J. Mater. Sci. Technol. ›› 2022, Vol. 128: 82-97.DOI: 10.1016/j.jmst.2022.05.002
• Research Article • Previous Articles Next Articles
Chen Yaa, Lin Jinga,*(), A.M. Mersal Gaberb, Zuo Jianlianga, Li Jialina, Wang Qiyinga, Feng Yuhonga, Liu Jianweia, Liu Zilia,*(
), Wang Binc, Bin Xu Bend, Guo Zhanhue,*(
)
Received:
2022-03-30
Revised:
2022-05-10
Accepted:
2022-05-10
Published:
2022-11-20
Online:
2022-11-22
Contact:
Lin Jing,Liu Zili,Guo Zhanhu
About author:
zguo10@utk.edu, nanomaterials2000@gmail.com (Z. Guo).Chen Ya, Lin Jing, A.M. Mersal Gaber, Zuo Jianliang, Li Jialin, Wang Qiying, Feng Yuhong, Liu Jianwei, Liu Zili, Wang Bin, Bin Xu Ben, Guo Zhanhu. “Several birds with one stone” strategy of pH/thermoresponsive flame-retardant/photothermal bactericidal oil-absorbing material for recovering complex spilled oil[J]. J. Mater. Sci. Technol., 2022, 128: 82-97.
Fig. 1. (a) Schematic diagram of the preparation process of multiresponse oil-absorbing foam and (b) application of P-Fe3O4-PDA@MF foam in complex oil spill treatment.
Fig. 2. SEM images of (a) MF, (b) PDA@MF, (c) Fe3O4-PDA@MF, and (d) P-Fe3O4-PDA@MF; (e) ATR-FTIR and (f) XRD of foams at different preparation stages; (g) SEM-EDS mapping distribution of various elements on P-Fe3O4-PDA@MF. (h) XPS spectra of P-Fe3O4-PDA@MF.
Fig. 3. (a) Schematic diagram of the absorption process of oil on water and underwater before and after the thermo-response of P-Fe3O4-PDA@MF. (b) Differential scanning calorimetry (DSC) of P-Fe3O4-PDA@MF. (c) Water contact angles (WCAs) of P-Fe3O4-PDA@MF at 50 °C. (d) Oil contact angles (OCAs) on water and (e) underwater oil contact angles (UWOCAs) of P-Fe3O4-PDA@MF. P-Fe3O4-PDA@MF adsorption photos of (f) light oil (cyclohexane) and (g) heavy oil (1,2-dichloroethane) at 50 °C. (h) Oil absorption capacities of various oily substances. (i) Mechanism diagram of the thermoresponsive oil absorption process of P-Fe3O4-PDA@MF.
Fig. 4. (a) WCAs of P-Fe3O4-PDA@MF at pH = 1. UWOCA diagrams of (b) light oil (cyclohexane) and (c) heavy oil (1,2-dichloroethane) on the P-Fe3O4-PDA@MF surface. Photographs of the P-Fe3O4-PDA@MF desorption process of (d) underwater light oil (cyclohexane) and (e) heavy oil (1,2-dichloroethane). (f) Oil absorption and desorption efficiency diagram of different oily substances (CYH: cyclohexane, DCE: 1, 2-dichloroethane, TL: toluene, NHD: n-hexadecane, PE: petroleum ether). (g) Cyclic oil absorption-desorption tests diagram of P-Fe3O4-PDA@MF. (h) Mechanism diagram of oil desorption process of P-Fe3O4-PDA@MF. (i) XPS spectrum of P-Fe3O4-PDA@MF at pH = 1. XPS spectra of N1s at (j) pH = 1 and (k) pH = 7. (l) Thermodynamic infused-liquid-switchable models.
Liquid A | Liquid B | θ*(°) | ∆E | Autodesorption | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Theory | Exp.a | |||||||||
CYHb | Aqueous solution (pH = 1) | 24.94 | 66.48 | 17.59 | 154.5 | 0 | > 0 | > 0 | Yd | Y |
DCEc | Aqueous solution (pH = 1) | 30.85 | 66.48 | 42.87 | 153.8 | 0 | > 0 | > 0 | Y | Y |
Table 1. Feasibility evaluation of the oil autodesorption process according to the interfacial energy difference.
Liquid A | Liquid B | θ*(°) | ∆E | Autodesorption | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Theory | Exp.a | |||||||||
CYHb | Aqueous solution (pH = 1) | 24.94 | 66.48 | 17.59 | 154.5 | 0 | > 0 | > 0 | Yd | Y |
DCEc | Aqueous solution (pH = 1) | 30.85 | 66.48 | 42.87 | 153.8 | 0 | > 0 | > 0 | Y | Y |
Fig. 5. (a) Infrared thermal image of foams at different modification stages after illumination (1.0 kW m?2). (b) Viscosity of crude oil at different temperatures. (c) Crude oil absorption state on the P-Fe3O4-PDA@MF without illumination, and (d) with illumination. (e) Curves of the temperature of P-Fe3O4-PDA@MF and pristine MF during crude oil absorption. (f) Absorption process of simulated offshore crude oil on water. (g) Continuous absorption process and infrared thermal image of crude oil using a peristaltic pump under no illumination or (h) with illumination. (i) Recovery percentage of crude oil and 1,2-dichloroethane.
Fig. 6. (a) Mechanism diagram of filtration and photothermal sterilization for bacteria-containing emulsion. (b) Images and particle size distribution of an emulsion containing S. aureus and E. coli coated on an agar plate before and after filtration. (c) Infrared thermal image of filter device load with P-Fe3O4-PDA@MF, fluorescence microscopy, colonies on the agar plate, and micromorphology of bacteria after illumination and no illumination. (d) UWOCA and (e) adhesion force of oil (1,2-dichloroethane) on P-Fe3O4-PDA@MF.
Fig. 7. (a) Combustion of foam (PU and P-Fe3O4-PDA@MF) after oil absorption. (b) Photographs of oil absorption and flame-retardancy of P-Fe3O4-PDA@MF. Diagrams of (c) TG, (d) DTG of PU foam and P-Fe3O4-PDA@MF. (e) Photographs of magnetic oil absorption and fire extinguishing of P-Fe3O4-PDA@MF. (f) Hysteresis loop diagram of Fe3O4 NPs and their modified foam. (g) Mechanism diagram of oil absorption and flame-retardancy of P-Fe3O4-PDA@MF. (h) Resistance changes of P-Fe3O4-PDA@MF with temperature. (i) Fire alarm response of P-Fe3O4-PDA@MF.
Porous materials | Absorbates | Absorptioncapacity (g g-1) | Oil/adsorbent recovery method | Oil recovery efficiency (%) | Antibacterial | Magnetic control | Flame retardant | Fire warning | Refs. |
---|---|---|---|---|---|---|---|---|---|
PDMS/PDA coated sponge | Crude oil | ∼11 | Be compressed | - | × | × | × | × | [ |
Silylated wood sponge | Silicone oil, olive oil, motor oil, and organic solvents | 16-41 | Be compressed | ∼70 | × | × | × | × | [ |
Fe3O4@OA @GO-PUa | Olive oil, canola oil, kerosene, and organic solvents | 80-150 | Be compressed | > 99 | × | √ | √ | × | [ |
Fe3O4/HDPEb PU sponge | Cook oil and organic solvents | 15-52 | Be compressed | - | × | √ | × | × | [ |
Silica/graphene oxide wide ribbon@MF | Petrol oil, tetrachloromethane | - | Be compressed | - | × | × | √ | √ | [ |
Tannic acid-graphene aerogel | Kerosene, liquid paraffin, maize oil, soybean oil, and organic solvents | 15-30 | Combustion | - | √ | × | √ | × | [ |
MF-OTSc/ PNIPAAm sponge | Pump oil, peanut oil, and organic solvents | 35-70 | Thermoresponsive desorption | - | × | × | × | × | [ |
PNIPAm/PPy@MS | Crude oil, silicone oil, mineral oil, paraffin oil, bitumen | ∼32 | Thermoresponsive desorption | > 87 | × | × | × | × | [ |
Porous polyHIPEd monoliths | Pump oil, edible oil, crude oil, and organic solvents | 6.7-18.2 | pH-responsive desorption | ∼100 | × | × | × | × | [ |
pH-responsive SiO2@MF | Silicone oil, soybean oil, and organic solvents | 20-50 | pH-responsive desorption | - | × | × | × | × | [ |
P-Fe3O4-PDA@MF | Crude oil, pump oil, silicone oil, and organic solvents | 12.8-43.8 | pH-responsive desorption | 88.7-98.4 | √ | √ | √ | √ | This work |
Table 2. Comparison of various porous sorbent materials (-, ×, and √ stand for Unknown, No, and Yes, respectively.)
Porous materials | Absorbates | Absorptioncapacity (g g-1) | Oil/adsorbent recovery method | Oil recovery efficiency (%) | Antibacterial | Magnetic control | Flame retardant | Fire warning | Refs. |
---|---|---|---|---|---|---|---|---|---|
PDMS/PDA coated sponge | Crude oil | ∼11 | Be compressed | - | × | × | × | × | [ |
Silylated wood sponge | Silicone oil, olive oil, motor oil, and organic solvents | 16-41 | Be compressed | ∼70 | × | × | × | × | [ |
Fe3O4@OA @GO-PUa | Olive oil, canola oil, kerosene, and organic solvents | 80-150 | Be compressed | > 99 | × | √ | √ | × | [ |
Fe3O4/HDPEb PU sponge | Cook oil and organic solvents | 15-52 | Be compressed | - | × | √ | × | × | [ |
Silica/graphene oxide wide ribbon@MF | Petrol oil, tetrachloromethane | - | Be compressed | - | × | × | √ | √ | [ |
Tannic acid-graphene aerogel | Kerosene, liquid paraffin, maize oil, soybean oil, and organic solvents | 15-30 | Combustion | - | √ | × | √ | × | [ |
MF-OTSc/ PNIPAAm sponge | Pump oil, peanut oil, and organic solvents | 35-70 | Thermoresponsive desorption | - | × | × | × | × | [ |
PNIPAm/PPy@MS | Crude oil, silicone oil, mineral oil, paraffin oil, bitumen | ∼32 | Thermoresponsive desorption | > 87 | × | × | × | × | [ |
Porous polyHIPEd monoliths | Pump oil, edible oil, crude oil, and organic solvents | 6.7-18.2 | pH-responsive desorption | ∼100 | × | × | × | × | [ |
pH-responsive SiO2@MF | Silicone oil, soybean oil, and organic solvents | 20-50 | pH-responsive desorption | - | × | × | × | × | [ |
P-Fe3O4-PDA@MF | Crude oil, pump oil, silicone oil, and organic solvents | 12.8-43.8 | pH-responsive desorption | 88.7-98.4 | √ | √ | √ | √ | This work |
[1] | A.T. Hoang, S. Nizetic, X.Q. Duong, L. Rowinski, X.P. Nguyen, Chemosphere 277 (2021) 130274. |
[2] |
W.W. Zheng, J.Y. Huang, S.H. Li, M.Z. Ge, L. Teng, Z. Chen, Y.K. Lai, ACS Appl. Mater. Interfaces 13 (2021) 67-87.
DOI URL |
[3] | J.H. Zuo, Z.H. Chen, Y. Zhou, Z.H. Liu, C.L. Zhou, S.P. Xu, J. Cheng, X.F. Wen, P.H. Pi, J. Mater. Chem. A 9 (2021) 13170-13181. |
[4] |
Z.K. Li, Y.C. Liu, L.B. Li, Y.Y. Wei, J.G. Caro, H.H. Wang, J. Membr. Sci. 592 (2019) 117361.
DOI URL |
[5] |
M. Elektorowicz, S. Habibi, R. Chifrina, J. Colloid Interface Sci. 295 (2006) 535-541.
DOI URL |
[6] |
J. Aurell, B.K. Gullett, Environ. Sci. Technol. 44 (2010) 9431-9437.
DOI URL |
[7] |
E.B. Kujawinski, M.C. Kido Soule, D.L. Valentine, A.K. Boysen, K. Longnecker, M. C. Redmond, Environ. Sci. Technol. 45 (2011) 1298-1306.
DOI PMID |
[8] |
S.J. Ye, G.M. Zeng, H.P. Wu, C. Zhang, J. Dai, J. Liang, J.F. Yu, X.Y. Ren, H. Yi, M. Cheng, C. Zhang, Crit. Rev. Biotechnol. 37 (2017) 1062-1076.
DOI URL |
[9] |
Y.J. Chan, M.F. Chong, C.L. Law, D.G. Hassell, Chem. Eng. J. 155 (2009) 1-18.
DOI URL |
[10] | M.L. Han, J. Zhang, W. Chu, J.H. Chen, G.F. Zhou, Water 11 (2019) 2517. |
[11] |
V. Broje, A. A. Keller, J. Hazard. Mater. 148 (2007) 136-143.
DOI URL |
[12] |
A. Mahringer, M. Hennemann, T. Clark, T. Bein, D.D. Medina, Angew. Chem.-Int. Edit. 60 (2021) 5519-5526.
DOI URL |
[13] | Q.L. Ma, H.F. Cheng, A.G. Fane, R. Wang, H. Zhang, Small 12 (2016) 2186-2202. |
[14] |
B. Wang, W.X. Liang, Z.G. Guo, W.M. Liu, Chem. Soc. Rev. 44 (2015) 336-361.
DOI PMID |
[15] | Z.X. Xue, Y.Z. Cao, N. Liu, L. Feng, L. Jiang, J. Mater. Chem. A 2 (2014) 2445-2460. |
[16] |
X.J. Zeng, W.C. Cai, S.Y. Fu, X.M. Lin, Q.R. Lu, S. Liao, H.W. Hu, M. Zhang, C. L. Zhou, X.F. Wen, S.Z. Tan, J. Hazard. Mater. 424 (2022) 127543.
DOI URL |
[17] |
Z.Q. Xu, J.W. Wang, H.J. Li, Y. Wang, Chem. Eng. J. 370 (2019) 1181-1187.
DOI URL |
[18] |
Y. Xu, G. Wang, L.J. Zhu, L.L. Shen, Z.P. Zhang, T.H. Ren, Z.X. Zeng, T. Chen, Q.J. Xue, J. Hazard. Mater. 407 (2021) 124374.
DOI URL |
[19] |
Q.Q. Song, J.Y. Zhu, X.P. Niu, J. Wang, G.Y. Dong, M.X. Shan, B. Zhang, H. Mat- suyama, Y.T. Zhang, Sep. Purif. Technol. 280 (2022) 119920.
DOI URL |
[20] |
H.B. Gu, C. Gao, X.M. Zhou, A. Du, N. Naik, Z.H. Guo, Adv. Compos. Hybrid Mater. 4 (2021) 459-468.
DOI URL |
[21] |
D.S. Yuan, T. Zhang, Q. Guo, F.X. Qiu, D.Y. Yang, Z.P. Ou, Chem. Eng. J. 351 (2018) 622-630.
DOI URL |
[22] |
T.C. Sun, S. Hao, R.Q. Fan, M.Y. Qin, W. Chen, P. Wang, Y.L. Yang, ACS Appl. Mater. Interfaces 12 (2020) 56435-56444.
DOI URL |
[23] |
S.L. Li, J. Wang, H.B. Zhao, J.B. Cheng, A.N. Zhang, T. Wang, M. Cao, T. Fu, Y.Z. Wang, ACS Appl. Mater. Interfaces 13 (2021) 59231-59242.
DOI URL |
[24] |
M. Cao, S.L. Li, J.B. Cheng, A.N. Zhang, Y.Z. Wang, H.B. Zhao, J. Hazard. Mater. 403 (2021) 123977.
DOI URL |
[25] |
Y.Y. Song, J.J. Zhou, J.B. Fan, W.Z. Zhai, J.X. Meng, S.T. Wang, Adv. Funct. Mater. 28 (2018) 1802493.
DOI URL |
[26] | S. Gai, R.Q. Fan, J. Zhang, X.S. Zhou, K. Xing, K. Zhu, W.W. Jia, W.B. Sui, P. Wang, Y. L. Yang, J. Mater. Chem. A 9 (2021) 3369-3378. |
[27] | P. Song, J.W. Cui, J. Di, D.B. Liu, M.Z. Xu, B.J. Tang, Q.S. Zeng, J. Xiong, C.D. Wang, Q. He, L.X. Kang, J.D. Zhou, R.H. Duan, B.B. Chen, S.S. Guo, F.C. Liu, J. Shen, Z. Liu, ACS Nano 14 (2020) 595-602. |
[28] |
L. Vasquez, L. Campagnolo, A. Athanassiou, D. Fragouli, ACS Appl. Mater. Inter- faces 11 (2019) 30207-30217.
DOI URL |
[29] |
S.L. Liu, J. Lin, Q.Y. Chen, Z.L. Liu, L.S. Gui, L.W. Chen, S.L. Huang, X.L. Tian, Macromol. Mater. Eng. 306 (2021) 2100242.
DOI URL |
[30] |
Z.Y. Dai, G. Chen, S. Ding, J. Lin, S.B. Li, Y. Xu, B.P. Zhou, Adv. Funct. Mater. 31 (2020) 2008574.
DOI URL |
[31] |
F. Zhang, M. Lian, A. Alhadhrami, M. Huang, B. Li, G.A.M. Mersal, M. M. Ibrahim, M. Xu, Adv. Compos. Hybrid Mater. (2022) In press, doi: 10.1007/s42114-022-00476-5.
DOI |
[32] |
Z.C. Yin, Y.H. Li, T.W. Song, M.T. Bao, Y.M. Li, J.R. Lu, Y. Li, Sep. Purif. Technol. 236 (2020) 116308.
DOI URL |
[33] | C. Jing, Y.F. Zhang, J.J. Zheng, S.S. Ge, J. Lin, D. Pan, N. Naik, Z.H. Guo, Particuol- ogy 69 (2022) 111-122. |
[34] |
Z. Sun, Y. Zhang, S. Guo, J. Shi, C. Shi, K. Qu, H. Qi, Z. Huang, V. Murugadoss, M. Huang, Z. Guo, Adv. Compos. Hybrid Mater. (2022) In press, doi: 10.1007/s42114-022-00477-4.
DOI |
[35] |
L. Ouyang, W. Huang, M. Huang, B. Qiu, Adv. Compos. Hybrid Mater. (2022) In press, doi: 10.1007/s42114-022-00450-1.
DOI |
[36] |
Y. Si, J. Li, B. Cui, D. Tang, L. Yang, V. Murugadoss, S. Maganti, M. Huang, Z. Guo,Adv. Compos. Hybrid Mater. (2022) In press, doi: 10.1007/s42114-022-00446-x.
DOI |
[37] |
W.X. Chao, S.B. Wang, Y.D. Li, G.L. Cao, Y.S. Zhao, X.H. Sun, C.Y. Wang, S.H. Ho, Chem. Eng. J. 400 (2020) 125865.
DOI URL |
[38] |
Y.D. Kuang, C.J. Chen, G. Chen, Y. Pei, G. Pastel, C. Jia, J.W. Song, R.Y. Mi, B. Yang, S. Das, L.B. Hu, Adv. Funct. Mater. 29 (2019) 1900162.
DOI URL |
[39] |
R.Q. Li, G.L. Zhang, L.X. Yang, C.Q. Zhou, Sep. Purif. Technol. 276 (2021) 119372.
DOI URL |
[40] | H.F. Niu, J.B. Li, Z. Qiang, J. Ren, J. Mater. Chem. A 9 (2021) 11268-11277. |
[41] | Z.X. Wang, Y.C. Xu, Y.Y. Liu, L. Shao, J. Mater. Chem. A 3 (2015) 12171-12178. |
[42] | M.C. Wu, Y. Shi, J. Chang, R.Y. Li, C. Ong, P. Wang, Adv. Mater. Interfaces 5 (2018) 1800412. |
[43] |
H.G. Shi, S.L. Li, J.B. Cheng, H.B. Zhao, Y.Z. Wang, ACS Appl. Mater. Interfaces 13 (2021) 11948-11957.
DOI URL |
[44] |
J. Yang, P. Xu, Y.L. Yao, Y. Li, B. Shi, X.H. Jia, H.J. Song, Mater. Des. 195 (2020) 108979.
DOI URL |
[45] |
Y.F. Zhu, Y.G. Du, J.M. Su, Y.C. Mo, S.J. Yu, Z. Wang, Sep. Purif. Technol. 275 (2021) 119130.
DOI URL |
[46] |
X. Jin, A. Al-Qatatsheh, K. Subhani, N.V. Salim, Chem. Eng. J. 412 (2021) 128635.
DOI URL |
[47] |
H.G. Shi, H.B. Zhao, B.W. Liu, Y.Z. Wang, ACS Appl. Mater. Interfaces 13 (2021) 26505-26514.
DOI URL |
[48] |
W.X. Zhu, W. Huang, W.H. Zhou, Z. Qiu, Z. Wang, H.J. Li, Y.G. Wang, J. Li, Y.J. Xie, Carbohydr. Polym. 245 (2020) 116587.
DOI URL |
[49] |
W.B. Che, Z.F. Xiao, Z. Wang, J. Li, H.G. Wang, Y.G. Wang, Y.J. Xie, ACS Sustain. Chem. Eng. 7 (2019) 5134-5141.
DOI URL |
[50] | J.T. Hu, J. Lin, Y.Y. Zhang, Z.K. Lin, Z.W. Qiao, Z.L. Liu, W. Yang, X. Liu, M.Y. Dong, Z.H. Guo, J. Mater. Chem. A 7 (2019) 26039-26052. |
[51] | J. Lin, X.F. Cai, Z.L. Liu, N. Liu, M. Xie, B.P. Zhou, H.Q. Wang, Z.H. Guo, Adv. Funct. Mater. 30 (2020) 20 0 0398. |
[52] |
X.W. Wu, Y.G. Lei, S.H. Li, J.Y. Huang, L. Teng, Z. Chen, Y.K. Lai, J. Hazard. Mater. 403 (2021) 124090.
DOI URL |
[53] | C. Zhang, M.B. Wu, B.H. Wu, J. Yang, Z.K. Xu, J. Mater. Chem. A 6 (2018) 8880-8885. |
[54] | H. Guan, Z.Y. Cheng, X.Q. Wang, ACS Nano 12 (2018) 10365-10373. |
[55] |
H.C. Bi, Z.Y. Yin, X.H. Cao, X. Xie, C.L. Tan, X. Huang, B. Chen, F.T. Chen, Q. L. Yang, X.Y. Bu, X.H. Lu, L.T. Sun, H. Zhang, Adv. Mater. 25 (2013) 5916-5921.
DOI URL |
[56] |
Y. Yang, Z. Tong, T. Ngai, C.Y. Wang, ACS Appl. Mater. Interfaces 6 (2014) 6351-6360.
DOI URL |
[57] | X.C. Gui, H.B. Li, K.L. Wang, J.Q. Wei, Y. Jia, Z. Li, L.L. Fan, A.Y. Cao, H.W. Zhu, D. H. Wu, Acta Mater 59 (2011) 4798-4804. |
[58] | Y.Q. Li, Y.A. Samad, K. Polychronopoulou, S.M. Alhassan, K. Liao, ACS Sustain, Chem. Eng. 2 (2014) 14 92-14 97. |
[59] |
S.S. Long, Y.C. Feng, Y.Z. Liu, L.L. Zheng, L.H. Gan, J. Liu, X.H. Zeng, M.N. Long, Sep. Purif. Technol. 254 (2021) 117577.
DOI URL |
[60] |
Y.Y. Liu, X. Wang, S.Y. Feng, Adv. Funct. Mater. 29 (2019) 1902488.
DOI URL |
[61] | C. Zhang, Y.L. Li, S. Sun, M. Kalulu, Y. Wang, X. Zhou, X.Y. Wang, Q. Du, Y. Jiang, Prog. Org. Coat. 139 (2020) 105369. |
[62] |
Y.F. Wang, Z.L. Liu, X.C. Wei, K.L. Liu, J.H. Wang, J.T. Hu, J. Lin, Chem. Eng. J. 413 (2021) 127493.
DOI URL |
[63] | X.H. Wu, S.S. Cao, D. Ghim, Q.S. Jiang, S. Singamaneni, Y.S. Jun, Nano Energy 79 (2021) 105353. |
[64] |
X.J. Zha, X. Zhao, J.H. Pu, L.S. Tang, K. Ke, R.Y. Bao, L. Bai, Z.Y. Liu, M.B. Yang, W. Yang, ACS Appl. Mater. Interfaces 11 (2019) 36589-36597.
DOI URL |
[65] |
Y.Q. Hou, Q.X. Wang, S.L. Wang, M. Wang, X.M. Chen, X. Hou, Chin. Chem. Lett. 33 (2022) 2155-2158.
DOI URL |
[66] |
J. Lin, X.Y. Chen, C.Y. Chen, J.T. Hu, Z. Guo, ACS Appl. Mater. Interfaces 10 (2018) 6124-6136.
DOI URL |
[67] |
C. Zhang, Y. Ou, W.X. Lei, L.S. Wan, J. Ji, Z.K. Xu, Angew. Chem.-Int. Edit. 55 (2016) 3054-3057.
DOI URL |
[68] |
C.B. Liang, P. Song, H.B. Gu, C. Ma, Y.Q. Guo, H.Y. Zhang, X.J. Xu, Q.Y. Zhang, J.W. Gu, Compos Pt. A-Appl. Sci. Manuf. 102 (2017) 126-136.
DOI URL |
[69] |
P. Yi, H.W. Hu, W.W. Sui, H.C. Zhang, Y.L. Lin, G.J. Li, ACS Appl. Polym. Mater. 2 (2020) 1764-1772.
DOI URL |
[70] |
J. Lin, J.T. Hu, W. Wang, K.L. Liu, C.L. Zhou, Z.L. Liu, S.F. Kong, S.D. Lin, Y.C. Deng, Z.H. Guo, Chem. Eng. J. 407 (2020) 125783.
DOI URL |
[71] |
Z.W. Lei, G.Z. Zhang, Y.H. Deng, C.Y. Wang, ACS Appl. Mater. Interfaces 9 (2017) 8967-8974.
DOI URL |
[72] | R. Hoogenboom, in: M.R. Aguilar, J. San Román, in: Smart Polymers and Their Applications, Second Edition, Woodhead Publishing, Cambridge, 2019, pp. 13-44. |
[73] |
K. Shiraga, H. Naito, T. Suzuki, N. Kondo, Y. Ogawa, J. Phys. Chem. B 119 (2015) 5576-5587.
DOI URL |
[74] |
Z. Dang, L.B. Liu, Y. Li, Y. Xiang, G.L. Guo, ACS Appl. Mater. Interfaces 8 (2016) 31281-31288.
DOI URL |
[75] |
Q.F. Wang, Y. Wang, B.X. Wang, Z.Q. Liang, J.C. Di, J.H. Yu, Chem. Sci. 10 (2019) 6382-6389.
DOI URL |
[76] |
Y. Wang, J.C. Di, L. Wang, X. Li, N. Wang, B.X. Wang, Y. Tian, L. Jiang, J.H. Yu, Nat. Commun. 8 (2017) 575.
DOI URL |
[77] | Z.H. Zhao, Y.Z. Ning, X. Jin, S. Ben, J.L. Zha, B. Su, D.L. Tian, K.S. Liu, L. Jiang, ACS Nano 14 (2020) 14 869-14 877. |
[78] |
X. Tian, V. Jokinen, J. Li, J. Sainio, R.H. Ras, Adv. Mater. 28 (2016) 10652-10658.
DOI |
[79] | M.C. Wu, A.R. Deokar, J.H. Liao, P.Y. Shih, Y.C. Ling, ACS Nano 7 (2013) 1281-1290. |
[80] |
T. Wei, Z.C. Tang, Q. Yu, H. Chen, ACS Appl. Mater. Interfaces 9 (2017) 37511-37523.
DOI URL |
[81] |
Y.R. Wang, T. Wei, Y.C. Qu, Y. Zhou, Y.J. Zheng, C.B. Huang, Y.X. Zhang, Q. Yu, H. Chen, ACS Appl. Mater. Interfaces 12 (2020) 21283-21291.
DOI URL |
[82] | J. Lin, Y.F. Wang, X.C. Wei, S.F. Kong, Z.L. Liu, J.J. Liu, F.M. Zhang, S. D. Lin, B. Ji, Z.Z. Zhou, Z.H. Guo, Int. J. Biol. Macromol. 157 (2020) 553-560. |
[83] | Y.Q. Guo, H. Qiu, K.P. Ruan, Y.L. Zhang, J.W. Gu, Nano-Micro Lett 14 (2022) 26. |
[84] | Y.L. Zhang, K.P. Ruan, J.W. Gu, Small 17 (2021) 2101951. |
[85] | Z. Liu, X.L. Fan, M.Y. Han, J.L. Zhang, L.X. Chen, Y.S. Tang, J. Kong, J.W Gu, Com- pos. Sci. Technol. 223 (2022) 109426. |
[86] | C.B. Liang, Y.X. Liu, Y.F. Ruan, H. Qiu, P. Song, J. Kong, H.B. Zhang, J.W. Gu, Com- pos. Pt. A-Appl. Sci. Manuf. 139 (2020) 106143. |
[87] |
Y.Q. Xiang, Y.Y. Pang, X.M. Jiang, J. Huang, F.N. Xi, J.Y. Liu, Appl. Surf. Sci. 428 (2018) 338-347.
DOI URL |
[88] | M. Mao, H. Xu, K.Y. Guo, J.W. Zhang, Q.Q. Xia, G.D. Zhang, L. Zhao, J.F. Gao, L. C. Tang, Compos. Pt. A-Appl. Sci. Manuf. 140 (2021) 106191. |
[89] |
M. khalilifard, S. Javadian, Chem. Eng. J. 408 (2021) 127369.
DOI URL |
[90] |
T.L. Yu, F. Halouane, D. Mathias, A. Barras, Z.W. Wang, A.Q. Lv, S.X. Lu, W.G. Xu, D. Meziane, N. Tiercelin, S. Szunerits, R. Boukherroub, Chem. Eng. J. 384 (2020) 123339.
DOI URL |
[91] |
J. Luo, J.P. Lai, N. Zhang, Y.B. Liu, R. Liu, X.Y. Liu, ACS Sustain. Chem. Eng. 4 (2016) 1404-1413.
DOI URL |
[92] | M.C. Wu, Y.S. Shi, J. Chang, R.Y. Li, C. Ong, P. Wang, Adv. Mater. Interfaces 5 (2018) 1800412. |
[93] |
Z.R. Guo, H.J. Gu, Q. Chen, Z.F. He, W.F. Xu, J.L. Zhang, Y.X. Liu, L.Y. Xiong, L. Z. Zheng, Y.J. Feng, J. Colloid Interface Sci. 534 (2019) 183-194.
DOI URL |
[94] |
L. Tang, G. Wang, Z.X. Zeng, L.L. Shen, L.J. Zhu, Y.X. Zhang, Q.J. Xue, J. Colloid Interface Sci. 575 (2020) 231-244.
DOI URL |
[1] | Yao Huang, Panjun Wang, Weimin Tan, Wenkui Hao, Lingwei Ma, Jinke Wang, Tong Liu, Fan Zhang, Chenhao Ren, Wei Liu, Dawei Zhang. Photothermal and pH dual-responsive self-healing coating for smart corrosion protection [J]. J. Mater. Sci. Technol., 2022, 107(0): 34-42. |
[2] | Liwei Sun, Lingjie Song, Xu Zhang, Shuaishuai Yuan, Shifang Luan. Biocompatible hierarchical zwitterionic polymer brushes with bacterial phosphatase activated antibacterial activity [J]. J. Mater. Sci. Technol., 2022, 126(0): 191-202. |
[3] | Yaqin Qi, Ting Jin, Kai Yuan, Jingyuan You, Chao Shen, Keyu Xie. Chemically stable polypyrrole-modified liquid metal nanoparticles with the promising photothermal conversion capability [J]. J. Mater. Sci. Technol., 2022, 127(0): 144-152. |
[4] | Chengxiong Wei, Xin Jin, Chengwei Wu, Wei Zhang. Injectable composite hydrogel based on carbon particles for photothermal therapy of bone tumor and bone regeneration [J]. J. Mater. Sci. Technol., 2022, 118(0): 64-72. |
[5] | Chuanyin Xiong, Mengrui Li, Qing Han, Wei Zhao, Lei Dai, Yonghao Ni. Screen printing fabricating patterned and customized full paper-based energy storage devices with excellent photothermal, self-healing, high energy density and good electromagnetic shielding performances [J]. J. Mater. Sci. Technol., 2022, 97(0): 190-200. |
[6] | Chunbo Wang, Yuqing Liang, Ying Huang, Meng Li, Baolin Guo. Porous photothermal antibacterial antioxidant dual-crosslinked cryogel based on hyaluronic acid/ polydopamine for non-compressible hemostasis and infectious wound repair [J]. J. Mater. Sci. Technol., 2022, 121(0): 207-219. |
[7] | Luohuizi Li, Guize Li, Yong Wu, Yuancheng Lin, Yangcui Qu, Yan Wu, Kunyan Lu, Yi Zou, Hong Chen, Qian Yu, Yanxia Zhang. Dual-functional bacterial cellulose modified with phase-transitioned proteins and gold nanorods combining antifouling and photothermal bactericidal properties [J]. J. Mater. Sci. Technol., 2022, 110(0): 14-23. |
[8] | Hima Bindu Ruttala, Thiruganesh Ramasamy, Raghu Ram Teja Ruttala, Tuan Hiep Tran, Jee-Heon Jeong, Han-Gon Choi, Sae Kwang Ku, Chul Soon Yong, Jong Oh Kim. Mitochondria-targeting multi-metallic ZnCuO nanoparticles and IR780 for efficient photodynamic and photothermal cancer treatments [J]. J. Mater. Sci. Technol., 2021, 86(0): 139-150. |
[9] | Donglin Han, Yuan Li, Xiangmei Liu, Kelvin Wai Kwok Yeung, Yufeng Zheng, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shengli Zhu, Xianbao Wang, Shuilin Wu. Photothermy-strengthened photocatalytic activity of polydopamine-modified metal-organic frameworks for rapid therapy of bacteria-infected wounds [J]. J. Mater. Sci. Technol., 2021, 62(0): 83-95. |
[10] | Jie Liu, Li Li, Run Zhang, Zhi Ping Xu. Development of CaP nanocomposites as photothermal actuators for doxorubicin delivery to enhance breast cancer treatment [J]. J. Mater. Sci. Technol., 2021, 63(0): 73-80. |
[11] | Leilei Chen, Jun Xu, Yi Wang, Rongqin Huang. Ultra-small MoS2 nanodots-incorporated mesoporous silica nanospheres for pH-sensitive drug delivery and CT imaging [J]. J. Mater. Sci. Technol., 2021, 63(0): 91-96. |
[12] | Jingwei Xu, Xiaju Cheng, Fuxian Chen, Weijie Li, Xiaohui Xiao, Puxiang Lai, Guopeng Xu, Li Xu, Yue Pan. Fabrication of multifunctional polydopamine-coated gold nanobones for PA/CT imaging and enhanced synergistic chemo-photothermal therapy [J]. J. Mater. Sci. Technol., 2021, 63(0): 97-105. |
[13] | Qian Wu, Xiangmei Liu, Bo Li, Lei Tan, Yong Han, Zhaoyang Li, Yanqin Liang, Zhenduo Cui, Shengli Zhu, Shuilin Wu, Yufeng Zheng. Eco-friendly and degradable red phosphorus nanoparticles for rapid microbial sterilization under visible light [J]. J. Mater. Sci. Technol., 2021, 67(0): 70-79. |
[14] | Wenyu Wang, Dejun Ding, Kunpeng Zhou, Man Zhang, Weifen Zhang, Fang Yan, Ni Cheng. Prussian blue and collagen loaded chitosan nanofibers with NIR-controlled NO release and photothermal activities for wound healing [J]. J. Mater. Sci. Technol., 2021, 93(0): 17-27. |
[15] | Mengjing Fu, Yijing Liang, Xue Lv, Chengnan Li, Yi Yan Yang, Peiyan Yuan, Xin Ding. Recent advances in hydrogel-based anti-infective coatings [J]. J. Mater. Sci. Technol., 2021, 85(0): 169-183. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||