishing antifouling Cu-Ti coating by a micron-scale Cu/Ti laminated microstructure design [J]. J. Mater. Sci. Technol., 2021, 79(0): 62-74. |
| [14] | Mingjun Li, Christoph Schlaich, Jianguang Zhang, Ievgen S. Donskyi, Karin Schwibbert, Frank Schreiber, Yi Xia, Jörg Radnik, Tanja Schwerdtle, Rainer Haag. Mussel-inspired multifunctional coating for bacterial infection prevention and osteogenic induction [J]. J. Mater. Sci. Technol., 2021, 68(0): 160-171. |
| [15] | Yi Zou, Yanxia Zhang, Qian Yu, Hong Chen. Dual-function antibacterial surfaces to resist and kill bacteria: Painting a picture with two brushes simultaneously [J]. J. Mater. Sci. Technol., 2021, 70(0): 24-38. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
