J. Mater. Sci. Technol. ›› 2022, Vol. 120: 167-171.DOI: 10.1016/j.jmst.2021.11.066
• Letter • Previous Articles Next Articles
Zhengang Xionga,b, Ji Zoua,*(), Zhaoyang Dengb, Jinhan Chenc, Wei Liuc, Yuchi Fanb, Minshi Wangd, Xiaoqing Zhaoa, Chunfeng Yub, Dongdong Dongb,*, Wenyou Mab,*(
), Weimin Wanga, Zhengyi Fua
Revised:
2021-11-24
Published:
2022-09-01
Online:
2022-08-30
Contact:
Ji Zou,Dongdong Dong,Wenyou Ma
About author:
mawenyou@gdinm.com (W. Ma)Zhengang Xiong, Ji Zou, Zhaoyang Deng, Jinhan Chen, Wei Liu, Yuchi Fan, Minshi Wang, Xiaoqing Zhao, Chunfeng Yu, Dongdong Dong, Wenyou Ma, Weimin Wang, Zhengyi Fu. Integrating thin wall into block: A new scanning strategy for laser powder bed fusion of dense tungsten[J]. J. Mater. Sci. Technol., 2022, 120: 167-171.
Fig. 1. (a) Influence of the linear energy input (EL=P/υ) on the width of single track. The track morphologies can be classified as (b) narrow and discontinuous (P = 200 W, υ = 400 mm/s), (c) narrow and continuous (P = 250 W, υ = 400 mm/s) and (d) wide and smooth (P = 300 W, υ = 400 mm/s), as marked in Fig. 1(a) (Ⅰ, Ⅱ and Ⅲ, respectively). (e) SEM image shows the thin-walled tungsten part fabricated by LPBF. (f) Design of tungsten part by integrating thin-wall into block.
Fig. 2. (a) Schematic illustration for the ITWB scanning strategy. The corresponding microstructure evolutions for tungsten are displayed in 2(b-d), respectively. (e) A schematic diagram of the zigzag scan strategy. (f) The corresponding microstructure. Note: BD is building direction.
Fig. 3. OM images for the polished specimens on the horizontal cross section (x-y): (a) Wb, (b) Ws; and on the vertical section (x-z): (c) Wb, (d) Ws; IPF images for Wb (e) and Ws (f); KAM images for Wb (g) and Ws (h). Color keys for the IPF maps are inserted in 3e and 3f for the color presentation.
Fig. 4. (a) Electrical resistivity and electrical conductivity of Wb and Ws, as a function of temperatures; thermal conductivity, contributions from electron and phonon to the total thermal conductivity for (b) Wb and (c) Ws. It should be noted that the thermal conductivity values denoted with hollow circles were calculated by fitting the measured values.
Samples | Rk (m2 K/W) | λe/λtotal at RT | λe/λtotal at 900 °C | λp/λtotal at RT | λp/λtotal at 900 °C |
---|---|---|---|---|---|
Wb Ws | 9.49 × 10-7 3.65 × 10-7 | 56% 88% | 76% 84% | 44% 12% | 24% 16% |
Table 1. List of calculated thermal parameters for Wb and Ws.
Samples | Rk (m2 K/W) | λe/λtotal at RT | λe/λtotal at 900 °C | λp/λtotal at RT | λp/λtotal at 900 °C |
---|---|---|---|---|---|
Wb Ws | 9.49 × 10-7 3.65 × 10-7 | 56% 88% | 76% 84% | 44% 12% | 24% 16% |
[1] |
C. Ren, Z.Z. Fang, M. Koopman, B. Butler, J. Paramore, S. Middlemas, Int. J. Refract.Met. Hard Mater. 75 (2018) 170-183.
DOI URL |
[2] |
T. Todo, T. Ishimoto, O. Gokcekaya, J. Oh, T. Nakano, Scr. Mater. 206 (2022) 114252, doi: 10.1016/j.scriptamat.2021.114252.
DOI URL |
[3] |
B.G. Butler, J.D. Paramore, J.P. Ligda, C. Ren, Z.Z. Fang, S.C. Middlemas, K.J. Hemker, Int. J. Refract. Met. Hard Mater. 75 (2018) 248-261.
DOI URL |
[4] | M. Ghayoor, S. Mirzababaei, A. Sittiho, I. Charit, B.K. Paul, S. Pasebani, J. Mater.Sci. Technol. 83 (2021) 208-218. |
[5] |
H. Chen, D. Gu, L. Deng, T. Lu, U. Kühn, K. Kosiba, J. Mater. Sci. Technol. 89 (2021) 242-252.
DOI URL |
[6] |
A. Chakraborty, R. Tangestani, R. Batmaz, W. Muhammad, P. Plamondon, A. Wessman, L. Yuan, é. Martin, J. Mater. Sci. Technol. 98 (2022) 233-243.
DOI URL |
[7] |
C. Tan, Y. Chew, G. Bi, D. Wang, W. Ma, Y. Yang, K. Zhou, J. Mater. Sci. Technol. 72 (2021) 217-222.
DOI URL |
[8] |
D.Z. Wang, K.L. Li, C.F. Yu, J. Ma, W. Liu, Z.J. Shen, Acta Metall. Sin. 32 (2019) 127-135 (Engl. Lett.)
DOI URL |
[9] |
X. Zhou, X. Liu, D. Zhang, Z. Shen, W. Liu, J. Mater. Process. Technol. 222 (2015) 33-42.
DOI URL |
[10] |
D. Wang, C. Yu, X. Zhou, J. Ma, W. Liu, Z. Shen, Appl. Sci. 7 (2017) 430.
DOI URL |
[11] |
J. Braun, L. Kaserer, J. Stajkovic, K.H. Leitz, B. Tabernig, P. Singer, P. Leibenguth, C. Gspan, H. Kestler, G. Leichtfried, Int. J. Refract. Met. Hard Mater. 84 (2019) 104999.
DOI URL |
[12] |
Z.G. Xiong, P.P. Zhang, C.L. Tan, D.D. Dong, W.Y. Ma, K. Yu, Adv. Eng. Mater. 22 (2020) 1901352.
DOI URL |
[13] |
C. Tan, K. Zhou, W. Ma, B. Attard, P. Zhang, T. Kuang, Sci. Technol. Adv. Mater. 19 (2018) 370-380.
DOI URL |
[14] |
S. Wen, C. Wang, Y. Zhou, L. Duan, Q. Wei, S. Yang, Y. Shi, Opt. Laser Technol. 116 (2019) 128-138.
DOI URL |
[15] |
A.T. Sidambe, Y. Tian, P.B. Prangnell, P. Fox, Int. J. Refract. Met. Hard Mater. 78 (2019) 254-263.
DOI URL |
[16] |
A. Iveković, N. Omidvari, B. Vrancken, K. Lietaert, L. Thijs, K. Vanmeensel, J. Vleugels, J.P. Kruth, Int. J. Refract. Met. Hard Mater. 72 (2018) 27-32.
DOI URL |
[17] |
D. Wang, Z. Wang, K. Li, J. Ma, W. Liu, Z. Shen, Mater. Des. 162 (2019) 384-393.
DOI URL |
[18] |
K. Li, D. Wang, L. Xing, Y. Wang, C. Yu, J. Chen, T. Zhang, J. Ma, W. Liu, Z. Shen, Int. J. Refract. Met. Hard Mater. 79 (2019) 158-163.
DOI URL |
[19] |
J. Chen, K. Li, Y. Wang, L. Xing, C. Yu, H. Liu, J. Ma, W. Liu, Z. Shen, Int. J. Refract.Met. Hard Mater. 87 (2020) 105135.
DOI URL |
[20] |
J. Zou, Y. Gaber, G. Voulazeris, S. Li, L. Vazquez, L.F. Liu, M.Y. Yao, Y.J. Wang, M. Holynski, K. Bongs, M.M. Attallah, Acta Mater. 158 (2018) 230-238.
DOI URL |
[21] | L. Thijs, M.L.M. Sistiaga, R. Wauthle, Q. Xie, J.P. Kruth, J. Van Humbeeck, ActaMater. 61 (2013) 4657-4668. |
[22] |
X. Tong, G. You, Y. Ding, H. Xue, Y. Wang, W. Guo, Mater. Lett. 229 (2018) 261-264.
DOI URL |
[23] |
J.W. Zimmermann, G.E. Hilmas, W.G. Fahrenholtz, R.B. Dinwiddie, W.D. Porter, H. Wang, J. Am. Ceram. Soc. 91 (2008) 1405-1411.
DOI URL |
[24] |
H.B. Ma, J. Zou, J.T. Zhu, P. Lu, F.F. Xu, G.J. Zhang, Acta Mater. 129 (2017) 159-169.
DOI URL |
[25] |
D.S. Smith, F. Puech, B. Nait-Ali, A. Alzina, S. Honda, Int. J. Heat Mass Transf. 121 (2018) 1273-1280.
DOI URL |
[26] |
G. Kozlowski, M.A. Susner, J.C. Horwath, Z. Turgut, Contin. Mech. Thermodyn. 32 (2019) 247-254.
DOI URL |
[27] |
Z. Hu, Y. Zhao, K. Guan, Z. Wang, Z. Ma, Addit. Manuf. 36 (2020), doi: 10.1016/j.addma.2020.101579.
DOI URL |
[1] | Yuan Zhang, Guoqi Tan, Mingyang Zhang, Qin Yu, Zengqian Liu, Yanyan Liu, Jian Zhang, Da Jiao, Faheng Wang, Longchao Zhuo, Zhefeng Zhang, Robert O. Ritchie. Bioinspired tungsten-copper composites with Bouligand-type architectures mimicking fish scales [J]. J. Mater. Sci. Technol., 2022, 96(0): 21-30. |
[2] | Ahmad Zafari, Edward Wen Chiek Lui, Mogeng Li, Kenong Xia. Enhancing work hardening and ductility in additively manufactured β Ti: roles played by grain orientation, morphology and substructure [J]. J. Mater. Sci. Technol., 2022, 105(0): 131-141. |
[3] | Yeonju Oh, Won-Seok Ko, Nojun Kwak, Jae-il Jang, Takahito Ohmura, Heung Nam Han. Small-scale analysis of brittle-to-ductile transition behavior in pure tungsten [J]. J. Mater. Sci. Technol., 2022, 105(0): 242-258. |
[4] | Xing Qi, Naoki Takata, Asuka Suzuki, Makoto Kobashi, Masaki Kato. Change in microstructural characteristics of laser powder bed fused Al-Fe binary alloy at elevated temperature [J]. J. Mater. Sci. Technol., 2022, 97(0): 38-53. |
[5] | Young-Kyun Kim, Min-Chul Kim, Kee-Ahn Lee. 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 97(0): 10-19. |
[6] | Dina Bayoumy, Kwangsik Kwak, Torben Boll, Stefan Dietrich, Daniel Schliephake, Jie Huang, Junlan Yi, Kazuki Takashima, Xinhua Wu, Yuman Zhu, Aijun Huang. Origin of non-uniform plasticity in a high-strength Al-Mn-Sc based alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 121-133. |
[7] | Apratim Chakraborty, Reza Tangestani, Rasim Batmaz, Waqas Muhammad, Philippe Plamondon, Andrew Wessman, Lang Yuan, Étienne Martin. In-process failure analysis of thin-wall structures made by laser powder bed fusion additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 98(0): 233-243. |
[8] | C.C. Zhang, H.L. Wei, T.T. Liu, L.Y. Jiang, T. Yang, W.H. Liao. Influences of residual stress and micro-deformation on microstructures and mechanical properties for Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 75(0): 174-183. |
[9] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Ze Tian, Nannan Lu, Xikun Qin, Jingwei Liang. Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 69(0): 200-211. |
[10] | Chaolin Tan, Youxiang Chew, Guijun Bi, Di Wang, Wenyou Ma, Yongqiang Yang, Kesong Zhou. Additive manufacturing of steel-copper functionally graded material with ultrahigh bonding strength [J]. J. Mater. Sci. Technol., 2021, 72(0): 217-222. |
[11] | Shangcheng Zhou, Yao-Jian Liang, Yichao Zhu, Benpeng Wang, Lu Wang, Yunfei Xue. Ultrashort-time liquid phase sintering of high-performance fine-grain tungsten heavy alloys by laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 90(0): 30-36. |
[12] | Chuan Guo, Yang Zhou, Xinggang Li, Xiaogang Hu, Zhen Xu, Enjie Dong, Qiang Zhu, R. Mark Ward. A comparing study of defect generation in IN738LC superalloy fabricated by laser powder bed fusion: Continuous-wave mode versus pulsed-wave mode [J]. J. Mater. Sci. Technol., 2021, 90(0): 45-57. |
[13] | Shuqun Chen, Jinshu Wang, Ronghai Wu, Zheng Wang, Yangzhong Li, Yiwen Lu, Wenyuan Zhou, Peng Hu, Hongyi Li. Insights into the nucleation, grain growth and phase transformation behaviours of sputtered metastable β-W films [J]. J. Mater. Sci. Technol., 2021, 90(0): 66-75. |
[14] | Chaoqun Dang, Weitong Lin, Fanling Meng, Hongti Zhang, Sufeng Fan, Xiaocui Li, Ke Cao, Haokun Yang, Wenzhao Zhou, Zhengjie Fan, Ji-jung Kai, Yang Lu. Enhanced tensile ductility of tungsten microwires via high-density dislocations and reduced grain boundaries [J]. J. Mater. Sci. Technol., 2021, 95(0): 193-202. |
[15] | Zihong Wang, Xin Lin, Nan Kang, Jing Chen, Hua Tan, Zhe Feng, Zehao Qin, Haiou Yang, Weidong Huang. Laser powder bed fusion of high-strength Sc/Zr-modified Al-Mg alloy: phase selection, microstructural/mechanical heterogeneity, and tensile deformation behavior [J]. J. Mater. Sci. Technol., 2021, 95(0): 40-56. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||