J. Mater. Sci. Technol. ›› 2022, Vol. 120: 172-185.DOI: 10.1016/j.jmst.2021.12.044
• Research Article • Previous Articles Next Articles
Jufu Jianga,*(), Minjie Huanga, Ying Wangb,*(
), Yingze Liua, Ying Zhanga
Received:
2021-08-27
Revised:
2021-11-25
Accepted:
2021-12-19
Published:
2022-09-01
Online:
2022-03-09
Contact:
Jufu Jiang,Ying Wang
About author:
wangying1002@hit.edu.cn (Y. Wang).Jufu Jiang, Minjie Huang, Ying Wang, Yingze Liu, Ying Zhang. Microstructure evolution and formation mechanism of CoCrCu1.2FeNi high entropy alloy during the whole process of semi‐solid billet preparation[J]. J. Mater. Sci. Technol., 2022, 120: 172-185.
Region | Empty Cell | Empty Cell | Element (at.%) | Empty Cell | Empty Cell |
---|---|---|---|---|---|
Empty Cell | Co | Cr | Cu | Fe | Ni |
A | 23.56 | 24.13 | 11.36 | 20.22 | 21.89 |
B | 3.13 | 1.85 | 84.29 | 2.80 | 7.92 |
Table 1. EDS composition point analysis results of as-cast CoCrCu1.2FeNi alloy.
Region | Empty Cell | Empty Cell | Element (at.%) | Empty Cell | Empty Cell |
---|---|---|---|---|---|
Empty Cell | Co | Cr | Cu | Fe | Ni |
A | 23.56 | 24.13 | 11.36 | 20.22 | 21.89 |
B | 3.13 | 1.85 | 84.29 | 2.80 | 7.92 |
x=1 [ | x=1.2 | x=2 [ | x=3 [ |
---|---|---|---|
∼12% | ∼15% | ∼25% | ∼38% |
Table 2. Liquid fraction of CoCrCuxFeNi alloys at 1175 °C (steady rising stage).
x=1 [ | x=1.2 | x=2 [ | x=3 [ |
---|---|---|---|
∼12% | ∼15% | ∼25% | ∼38% |
Fig. 5. Microstructure of CoCrCu1.2FeNi semi-solid billets: (1)-(6), (7)-(12), (13)-(18), (19)-(24) and (25)-(30) are microstructure at 1130 °C, 1175 °C, 1200 °C, 1225 °C, 1250 °C for 5 min, 15 min, 30 min, 60 min, 90 min and 120 min, respectively.
Fig. 10. Coarsening kinetic model calculation of CoCrCu1.2FeNi alloy: (a) coarsening coefficients of different temperatures; (b) relationship between ln K and 1/T.
Fig. 12. EBSD analysis of microstructure during heating up process: BSE images, IPF maps, RF maps and GB maps of CoCrCu1.2FeNi hot deformed feedstock and feedstocks heated to 1000 °C and 1100 °C, respectively.
Fig. 13. Misorientation angle distribution of hot deformed feedstock and heated feedstocks: (a) hot deformed; (b) heated to 1000 °C; (c) heated to 1100 °C.
Fig. 14. EBSD analysis of microstructure heated to semi-solid temperature (1200 °C): (a) BSE image; (b) IPF map; (c) misorientation analysis of adjacent grains; (d) misorientation analysis of single grain; (e) polar figures.
Fig. 15. TEM analysis of hot deformed feedstock: (a) BF image of the two phases; (b) SAED pattern of FCC1 phase; (c) SAED pattern of FCC2 phase; (d) BF image of FCC2 phase; (e) BF image of Fine dynamic recrystallization grain in FCC1 phase; (f) BF image of dislocation walls in FCC1 phase.
Fig. 16. TEM analysis of semi solid billet (1130 °C / 5 min): (a) BF image of the two phases; (b) High magnification image of (a); (c) SAED pattern of FCC1 phase; (d) SAED pattern of FCC2 phase; (e) BF image of FCC2 phase; (f) BF image of FCC1 phase.
Fig. 17. Mechanical properties of hot deformed and heated feedstocks: (a) compression engineering stress-strain curve at room temperature; (b) yield strength.
Fig. 20. Evolution model of semi-solid microstructure formation process: (a) as-cast stage; (b) hot deformed stage; (c) and (d) heating up stage; (e) semi-solid stage.
HEAs | Phase structure | Semi-solid range |
---|---|---|
CoCrCuFeNi (This work) | FCC1+FCC2 | 1108-1386 °C |
CoCrCu0.5FeNi [ | FCC1+FCC2 | ∼1100-1380 °C |
CoCrCu1.5FeNi [ | FCC1+FCC2 | ∼1100-1380 °C |
AlCoCrCuNi [ | FCC+BCC | 1085-1385 °C |
FeCoNiCuAl [ | FCC+BCC | ∼1200-1350 °C |
AlCoCrCuFeNi [ | FCC1+ FCC2+BCC | ∼1250-1400 °C |
CrCu0.5FeMnNi [ | FCC1+ FCC2+BCC | 1030-1331 °C |
CrCuFeMnNi [ | FCC1+ FCC2+BCC | 1019-1344 °C |
CrCu1.5FeMnNi [ | FCC1+ FCC2+BCC | 1010-1357 °C |
CrCu2FeMnNi [ | FCC1+ FCC2+BCC | 1013-1370 °C |
CrCu2.5FeMnNi [ | FCC1+ FCC2+BCC | 1015-1379 °C |
Sn0.5CoCrFeMnNi [ | FCC+MnNiSn rich L21 | 1066-1254 °C |
Table 3. HEAs with wide semi-solid range.
HEAs | Phase structure | Semi-solid range |
---|---|---|
CoCrCuFeNi (This work) | FCC1+FCC2 | 1108-1386 °C |
CoCrCu0.5FeNi [ | FCC1+FCC2 | ∼1100-1380 °C |
CoCrCu1.5FeNi [ | FCC1+FCC2 | ∼1100-1380 °C |
AlCoCrCuNi [ | FCC+BCC | 1085-1385 °C |
FeCoNiCuAl [ | FCC+BCC | ∼1200-1350 °C |
AlCoCrCuFeNi [ | FCC1+ FCC2+BCC | ∼1250-1400 °C |
CrCu0.5FeMnNi [ | FCC1+ FCC2+BCC | 1030-1331 °C |
CrCuFeMnNi [ | FCC1+ FCC2+BCC | 1019-1344 °C |
CrCu1.5FeMnNi [ | FCC1+ FCC2+BCC | 1010-1357 °C |
CrCu2FeMnNi [ | FCC1+ FCC2+BCC | 1013-1370 °C |
CrCu2.5FeMnNi [ | FCC1+ FCC2+BCC | 1015-1379 °C |
Sn0.5CoCrFeMnNi [ | FCC+MnNiSn rich L21 | 1066-1254 °C |
[1] |
H.V. Atkinson, D. Liu, Mater. Sci. Eng. A 496 (2008) 439-446.
DOI URL |
[2] |
K.N. Campo, C.C. de Freitas, S. Moon, R. Dippenaar, R. Caram, Mater. Charact. 145 (2018) 10-19.
DOI URL |
[3] |
M.C. Flemings, Metall. Trans. A 22 (1991) 957-981.
DOI URL |
[4] | D.H. Kirkwood, M. Suéry, P. Kapranos, H.V. Atkinson, K.P. Young, Springer Ser. Mater. Sci. 124 (2010) 1-30. |
[5] |
J. Jiang, Y. Liu, G. Xiao, Y. Wang, X. Xiao, J. Alloy. Compd. 831 (2020) 154748.
DOI URL |
[6] | K.S. Alhawari, M.Z. Omar, M.J. Ghazali, M.S. Salleh, M.N. Mohammed, Trans. Nonferrous Met. Soc. China 27 (2017) 1483-1497. |
[7] |
Q. Wang, R. Zhou, Y. Li, B. Geng, Mater. Charact. 159 (2020) 109996.
DOI URL |
[8] |
M. Neslušan, P. Minárik, M. Čilliková, K. Kolařík, K. Rubešová, Mater. Charact. 157 (2019) 109891.
DOI URL |
[9] |
G. Xiao, J. Jiang, Y. Wang, Y. Liu, Y. Zhang, Mater. Sci. Eng. A 780 (2020) 139196.
DOI URL |
[10] | D.H. Kirkwood, C.M. Sellars, L.G.Elias Boyed, Thixotropic materials, European Patent, No. 0305375 B1, 1992. |
[11] | K.P. Young, C.P. Kyonka, J.A. Courtois, Fine grained metal composition, US Patent, No. 4415374, 1982. |
[12] | D.H. Kirkwood, M. Suery, P. Kapranos, H.V. Atkinson, K.P. Young, Semi-Solid Processing of Alloys, Springer, 2009. |
[13] | B. Cantor, I. Chang, P. Knight, A. Vincent, Mater. Sci. Eng. A 375 (2004) 213-218. |
[14] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[15] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
[16] | B.S. Murty, J.W. Yeh, S. Ranganathan, High Entropy Alloys. Butterworth Heine- mann, Elsevier, 2014. |
[17] |
P. Jinhong, P. Ye, Z. Hui, Z. Lu, Mater. Sci. Eng. A 534 (2012) 228-233.
DOI URL |
[18] |
D. Wang, J. Tan, C.J. Li, X.M. Qin, S.F. Guo, J. Alloy. Compd. 885 (2021) 161038.
DOI URL |
[19] |
T. Xiong, S. Zheng, J. Pang, X. Ma, Scr. Mater. 186 (2020) 336-340.
DOI URL |
[20] | M.J. Yao, K.G. Pradeep, C.C. Tasan, D. Raabe, Scr. Mater. 72-73 (2014) 5-8. |
[21] |
J. Lu, H. Zhang, Y. Chen, L. Li, X. Liu, W. Xiao, N. Ni, X. Zhao, F. Guo, P. Xiao, Corros. Sci. 180 (2021) 109191.
DOI URL |
[22] |
A. Bahrami, A. Mohammadnejad, M. Sajadi, J. Alloy, Compd. 862 (2021) 158577.
DOI URL |
[23] |
F. Xiong, R. Fu, Y. Li, B. Xu, X. Qi, Mater. Sci. Eng. A 787 (2020) 139472.
DOI URL |
[24] |
Ł. Rogal, Mater. Des. 119 (2017) 406-416.
DOI URL |
[25] |
Ł. Rogal, Mater. Sci. Eng. A 709 (2018) 139-151.
DOI URL |
[26] |
L.J. Zhang, J.T. Fan, D.J. Liu, M.D. Zhang, P.F. Yu, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li, R.P. Liu, J. Alloy. Compd. 745 (2018) 75-83.
DOI URL |
[27] |
K.N. Campo, C.C. de Freitas, L. Fanton, R. Caram, J. Mater. Sci. Technol. 52 (2020) 207-217.
DOI URL |
[28] |
K.N. Campo, C.C. de Freitas, E.B. Da Fonseca, R. Caram, Mater. Charact. 178 (2021) 111260.
DOI URL |
[29] |
J. Jiang, M. Huang, Y. Wang, G. Xiao, Y. Liu, Y. Zhang, J. Alloy. Compd. 876 (2021) 160102.
DOI URL |
[30] |
H.T. Jeong, H.K. Park, W.J. Kim, Mater. Sci. Eng. A 801 (2021) 140394.
DOI URL |
[31] |
A. Ayad, M. Ramoul, A.D. Rollett, F. Wagner, Mater. Charact. 171 (2021) 110773.
DOI URL |
[32] | P.H. Wu, N. Liu, P.J. Zhou, Z. Peng, W.D. Du, X.J. Wang, Y. Pan, Mater. Sci. Tech- nol. 32 (2016) 576-580. |
[33] |
A. Takeuchi, A. Inoue, Mater. Trans. 46 (2005) 2817-2829.
DOI URL |
[34] |
R.S. Ganji, P. Sai Karthik, K. Bhanu Sankara Rao, K.V. Rajulapati, Acta Mater. 125 (2017) 58-68.
DOI URL |
[35] |
Ł. Rogal, J. Morgiel, F. Stein, B. Breitbach, J. Dutkiewicz, Mater. Charact. 148 (2019) 134-141.
DOI URL |
[36] |
G. Qin, W. Xue, C. Fan, R. Chen, L. Wang, Y. Su, H. Ding, J. Guo, Mater. Sci. Eng. A 710 (2018) 200-205.
DOI URL |
[37] |
H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koizumi, K. Kuwabara, T. Kato, A. Chiba, Mater. Sci. Eng. A 656 (2016) 39-46.
DOI URL |
[38] |
N. Nayan, G. Singh, S.V.S.N. Murty, A.K. Jha, B. Pant, K.M. George, U. Rama- murty, Intermetallics 55 (2014) 145-153.
DOI URL |
[39] |
X. Wang, Y. Zhang, X. Ma, Mater. Sci. Eng. A 778 (2020) 139077.
DOI URL |
[40] |
Z. Chang, X. Wang, Y. Wu, L. Peng, W. Ding, Mater. Lett. 282 (2021) 128835.
DOI URL |
[41] |
W.T. Kim, D.L. Zhang, B. Cantor, Metall. Trans. A 22 (10) (1991) 2487-2501.
DOI URL |
[42] |
Q. Chen, Z. Zhao, G. Chen, B. Wang, J. Alloy. Compd. 632 (2015) 190-200.
DOI URL |
[43] |
J. Jiang, Y. Zhang, Y. Wang, G. Xiao, Y. Liu, L. Zeng, Mater. Des. 193 (2020) 108859.
DOI URL |
[44] | P.K. Seo, C.G. Kang, J. Mater. Process. Technol. 162 (2005) 402-409. |
[45] |
M. Aghaie-Khafri, D. Azimi-Yancheshme, JOM 64 (2012) 585-592.
DOI URL |
[46] |
G. Wang, Q. Liu, J. Yang, X. Li, X. Sui, Y. Gu, Y. Liu, Int. J. Refract. Met. Hard Mater. 84 (2019) 104988.
DOI URL |
[47] |
W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, Z.P. Lu, Scr. Mater. 68 (2013) 526-529.
DOI URL |
[48] |
H.V. Atkinson, K. Burke, G. Vaneetveld, Mater. Sci. Eng. A 490 (2008) 266-276.
DOI URL |
[49] |
I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19 (1) (1961) 35-50.
DOI URL |
[50] | C. Wagner, Z. Electrochem. 65 (1961) 581-591. |
[51] |
P. Guyot, L. Cottignies, Acta Mater. 44 (1996) 4161-4167.
DOI URL |
[52] |
J. Fu, K. Wang, X. Li, H. Zhang, Int. J. Miner. Metall. Mater. 23 (2016) 1404-1415.
DOI URL |
[53] |
H. Li, M. Cao, L. Niu, K. Huang, Q. Zhang, J. Alloy. Compd. 854 (2021) 157124.
DOI URL |
[54] |
E.D. Manson-Whitton, I.C. Stone, J.R. Jones, P.S. Grant, B. Cantor, Acta Mater. 50 (2002) 2517-2535.
DOI URL |
[55] |
S. Annavarapu, R.D. Doherty, Acta Metall. Mater. 43 (8) (1995) 3207-3230.
DOI URL |
[56] |
J. Jiang, Y. Wang, G. Xiao, X. Nie, J. Mater, Process. Technol. 238 (2016) 361-372.
DOI URL |
[57] |
J. Jiang, Y. Wang, H.V. Atkinson, Mater. Charact. 90 (2014) 52-61.
DOI URL |
[58] |
L. Fan, M. Zhou, Y. Zhang, Q. Tang, G. Quan, B. Liu, Mater. Charact. 154 (2019) 116-126.
DOI URL |
[59] |
S. Luo, Q. Chen, Z. Zhao, Mater. Sci. Eng. A 501 (2009) 146-152.
DOI URL |
[60] |
Z. Zhao, Q. Chen, H. Chao, S. Huang, Mater. Des. 31 (2010) 1906-1916.
DOI URL |
[61] |
Z. Zhao, Q. Chen, Y. Wang, D. Shu, Mater. Sci. Eng. A 506 (2009) 8-15.
DOI URL |
[62] |
Q. Chen, Z. Zhao, Z. Zhao, C. Hu, D. Shu, J. Alloy. Compd. 509 (2011) 7303-7315.
DOI URL |
[63] |
B. Nami, S.G. Shabestari, S.M. Miresmaeili, H. Razavi, S. Mirdamadi, J. Alloy. Compd. 489 (2010) 570-575.
DOI URL |
[64] |
J. Jiang, G. Xiao, Y. Wang, Y. Qi, Mater. Charact. 141 (2018) 229-237.
DOI URL |
[65] | R.P. Underhill, P.S. Grant, D.J. Bryant, B. Cantor, J. Mater. Synth. Process. 3 (1995) 171-179. |
[66] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[67] |
A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving, JOM 65 (2013) 1780-1789.
DOI URL |
[68] |
Q. He, T. Huang, L. Shuai, Y. Zhang, G. Wu, X. Huang, D.J. Jensen, Scr. Mater. 153 (2018) 68-72.
DOI URL |
[69] |
P.T. Hung, M. Kawasaki, J. Han, J.L. Lábár, J. Gubicza, Mater. Charact. 171 (2021) 110807.
DOI URL |
[70] |
S. Komura, Z. Horita, M. Nemoto, T.G. Langdon, J. Mater. Res. 14 (1999) 4044-4050.
DOI URL |
[71] |
X. Nie, R. Wang, Y. Ye, Y. Zhou, D. Wang, Solid State Commun. 96 (1995) 729-734.
DOI URL |
[72] |
N. Wang, Y. Chen, G. Wu, Z. Zhang, Z. Wu, J. Luo, Mater. Sci. Eng. A 800 (2021) 140387.
DOI URL |
[73] |
K.S. Prasad, S.K. Panda, S.K. Kar, S.V.S.N. Murty, S.C. Mater, Sci. Eng A 727 (2018) 97-112.
DOI URL |
[74] |
Y.K. Kim, B.J. Lee, S. Hong, S.I. Hong, Mater. Sci. Eng. A 781 (2020) 139241.
DOI URL |
[75] |
J. Jiang, Y. Wang, Mater. Sci. Eng. A 639 (2015) 350-358.
DOI URL |
[76] |
M. Wu, Y. Liu, T. Wang, K. Yu, Mater. Sci. Eng. A 674 (2016) 144-150.
DOI URL |
[77] |
Y.X. Zhuang, H.D. Xue, Z.Y. Chen, Z.Y. Hu, J.C. He, Mater. Sci. Eng. A 572 (2013) 30-35.
DOI URL |
[78] |
R. Sriharitha, B.S. Murty, R.S. Kottada, Intermetallics 32 (2013) 119-126.
DOI URL |
[79] |
L. Huang, Y. Sun, A. Amar, C. Wu, X. Liu, G. Le, X. Wang, J. Wu, K. Li, C. Jiang, J. Li, Vacuum 183 (2021) 109875.
DOI URL |
[80] |
T. Yang, S. Xia, S. Liu, C. Wang, S. Liu, Y. Zhang, J. Xue, S. Yan, Y. Wang, Mater. Sci. Eng. A 648 (2015) 15-22.
DOI URL |
[1] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
[2] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
[3] | Jingjing Pan, Jingyang Wang. Temperature-mediated supramolecular assemblies give rise to hierarchical boron nitride nano-ribbon networks with different micro-topology [J]. J. Mater. Sci. Technol., 2022, 96(0): 160-166. |
[4] | Jinshuo Zhang, Guohua Wu, Liang Zhang, Xiaolong Zhang, Chunchang Shi, Xin Tong. Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloy—Synergistic effect of Sc-alloying and optimized artificial ageing scheme [J]. J. Mater. Sci. Technol., 2022, 96(0): 212-225. |
[5] | Luqing Cui, Cheng-Han Yu, Shuang Jiang, Xiaoyu Sun, Ru Lin Peng, Jan-Erik Lundgren, Johan Moverare. A new approach for determining GND and SSD densities based on indentation size effect: An application to additive-manufactured Hastelloy X [J]. J. Mater. Sci. Technol., 2022, 96(0): 295-307. |
[6] | Lin He, Shiwei Wu, Anping Dong, Haibin Tang, Dafan Du, Guoliang Zhu, Baode Sun, Wentao Yan. Selective laser melting of dense and crack-free AlCoCrFeNi2.1 eutectic high entropy alloy: Synergizing strength and ductility [J]. J. Mater. Sci. Technol., 2022, 117(0): 133-145. |
[7] | M.S. Moyle, N. Haghdadi, X.Z. Liao, S.P. Ringer, S. Primig. On the microstructure and texture evolution in 17-4 PH stainless steel during laser powder bed fusion: Towards textural design [J]. J. Mater. Sci. Technol., 2022, 117(0): 183-195. |
[8] | Yifeng Wang, Yilin Song, Kaikai Song, Lin Pan, Changchun Chen, Kunihito Koumoto, Qingfeng Liu. Enhanced thermoelectric performance of n-type Bi2Te2.7Se0.3 via a simple liquid-assisted shear exfoliation [J]. J. Mater. Sci. Technol., 2022, 117(0): 251-258. |
[9] | Young-Kyun Kim, Kee-Ahn Lee. Stabilized sub-grain and nano carbides-driven 1.2 GPa grade ultra-strong CrMnFeCoNi high-entropy alloy additively manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 117(0): 8-22. |
[10] | Xinyu Zhang, Chuanwei Li, Mengyao Zheng, Xudong Yang, Zhenhua Ye, Jianfeng Gu. Chemical, microstructure, and mechanical property of TiAl alloys produced by high-power direct laser deposition [J]. J. Mater. Sci. Technol., 2022, 117(0): 99-108. |
[11] | Jun Hwan Moon, Seunghyun Kim, Taesoon Kim, Yoo Sang Jeon, Yanghee Kim, Jae-Pyoung Ahn, Young Keun Kim. Electrical resistivity evolution in electrodeposited Ru and Ru-Co nanowires [J]. J. Mater. Sci. Technol., 2022, 105(0): 17-25. |
[12] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
[13] | Ahmad Zafari, Edward Wen Chiek Lui, Mogeng Li, Kenong Xia. Enhancing work hardening and ductility in additively manufactured β Ti: roles played by grain orientation, morphology and substructure [J]. J. Mater. Sci. Technol., 2022, 105(0): 131-141. |
[14] | Lianbo Wang, Shilong Xing, Zizhen Shen, Huabing Liu, Chuanhai Jiang, Vincent Ji, Yuantao Zhao. The synergistic role of Ti microparticles and CeO2 nanoparticles in tailoring microstructures and properties of high-quality Ni matrix nanocomposite coating [J]. J. Mater. Sci. Technol., 2022, 105(0): 182-193. |
[15] | Zheng Zhang, Wenming Jiang, Guangyu Li, Junlong Wang, Feng Guan, Guoliang Jie, Zitian Fan. Effect of La on microstructure, mechanical properties and fracture behavior of Al/Mg bimetallic interface manufactured by compound casting [J]. J. Mater. Sci. Technol., 2022, 105(0): 214-225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||