J. Mater. Sci. Technol. ›› 2022, Vol. 120: 196-204.DOI: 10.1016/j.jmst.2021.12.042
• Research Article • Previous Articles Next Articles
Shaoyu Zhaoa, Yingyan Zhangb,*(), Jie Yangb,*(
), Sritawat Kitipornchaia
Received:
2021-06-20
Revised:
2021-10-28
Accepted:
2021-12-12
Published:
2022-09-01
Online:
2022-03-11
Contact:
Yingyan Zhang,Jie Yang
About author:
j.yang@rmit.edu.au (J. Yang).Shaoyu Zhao, Yingyan Zhang, Jie Yang, Sritawat Kitipornchai. Folded graphene reinforced nanocomposites with superior strength and toughness: A molecular dynamics study[J]. J. Mater. Sci. Technol., 2022, 120: 196-204.
Fig. 2. (a) Stress-strain curves of PG/Cu nanocomposites with different graphene contents (wt%) (b) Validations of Young's modulus of current MD models (PG/Cu) with theoretical predication by Halpin-Tsai model, experimental data reported by Chu and Jia [30], and MD simulation result by Zhang et al. [27] (c) Validations of ultimate tensile strength of current MD models (PG/Cu) with other MD simulations carried out by Zhang et al. [27].
Nanocomposite | Γ (J/m2) | λf (%) | σu (GPa) | E (GPa) |
---|---|---|---|---|
Pure Cu | ∼2.88 | ∼10.87 | ∼6.04 | ∼67.35 |
PG/Cu | ∼9.81 | ∼20.38 | ∼9.31 | ∼98.06 |
FG/Cu | ∼13.08 | ∼31.33 | ∼8.85 | ∼68.06 |
Table 1. Comparison of mechanical properties for pure Cu, PG/Cu and FG/Cu nanocomposites.
Nanocomposite | Γ (J/m2) | λf (%) | σu (GPa) | E (GPa) |
---|---|---|---|---|
Pure Cu | ∼2.88 | ∼10.87 | ∼6.04 | ∼67.35 |
PG/Cu | ∼9.81 | ∼20.38 | ∼9.31 | ∼98.06 |
FG/Cu | ∼13.08 | ∼31.33 | ∼8.85 | ∼68.06 |
Fig. 4. Effects of PG and FG on the toughening and strengthening of Cu nanocomposites. Phase transformations of (a) PG/Cu and (b) FG/Cu nanocomposites under the tensile loading. (c) Stress distributions of PG and FG embedded in composites at different tensile strains (λ).
Fig. 5. Effects of graphene contents (wt%). (a) Tensile stress-strain curves of PG/Cu and FG/Cu nanocomposites. (b) Toughness and strength of PG/Cu and FG/Cu nanocomposites.
Graphene content (wt%) | Nanocomposite | Γ (J/m2) | λf (%) | σu (GPa) | E (GPa) |
---|---|---|---|---|---|
1.09 | PG/Cu | ∼9.81 | ∼20.38 | ∼9.31 | ∼98.06 |
FG/Cu | ∼13.08 | ∼31.33 | ∼8.85 | ∼68.06 | |
2.26 | PG/Cu | ∼17.08 | ∼24.53 | ∼12.98 | ∼133.56 |
FG/Cu | ∼21.38 | ∼36.73 | ∼13.62 | ∼68.81 | |
3.52 | PG/Cu | ∼25.46 | ∼25.73 | ∼18.87 | ∼166.60 |
FG/Cu | ∼29.54 | ∼38.28 | ∼20.26 | ∼68.88 |
Table 2. Comparison of mechanical properties of PG/Cu and FG/Cu nanocomposites with different graphene contents.
Graphene content (wt%) | Nanocomposite | Γ (J/m2) | λf (%) | σu (GPa) | E (GPa) |
---|---|---|---|---|---|
1.09 | PG/Cu | ∼9.81 | ∼20.38 | ∼9.31 | ∼98.06 |
FG/Cu | ∼13.08 | ∼31.33 | ∼8.85 | ∼68.06 | |
2.26 | PG/Cu | ∼17.08 | ∼24.53 | ∼12.98 | ∼133.56 |
FG/Cu | ∼21.38 | ∼36.73 | ∼13.62 | ∼68.81 | |
3.52 | PG/Cu | ∼25.46 | ∼25.73 | ∼18.87 | ∼166.60 |
FG/Cu | ∼29.54 | ∼38.28 | ∼20.26 | ∼68.88 |
Fig. 6. Effect of the temperature. (a) Tensile stress-strain curves of PG/Cu and FG/Cu nanocomposites. (b) Toughness and strength of PG/Cu and FG/Cu nanocomposites.
Temperature (K) | Nanocomposite | Γ (J/m2) | λf (%) | σu (GPa) | E (GPa) |
---|---|---|---|---|---|
300 | PG/Cu | ∼9.81 | ∼20.38 | ∼9.31 | ∼98.06 |
FG/Cu | ∼13.08 | ∼31.33 | ∼8.85 | ∼68.06 | |
400 | PG/Cu | ∼8.49 | ∼18.38 | ∼8.81 | ∼94.80 |
FG/Cu | ∼11.29 | ∼29.03 | ∼8.66 | ∼64.83 | |
600 | PG/Cu | ∼7.36 | ∼16.98 | ∼7.79 | ∼89.87 |
FG/Cu | ∼9.49 | ∼27.78 | ∼7.27 | ∼61.79 |
Table 3. Comparison of mechanical properties of PG/Cu and FG/Cu nanocomposites at different temperatures.
Temperature (K) | Nanocomposite | Γ (J/m2) | λf (%) | σu (GPa) | E (GPa) |
---|---|---|---|---|---|
300 | PG/Cu | ∼9.81 | ∼20.38 | ∼9.31 | ∼98.06 |
FG/Cu | ∼13.08 | ∼31.33 | ∼8.85 | ∼68.06 | |
400 | PG/Cu | ∼8.49 | ∼18.38 | ∼8.81 | ∼94.80 |
FG/Cu | ∼11.29 | ∼29.03 | ∼8.66 | ∼64.83 | |
600 | PG/Cu | ∼7.36 | ∼16.98 | ∼7.79 | ∼89.87 |
FG/Cu | ∼9.49 | ∼27.78 | ∼7.27 | ∼61.79 |
Fig. 7. Toughening effects of FG at different pre-strains (ε). (a) Tensile stress-strain curves of FG reinforced Cu nanocomposites. (b) Toughness and strength of FG/Cu nanocomposites. (c) Phase transformations of FG/Cu nanocomposites and stress distributions of FG sheets embedded in composites at different tensile strains.
ε (%) | Γ (J/m2) | λf (%) | σu (GPa) | E (GPa) |
---|---|---|---|---|
0 | ∼9.81 | ∼20.38 | ∼9.31 | ∼98.06 |
5 | ∼11.68 | ∼26.23 | ∼8.08 | ∼81.88 |
10 | ∼13.08 | ∼31.33 | ∼8.85 | ∼68.06 |
15 | ∼15.16 | ∼38.58 | ∼8.88 | ∼62.78 |
Table 4. Comparison of mechanical properties of FG reinforced Cu nanocomposites with different pre-strains of FG sheets.
ε (%) | Γ (J/m2) | λf (%) | σu (GPa) | E (GPa) |
---|---|---|---|---|
0 | ∼9.81 | ∼20.38 | ∼9.31 | ∼98.06 |
5 | ∼11.68 | ∼26.23 | ∼8.08 | ∼81.88 |
10 | ∼13.08 | ∼31.33 | ∼8.85 | ∼68.06 |
15 | ∼15.16 | ∼38.58 | ∼8.88 | ∼62.78 |
Fig. 8. Toughening effects of FG with different patterns. Tensile stress-strain curves of FG reinforced Cu nanocomposites with the consideration of (a) wave-patterned FG and (c) peak-patterned FG. Toughness and strength of FG/Cu nanocomposites with different (b) wave numbers in FG and (d) peak numbers in FG. Phase transformations of FG/Cu nanocomposites under tensile loading with the consideration of (e) wave-patterned FG and (f) peak-patterned FG.
Wave numbers | Γ (J/m2) | λf (%) | σu (GPa) | E (GPa) |
---|---|---|---|---|
0 | ∼9.81 | ∼20.38 | ∼9.31 | ∼98.06 |
1 | ∼11.23 | ∼30.33 | ∼7.95 | ∼68.90 |
2 | ∼13.08 | ∼31.33 | ∼8.85 | ∼68.06 |
4 | ∼13.59 | ∼32.38 | ∼9.52 | ∼63.72 |
Table 5. Comparison of mechanical properties of FG reinforced Cu nanocomposites with different wave numbers of FG sheets.
Wave numbers | Γ (J/m2) | λf (%) | σu (GPa) | E (GPa) |
---|---|---|---|---|
0 | ∼9.81 | ∼20.38 | ∼9.31 | ∼98.06 |
1 | ∼11.23 | ∼30.33 | ∼7.95 | ∼68.90 |
2 | ∼13.08 | ∼31.33 | ∼8.85 | ∼68.06 |
4 | ∼13.59 | ∼32.38 | ∼9.52 | ∼63.72 |
Peak numbers | Γ (J/m2) | λf (%) | σu (GPa) | E (GPa) |
---|---|---|---|---|
0 | ∼9.81 | ∼20.38 | ∼9.31 | ∼98.06 |
1 | ∼11.23 | ∼30.33 | ∼7.95 | ∼68.90 |
3 | ∼12.58 | ∼31.43 | ∼8.40 | ∼67.24 |
5 | ∼13.21 | ∼31.98 | ∼9.62 | ∼67.16 |
Table 6. Comparison of mechanical properties of FG reinforced Cu nanocomposites with different peak numbers of FG sheets.
Peak numbers | Γ (J/m2) | λf (%) | σu (GPa) | E (GPa) |
---|---|---|---|---|
0 | ∼9.81 | ∼20.38 | ∼9.31 | ∼98.06 |
1 | ∼11.23 | ∼30.33 | ∼7.95 | ∼68.90 |
3 | ∼12.58 | ∼31.43 | ∼8.40 | ∼67.24 |
5 | ∼13.21 | ∼31.98 | ∼9.62 | ∼67.16 |
[1] |
M.E. Launey, R.O. Ritchie, Adv. Mater. 21 (2009) 2103-2110.
DOI URL |
[2] |
R.O. Ritchie, Nat. Mater. 10 (2011) 817-822.
DOI URL PMID |
[3] |
K. Lu, Science 345 (2014) 1455-1456.
DOI URL PMID |
[4] |
T.H. Fang, W.L. Li, N.R. Tao, K. Lu, Science 331 (2011) 1587-1590.
DOI URL PMID |
[5] |
D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, W.L. Johnson, Nature 451 (2008) 1085-1089.
DOI URL |
[6] |
J.Y. Sun, X. Zhao, W.R. Illeperuma, O. Chaudhuri, K.H. Oh, D.J. Mooney, J.J. Vlas- sak, Z.G.Suo, Nature 489 (2012) 133-136.
DOI URL |
[7] |
M. Hua, S. Wu, Y. Ma, Y. Zhao, Z. Chen, I. Frenkel, J. Strzalka, H. Zhou, X.Y. Zhu, X.M. He, Nature 590 (2021) 594-599.
DOI URL |
[8] |
Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, Y.X. Wu, Z.L. Mi, J.B. Liu, H.T. Wang, H.J. Gao, Nat. Commun. 5 (2014) 3580.
DOI URL |
[9] |
H. Kou, J. Lu, Y. Li, Adv. Mater. 26 (2014) 5518-5524.
DOI URL |
[10] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
[11] |
S. Zhang, F. Wang, P. Huang, J. Mater. Sci. Technol. 87 (2021) 176-183.
DOI URL |
[12] |
Q. Yan, B. Chen, L. Cao, K.Y. Liu, S. Li, L. Jia, K. Kondoh, J.S. Li, J. Mater. Sci. Technol. 96 (2022) 85-93.
DOI URL |
[13] |
S. Zhao, Z. Zhao, Z. Yang, L. Ke, S. Kitipornchai, J. Yang, Eng. Struct. 210 (2020) 110339.
DOI URL |
[14] | S. Zhao, Y. Zhang, J. Yang, S. Kitipornchai, Carbon 174 (2021) 335-344. |
[15] |
I.A. Kinloch, J. Suhr, J. Lou, R.J. Young, P.M. Ajayan, Science 362 (2018) 547-553.
DOI URL PMID |
[16] |
Y. Zhang, X. Li, Nano Lett. 17 (2017) 6907-6915.
DOI URL |
[17] |
Y. Zhang, F.M. Heim, J.L. Bartlett, N. Song, D. Isheim, X. Li, Sci. Adv. 5 (2019) eaav5577.
DOI URL |
[18] |
P. Zhang, L. Ma, F. Fan, Z. Zeng, C. Peng, P.E. Loya, Z. Liu, Y.J. Gong, J.N. Zhang, X.X. Zhang, P.M. Ajayan, T. Zhu, J. Lou, Nat. Commun. 5 (2014) 3782.
DOI URL PMID |
[19] |
D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Sci- ence 323 (2009) 610-613.
DOI URL |
[20] |
D.T. Ho, H.S. Park, S.Y. Kim, U. Schwingenschlögl, ACS Nano 14 (2020) 8969-8974.
DOI URL |
[21] | Z. Dai, L. Liu, Z. Zhang, Adv. Mater. 31 (2019) e1805417. |
[22] | S. Zhao, Y. Zhang, J. Yang, S. Kitipornchai, Carbon 168 (2020) 135-143. |
[23] | S. Plimpton, J. Comput. Phys. 117 (1995) 1-19. |
[24] |
A. Stukowski, Model. Simul. Mater. Sci. Eng. 18 (2010) 015012.
DOI URL |
[25] |
S.J. Stuart, A.B. Tutein, J.A. Harrison, J. Chem. Phys. 112 (2000) 6472.
DOI URL |
[26] |
H.S. Park, K. Gall, J.A. Zimmerman, J. Mech. Phys. Solids 54 (2006) 1862-1881.
DOI URL |
[27] | C. Zhang, C. Lu, L. Pei, J. Li, R. Wang, K. Tieu, Carbon 143 (2019) 125-137. |
[28] |
M.S. Daw, M.I. Baskes, Phys. Rev. B 29 (1984) 6443-6453.
DOI URL |
[29] |
H. Tsuzuki, P.S. Branicio, J.P. Rino, Comput. Phys. Commun. 177 (2007) 518-523.
DOI URL |
[30] |
K. Chu, C. Jia, Phys. Status Solidi A 211 (2014) 184-190.
DOI URL |
[31] |
S. Zhao, Z. Yang, S. Kitipornchai, J. Yang, Thin-Walled Struct. 147 (2020) 106491.
DOI URL |
[32] |
M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.Z. Yu, N. Koratkar, ACS Nano 3 (2009) 3884-3890.
DOI URL |
[33] | H. Wang, D.K. Chen, X.H. An, Y. Zhang, S.J. Sun, Y.Z. Tian, Z.F. Zhang, A.G. Wang, J.Q. Liu, M. Song, S. Ringer, T. Zhu, X.Z. Liao, Xiaozhou. Sci. Adv. 7 (2021) eabe3105. |
[34] |
J. Diao, K. Gall, M.L. Dunn, Nat. Mater. 2 (2003) 656-660.
DOI URL |
[35] |
Y. Kim, J. Lee, M.S. Yeom, J.W. Shin, H. Kim, Y. Cui, Jeffrey W. Kysar, J. Hone, Y. Jung, S. Jeon, S.M. Han, Nat. Commun. 4 (2013) 2114.
DOI URL |
[36] |
R.G. KuHoaglandrtz, R.J. Kurtz, C.H. Henager, Scr. Mater. 50 (2004) 775-779.
DOI URL |
[37] |
J. Wang, R.G. Hoagland, J.P. Hirth, A. Misra, Acta Mater. 56 (2008) 5685-5693.
DOI URL |
[38] |
H.A. Wu, Eur. J. Mech. A-Solids 25 (2006) 370-377.
DOI URL |
[39] |
J. Schiøtz, K.W. Jacobsen, Science 301 (2003) 1357-1359.
DOI URL PMID |
[40] |
X. Li, Y. Wei, L. Lu, K. Lu, H. Gao, Nature 464 (2010) 877-880.
DOI URL |
[41] |
L.A. Zepeda-Ruiz, A. Stukowski, T. Oppelstrup, V.V. Bulatov, Nature 550 (2017) 195-492.
DOI URL |
[42] |
C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321 (2008) 385-388.
DOI URL |
[43] |
X. Wei, S. Xiao, F. Li, D.M. Tang, Q. Chen, Y. Bando, D. Golberg, Nano Lett. 15 (2015) 689-694.
DOI URL |
[44] |
H. Chen, X. Zhang, Y. Zhang, D. Wang, D. Bao, Y. Que, W.D. Xiao, S.X. Du, M. Ouyang, S.T. Pantelides, H.J. Gao, Science 365 (2019) 1036-1040.
DOI URL PMID |
[45] | Y. Wang, W. Zhou, K. Cao, X. Hu, L. Gao, Y. Lu, Compos. Pt. A-Appl. Sci. Manuf. 140 (2021) 106177. |
[1] | Lei Jiang, Changsheng Wang, Huadong Fu, Jie Shen, Zhihao Zhang, Jianxin Xie. Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy [J]. J. Mater. Sci. Technol., 2022, 98(0): 33-43. |
[2] | Yu Liao, Junhua Bai, Fuwen Chen, Guanglong Xu, Yuwen Cui. Microstructural strengthening and toughening mechanisms in Fe-containing Ti-6Al-4V: A comparison between homogenization and aging treated states [J]. J. Mater. Sci. Technol., 2022, 99(0): 114-126. |
[3] | Zhengyi Mao, Mengke Huo, Fucong Lyu, Yongsen Zhou, Yu Bu, Lei Wan, Lulu Pan, Jie Pan, Hui Liu, Jian Lu. Nacre-liked material with tough and post-tunable mechanical properties [J]. J. Mater. Sci. Technol., 2022, 114(0): 172-179. |
[4] | Avik Mahata, Tanmoy Mukhopadhyay, Mohsen Asle Zaeem. Liquid ordering induced heterogeneities in homogeneous nucleation during solidification of pure metals [J]. J. Mater. Sci. Technol., 2022, 106(0): 77-89. |
[5] | Dongpeng Hua, Wan Wang, Dawei Luo, Qing Zhou, Shuo Li, Junqin Shi, Maosen Fu, Haifeng Wang. Molecular dynamics simulation of the tribological performance of amorphous/amorphous nano-laminates [J]. J. Mater. Sci. Technol., 2022, 105(0): 226-236. |
[6] | Yang Liu, Samuel C.V. Lim, Chen Ding, Aijun Huang, Matthew Weyland. Unravelling the competitive effect of microstructural features on the fracture toughness and tensile properties of near beta titanium alloys [J]. J. Mater. Sci. Technol., 2022, 97(0): 101-112. |
[7] | Young-Kyun Kim, Min-Chul Kim, Kee-Ahn Lee. 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 97(0): 10-19. |
[8] | Lihe Qian, Zhi Li, Tongliang Wang, Dongdong Li, Fucheng Zhang, Jiangying Meng. Roles of pre-formed martensite in below-Ms bainite formation, microstructure, strain partitioning and impact absorption energies of low-carbon bainitic steel [J]. J. Mater. Sci. Technol., 2022, 96(0): 69-84. |
[9] | Hanghang Liu, Paixian Fu, Hongwei Liu, Chen Sun, Ningyu Du, Dianzhong Li. Limitations of the homogenization process of bulk martensitic mold steel-depending on the comprehensive manifestation of various strengthening [J]. J. Mater. Sci. Technol., 2022, 117(0): 120-132. |
[10] | Chang Liu, Hongying Li, Rui Cheng, Jiazhuang Guo, Guo-Xing Li, Qing Li, Cai-Feng Wang, Xiaoning Yang, Su Chen. Facile synthesis, high fluorescence and flame retardancy of carbon dots [J]. J. Mater. Sci. Technol., 2022, 104(0): 163-171. |
[11] | H.F. Li, P. Zhang, B. Wang, Z.F. Zhang. Predictive fatigue crack growth law of high-strength steels [J]. J. Mater. Sci. Technol., 2022, 100(0): 46-50. |
[12] | Xiaoru Liu, Hao Feng, Jing Wang, Xuefei Chen, Ping Jiang, Fuping Yuan, Huabing Li, En Ma, Xiaolei Wu. Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels [J]. J. Mater. Sci. Technol., 2022, 108(0): 256-269. |
[13] | Pan Xie, Shucheng Shen, Cuilan Wu, Jiehua Li, Jianghua Chen. Unusual relationship between impact toughness and grain size in a high-manganese steel [J]. J. Mater. Sci. Technol., 2021, 89(0): 122-132. |
[14] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
[15] | Wenshuo Liang, Guimin Lu, Jianguo Yu. Theoretical prediction on the local structure and transport properties of molten alkali chlorides by deep potentials [J]. J. Mater. Sci. Technol., 2021, 75(0): 78-85. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||