J. Mater. Sci. Technol. ›› 2022, Vol. 120: 186-195.DOI: 10.1016/j.jmst.2021.12.053
• Research Article • Previous Articles Next Articles
Ruijun Lia,b, Fan Zhangc, Yong Hua,b,*()
Received:
2021-08-21
Revised:
2021-12-04
Accepted:
2021-12-15
Published:
2022-09-01
Online:
2022-03-12
Contact:
Yong Hu
About author:
* Department of Physics, College of Sciences, Northeast- ern University, Shenyang 110819, China. E-mail address: huyong@mail.neu.edu.cn (Y. Hu).Ruijun Li, Fan Zhang, Yong Hu. Performance of switch between exchange bias and coercivity: Influences of antiferromagnetic anisotropy and exchange coupling[J]. J. Mater. Sci. Technol., 2022, 120: 186-195.
Fig. 1. Hysteresis loops at selected temperatures after field cooling for different AFM anisotropy constants (KAF), where dashed and solid lines are used to indicate the behaviors of loop widening and shift with the decrease of temperature. Inset shows the schematic illustration of the model structure, where two 2-monolayer FM layers (green) are sandwiched into three 4-monolayer AFM layers (red), and the directions of easy axis (eK) and magnetic field (H) are also labelled.
Fig. 2. (a-c) Trained (loop index n = 2, open) and untrained (n = 1, solid) exchange bias field (HE) and coercivity (HC) as a function of temperature for different AFM anisotropy constants (KAF), where cyan shadow areas indicate the switching temperature width (ΔTW). (d) Average switching temperature (TS, open symbols) and ΔTW (bars) as a function of KAF in the trained and untrained cases, where symbols and bars are simulation data and lines are fit results by using the formula shown in (d).
Fig. 4. Exchange bias field (HE) and coercivity (HC) as a function of temperature for the AFM exchange constant (a) JAF = -1.2 and (b) -2.0 meV, where cyan shadow areas indicate the switching temperature width (ΔTW). (c) Average switching temperature (TS, solid symbols) and ∆TW (bars) as a function of JAF, where the bar length is equal to ∆TW, indicated by arrows.
Fig. 5. (a, b) Coercive field and (c, d) AFM magnetization at FM/AFM interface (MAF) at descending (HL) and ascending (HR) branches as a function of temperature for selected AFM exchange constants (JAF), where cyan shadow areas indicate the switching temperature width (ΔTW), and the temperatures of the dashed lines are used to discuss the relationship between HL, HR and MAF. The dashed curves in (a, b) also show the HL and HR results in the single FM layers. (e) Schematic illustrations of the spin configurations at FM (upper magenta arrows)/AFM (lower red and blue arrows) interface for specific MAF values numbered in (c, d).
Fig. 6. (a-c) Hysteresis loops at different angles (α) between easy-axis and magnetic field directions for selected AFM anisotropy (KAF) and exchange (JAF) constants at 10 K. (d-f) Exchange bias field (HE) and coercivity (HC) as a function of α.
[1] |
G.C. Papaefthymiou, Nano Today 4 (2009) 438-447.
DOI URL |
[2] | V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, J. Nogués, Na- ture 423 (2003) 850-853. |
[3] |
J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J.S. Muñoz, M.D. Baró, Phys. Rep. 422 (2005) 65-117.
DOI URL |
[4] |
W.H. Meiklejohn, C.P. Bean, Phys. Rev. 102 (1956) 1413-1414.
DOI URL |
[5] |
J. Nogués, I.K. Schuller, J. Magn. Magn. Mater. 192 (1999) 203-232.
DOI URL |
[6] | F. Radu, H. Zabel, H. Zabel, S.D. Bader, in: Magnetic Heterostructures, Springer, Berlin Heidelberg, 2008, pp. 97-120. |
[7] |
K. O’Grady, L.E. Fernandez-Outon, G. Vallejo-Fernandez, J. Magn. Magn. Mater. 322 (2010) 883-899.
DOI URL |
[8] |
S. Giri, M. Patra, S. Majumdar, J. Phys. Condens. Matter 23 (2011) 073201.
DOI URL |
[9] |
M.H. Phan, J. Alonso, H. Khurshid, P. Lampen-Kelley, S. Chandra, K.S. Repa, Z. Nemati, R. Das, ó. Iglesias, H. Srikanth, Nanomaterials 6 (2016) 221.
DOI URL |
[10] |
W. Zhang, K.M. Krishnan, Mater. Sci. Eng. R 105 (2016) 1-20.
DOI URL |
[11] |
T. Blachowicz, A. Ehrmann, Coatings 11 (2021) 122.
DOI URL |
[12] |
P.H. Lin, B.Y. Yang, M.H. Tsai, P.C. Chen, K.F. Huang, H.H. Lin, C.H. Lai, Nat. Mater. 18 (2019) 335-341.
DOI URL |
[13] |
X.H. Liu, K.W. Edmonds, Z.P. Zhou, K.Y. Wang, Phys. Rev. Appl. 13 (2020) 014059.
DOI URL |
[14] |
X.H. Liu, Y.C. Deng, X.K. Lan, R.Z. Li, K.Y. Wang, Sci. China Phys. Mech. Astron. 64 (2021) 267511.
DOI URL |
[15] |
D.V. Dimitrov, S. Zhang, J.Q. Xiao, G.C. Hadjipanayis, C. Prados, Phys. Rev. B 58 (1998) 12090-12094.
DOI URL |
[16] | E. Fulcomer, S.H. Charap, J. Appl. Phys. 43 (1972) 4190-4199. |
[17] |
C. Hou, H. Fujiwara, K. Zhang, A. Tanaka, Y. Shimizu, Phys. Rev. B 63 (2000) 024411.
DOI URL |
[18] |
S. Demirtas, A.R. Koymen, J. Appl. Phys. 95 (2004) 4949-4952.
DOI URL |
[19] |
J. van Lierop, B.W. Southern, K.W. Lin, Z.Y. Guo, C.L. Harland, R.A. Rosenberg, J.W. Freeland, Phys. Rev. B 76 (2007) 224432.
DOI URL |
[20] |
V.E. Phanindra, S. Das, R.P. Singh, D.S. Rana, Mater. Res. Express 5 (2018) 036105.
DOI URL |
[21] |
Y. Shiratsuchi, T. Fujita, H. Oikawa, H. Noutomi, R. Nakatani, Appl. Phys. Express 3 (2010) 113001.
DOI URL |
[22] |
Y. Shiratsuchi, D. Tokunaga, R. Nakatani, Jpn. J. Appl. Phys. 59 (2020) SEEF02-1-SEEF02-6.
DOI URL |
[23] |
Y. Xia, R. Wu, Y. Zhang, S. Liu, H. Du, J. Han, C. Wang, X. Chen, L. Xie, Y. Yang, J. Yang, Phys. Rev. B 96 (2017) 064440.
DOI URL |
[24] |
L. Yu, R. Li, Y. Hu, Phys. Chem. Chem. Phys. 22 (2020) 9749-9758.
DOI URL |
[25] |
Y. Shiratsuchi, H. Noutomi, H. Oikawa, T. Nakamura, M. Suzuki, T. Fujita, K. Arakawa, Y. Takechi, H. Mori, T. Kinoshita, M. Yamamoto, R. Nakatani, Phys. Rev. Lett. 109 (2012) 077202.
DOI URL |
[26] |
C. Moreau-Luchaire, C. Moutafis, N. Reyren, J. Sampaio, C.A.F. Vaz, N. Van Horne, K. Bouzehouane, K. Garcia, C. Deranlot, P. Warnicke, P. Wohlhüter, J.M. George, M. Weigand, J. Raabe, V. Cros, A. Fert, Nat. Nanotech. 11 (2016) 444-448.
DOI URL |
[27] |
T. Yu, X.K. Ning, W. Liu, J.N. Feng, D. Kim, C.J. Choi, Z.D. Zhang, J. Magn. Magn. Mater. 385 (2015) 230-235.
DOI URL |
[28] |
Y. Hu, F. Shi, N. Jia, Y. Liu, H. Wu, A. Du, J. Appl. Phys. 114 (2013) 153901.
DOI URL |
[29] |
X. Chi, Y. Hu, Nanotechnology 31 (2020) 125703.
DOI URL |
[30] |
X. Chi, F. Ma, A. Luo, A. Du, J. Wang, Y. Hu, Phys. Lett. A 379 (2015) 2772-2776.
DOI URL |
[31] |
T. Hajiri, T. Yoshida, S. Jaiswal, M. Filianina, B. Borie, H. Ando, H. Asano, H. Zabel, M. Kläui, Phys. Rev. B 94 (2016) 184412.
DOI URL |
[32] | M.S. Lee, T.A. Wynn, E. Foven, R.V. Chopdekar, A. Scholl, S.T. Retterer, J.K. Grep- stad, Y. Takamura, Phys. Rev. Mater. 1 (2017) 014402. |
[33] | J.M.D. Coey, Magnetism and Magnetic Materials, Cambridge University Press & Peking University Press, Cambridge, 2014. |
[34] |
J. Wolf, K. Kiefer, M.C. Rheinstädter, K. Knorr, M. Enderle, Eur. Phys. B 22 (2001) 461-471.
DOI URL |
[35] |
L. Jia, J. Shen, M. Li, X. Wang, L. Ma, C. Zhen, D. Hou, E. Liu, W. Wang, G. Wu, APL Mater. 5 (2017) 126105.
DOI URL |
[36] |
P.J. van der Zaag, Y. Ijiri, J.A. Borchers, L.F. Feiner, R.M. Wolf, J.M. Gaines, R.W. Erwin, M.A. Verheijen, Phys. Rev. Lett. 84 (2000) 6102-6105.
URL PMID |
[37] |
Y. Hu, A. Du, J. Magn. Magn. Mater. 322 (2010) 844-850.
DOI URL |
[38] |
J. d’Albuquerque e Castro, D. Altbir, J.C. Retamal, P. Vargas, Phys. Rev. Lett. 88 (2002) 237202.
DOI URL |
[39] |
P. Vargas, D. Altbir, J. d’Albuquerque e Castro, Phys. Rev. B 73 (2006) 092417.
DOI URL |
[40] |
S. Yang, Y. Hu, J. Mater. Sci. Technol. 98 (2022) 258-267.
DOI URL |
[41] |
C. Zhang, Y. Xie, Q. Zhan, Y. Hu, Phys. Rev. B 103 (2021) 014445.
DOI URL |
[42] | D. Paccard, C. Schlenker, O. Massenet, R. Montmory, A. Yelon, Phys. Status So- lidi B 16 (1966) 301-311. |
[43] |
C. Binek, Phys. Rev. B 70 (2004) 014421.
DOI URL |
[44] |
X. Chi, W. Rui, J. Du, S. Zhou, A. Du, Y. Hu, Appl. Phys. Lett. 108 (2016) 172401.
DOI URL |
[45] |
S. Roy, M.R. Fitzsimmons, S. Park, M. Dorn, O. Petracic, I.V. Roshchin, Z.P. Li, X. Batlle, R. Morales, A. Misra, X. Zhang, K. Chesnel, J.B. Kortright, S.K. Sinha, I.K. Schuller, Phys. Rev. Lett. 95 (2005) 047201.
DOI URL |
[46] |
J. Wu, J.S. Park, W. Kim, E. Arenholz, M. Liberati, A. Scholl, Y.Z. Wu, C. Hwang, Z.Q. Qiu, Phys. Rev. Lett. 104 (2010) 217204.
DOI URL |
[47] |
Y. Meng, J. Li, A. Tan, E. Jin, J. Son, J.S. Park, A. Doran, A.T. Young, A. Scholl, E. Arenholz, J. Wu, C. Hwang, H.W. Zhao, Z.Q. Qiu, Appl. Phys. Lett. 98 (2011) 212508.
DOI URL |
[48] |
J.S. Park, J. Wu, E. Arenholz, M. Liberati, A. Scholl, Y. Meng, C. Hwang, Z.Q. Qiu, Appl. Phys. Lett. 97 (2010) 042505.
DOI URL |
[49] |
J. Geshev, L.G. Pereira, J.E. Schmidt, Phys. Rev. B 66 (2002) 134432.
DOI URL |
[50] |
O. de Haas, R. Schäfer, L. Schultz, C.M. Schneider, Y.M. Chang, M.T. Lin, Phys. Rev. B 67 (2003) 054405.
DOI URL |
[1] | Lei Zhang, Feng Xu, Jian Zhang, Baoru Bian, Yong Hu, Fei Xue, Juan Du. Large-scale area of magnetically anisotropic nanoparticle monolayer films deposited by MAPLE [J]. J. Mater. Sci. Technol., 2022, 106(0): 28-32. |
[2] | Bo Yang, Gaowu Qin, Wenli Pei, Song Li, Yuping Ren, Shunji Ishio. Effect of Phosphor Addition on Intergranular Exchange Coupling of Co-Pt Thin Films [J]. J Mater Sci Technol, 2011, 27(5): 398-402. |
[3] | Gaowu Qin,Bo Yang,Wenli Pei,Yuping Ren. Correlation of Magnetic Properties of Co/Cr Bilayer Thin Films with Grain Boundary Diffusion [J]. J Mater Sci Technol, 2009, 25(06): 789-794. |
[4] | Z.L.Zhao, J.Ding, J.B.Yi, B.H.Liu, J.S.Chen, J.P.Wang, Y.N.Liu. Nanostructured FePt Thin Films with High Ceorcivity [J]. J Mater Sci Technol, 2005, 21(Supl.1): 43-46. |
[5] | Qixiang WANG, Baozhen SONG, Hongzhong LI. Surface Modification of α-Fe Metal Particles by Chemical Surface Coating [J]. J Mater Sci Technol, 2003, 19(02): 155-157. |
[6] | Weimin WANG, Junming LIU, Zhiguo LIU. Study on the Relationship between Lamellar Spacing and Growth Rate in the Regular Eutectic Growth by Monte-Carlo Simulation [J]. J Mater Sci Technol, 2002, 18(04): 322-324. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||